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Abstract. The action potentials in a sinusoidaly forced Hodgkin-Huxley neuron are
known to possess mode locked or chaotic oscillations depending on the values of forcing
parameters. We have numericaly studied the spiking dynamics of the sinusoidaly forced
Hodgkin-Huxley neuron by making fine variations in the amplitude while keeping the
frequency fixed. We find that the dynamics of the neuron is far richer than previously
known. Increasing the resolution of forcing amplitude (I0) uncovers 1/m mode locked
oscillations with increasingly larger values of m. Moreover, a mode locked oscillation of
type 1/m can exist over multiple disconnected intervals of forcing amplitude. Chaotic
oscillations are found interspersed with mode locked oscillations. By varying I0 we
have further explored the transition between qualitatively different types of oscillations.
On increasing I0, every 1/m mode locked oscillation is found to go through a sequence
of period doubling bifurcations giving rise to 1/2m, 1/4m, ... mode locked oscillations
and finally chaos. Chaotic oscillations further undergo a transition to a 1/m′ mode
locked oscillation through a tangent bifurcation. The observed spiking patterns in
mode-locked oscillations are unusual and encode the stimulus strength.
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1 Introduction

Hodgkin Huxley model serves as a paradigm for axonal membranes of spiking
neurons. The model arose from the electrophysiological experiments of Hodgkin-
Huxley with squid giant axons. Consequently, a lot of experimental work with
squid axons and theoretical work with the Hodgkin-Huxley (HH) model has
been carried out.

A nerve membrane is an excitable system. An appropriate stimulus evokes a
strong response (action potential) resulting in a train of spikes in the membrane
potential. For forcing by a steady current, a subcritical Hopf bifurcation causes
the rest state of the neuron to become unstable giving rise to a periodic train
of spikes (a limit cycle) (Xie et. al.[1]). Periodically varying stimuli evoke a
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rich variety of response. Mode-locked (periodic), chaotic, and quasiperiodic
oscillations of membrane voltage have been found in experiments with squid
giant axons (Kaplan et. al. [2], Matsumoto et. al.[3], Aihara and Matsumoto[4],
Guttman et. al.[5]) and in numerical simulations of the HH model (Lee[6],
Borkowski[8], Borkowski[7], Parmananda et. al.[9]).

A periodicaly stimulated neuron does not fire action potentials unless the
forcing amplitude is above a threshold value. The threshold amplitude depends
on the forcing frequency. The firing threshold curve (in forcing parameter space)
of a HH neuron under sinusoidal forcing has been explored extensively. Firing
onset occurs through a variety of bifurcation mechanisms(Lee[6]). The firing
region in parameter space is dominated by mode locked oscillations of the type
1/1, 1/2, and 1/3 while there is a smaller region that exhibits chaotic oscillations.
Bifurcations mechanisms that bring about a change in the mode-locking ratio
of the periodic oscillations have not been explored so far. Our work explores
this question.

In their simulations Lee[6] carried out a characterization of the HH neuron’s
firing response in the forcing amplitude-frequency parameter space. However,
there exists a strip in parameter space lying between the 1/1 and 1/2 mode
locked regions that has not been explored adequately. In order to uncover the
bifurcations between various mode-locked oscillations, it is imperative to carry
out an exhaustive investigation of this strip. We have found that a complex
structure of interwoven periodic and chaotic dynamics connected by period
doubling and tangent bifurcations exist in this strip.

2 Hodgkin-Huxley Model

The Hodgkin-Huxley model of an axon describes the dynamics of its membrane
voltage (V ), activation variable (m) and the inactivation variable (h) of its
sodium channels, and the activation variable (n) of its potassium channels. The
model consists of the following set of four coupled differential equations

C
dV

dt
= −ḠNam

3h(V − VNa)− ḠKn
4(V − VK)− ḠL(V − VL) + Iext, (1)

dm

dt
= αm(1−m)− βmm, (2)

dh

dt
= αh(1− h)− βhh, (3)

dn

dt
= αn(1− n)− βnn, (4)

where,

αm =
0.1(25− V )

exp [(25− V )/10]− 1
, βm = 4exp [−V/18] , (5)

αh = 0.07exp [−V/20] , βh =
1

exp [(30− V )/10] + 1
, (6)
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αn =
0.01(10− V )

exp [(10− V )/10)]− 1
, βn = 0.125exp [−V/80] . (7)

Capacitence of the axonal membrane C = 1µF/cm2. The reversal potentials
of sodium, potassium, and leakage channels are VNa = 115mV , VK = −12mV ,
and VL = 10.5995mV respectively. The maximal conductances of the membrane
for sodium, potassium, and leakage currents are ḠNa = 120mS/cm2, ḠK =
36mS/cm2, ḠL = 0.3mS/cm2 respectively. In our work we stimulate the neuron
with a sinusoidal current Iext = I0sin(2πνf t), where I0 is the forcing amplitude
and νf is its frequency.

In our work we choose the frequency νf = 50Hz and the amplitude I0 is
varied in the range 1.6µA/cm2−2.0µA/cm2. At the lower and upper end of this
range, the neuron exhibits 1/1 and 1/2 mode locked spiking oscillations (Lee
[6]). By carrying out fine variations in the amplitude over this range, we have
uncovered a complex dynamical structure between these two periodic spiking
oscillations.

We carry out numerical simulations of the Hodgkin-Huxley equations (Eq.
1- 4) using the fourth order Rungke-Kutta method. We choose the time step dt
in our simulations as dt = Tf/1000.

3 Results

Dynamics of forced nonlinear systems are often studied by sampling their
phase space trajectory stroboscopically. Following this approach, we sample
the phase space trajectory of the HH model once every time period of the
sinusoidaly varying external current. Doing so, yields a sequence of voltage
values V0, V1, V2, ..., Vi, .... For periodic oscillations, a repetitive sequence will
be present. Let T be the the time taken for the neuron’s phase space trajectory
to complete one full cycle. For periodic oscillations Tf/T = 1/m. We will
characterize periodic oscillations by this ratio and refer to these as 1/m mode
locked oscillations. The repetitive sequence of voltage values for a 1/m oscillation
will contain m distinct values.

We have plotted the stroboscopically generated voltage sequences against
the forcing amplitude as a bifurcation parameter. The resulting bifurcation
plot is shown in Figure 1 over the amplitude range I0 = (1.6 − 2.0)µA/cm2.
Two ends of the plot display the 1/2 and 1/1 mode locked oscillations, known
from Lee’s work (Lee [6]). This interval is believed to contain a rich dynamical
structure (Lee [6], Parmananda et. al. [9]) but very few details are known.

Figure 1 shows that the amplitude interval between the known 1/1 and
1/2 oscillations contain many more periodic oscillations. Infact, the interval
is dominated by periodic oscillations. On increasing the forcing amplitude
from I0 = 1.6µA/cm2 onwards we observe 1/2, 1/3, 1/4, 1/5, ..., 1/m, 1/(m +
1), ... mode locked oscillations. A 1/m oscillation contains m branches in the
bifurcation diagram. A new branch gets added to the bifurcation diagram on
crossing over from a 1/m to a 1/(m + 1) oscillation. Figure 1 suggests the
presence of a 1/m mode locked oscillation for every positive integer m.
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Fig. 1. Bifurcation diagram with variation in forcing amplitude I0 with forcing
frequency fixed to ν = 50Hz.

The amplitude interval lying between 1/m and 1/(m + 1) oscillations de-
scribed above contains a rich dynamical structure not discernible in Fig. 1.
We see an instance of this richness on magnifying the amplitude interval lying
between 1/3 and 1/4 mode locked oscillations (see Fig. 2(a)). This interval
contains a myriad of periodic and chaotic oscillations. The region between
every 1/m and 1/(m+ 1) oscillations of Fig. 1 contain such periodic and chaotic
oscillations.

In Fig. 2(a)-(b) we observe that the 1/3 mode locked oscillations (on the
extreme left of the figure) undergo a cascade of period doubling bifurcations
giving rise to a sequence of 1/6, 1/12,... oscillations finally converging to chaos.
Similar period doubling bifurcations are present in other periodic windows in
Fig. 2(a). In general, starting from a 1/n periodic window, period doublings
will result in 1/(2n), 1/(4n),... oscillations. Each successive periodic oscillation
obtained through period doubling takes double the time to go around its phase
space trajectory once. Each cascade of period doublings finally converges to
chaos.

Periodic windows in Fig. 2(a) emerge from chaotic oscillations through a
tangent bifurcation. The bifurcation is identified by plotting a return map
between Vi and Vi+n if a 1/n mode locked oscillation results from the bifurcation.
Close to tangent bifurcation, the return map has n curve segments tangent to
a 450 line. After the tangent bifurcation occurs the return map crosses the
450 line at 2n points. Half of these points lie on a stable trajectory and the
other half like on an unstable trajectory. All periodic windows arise in the same
manner. Once a periodic oscillation is created through a tangent bifurcation,
the subsequent changes in the qualitiative dynamics of the membrane voltage
arise from period doubling bifurcation.

Typical spike sequences generated due to sinusodial forcing are depicted
in Figs. 3 and 4. Figure 3(a) shows a 1/3 mode locked oscillation obtained
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Fig. 2. (a) Bifurcation diagram for the amplitude interval lying between the 1/3 and
1/4 mode locked oscillation of Fig. 1. (b) Panel (a) figure is further magnified over its
initial amplitude interval to depict period doubling.

with forcing parameters chosen from the large region of 1/3 oscillations in Lee’s
paper. Here a spike occurs once every three cycles of forcing. In our work we
have found a novel set of spike patterns.

Fig. 3. Some typical spike sequences for periodic oscillations. Each figure gives the
result for a different I0 (in units of µA/cm2) and ν = 50Hz. The sinusoidal curve in
each figure indicates the profile of this current (a)I0 = 4, (b) I0 = 1.7, (c) I0 = 1.78,
(d) I0 = 1.82. Repeating units of spike sequences in (a)-(d) are of form {1..} , {2.},
{3.}, and {4.} respectively.

The spike sequences in Fig. 3(b)-(d) are representative of the 1/m periodic
oscillations that dominate the amplitude interval in Fig. 1. In each of these
periodic oscillations, we find that a spike occurs consecutively over (m − 1)



292 Dar and Gangal

forcing cycles, following which there is no spike in the mth forcing cycle. We
will represent this spike pattern by {(m− 1).}, with (m− 1) representing the
group of consecutive (m − 1) spikes and the dot ′.′ representing the missing
spike in the mth forcing cycle. The {(m − 1).} pattern repeates itself every
m forcing cycles and thus we will regard it as a repeating unit. The 1/3 and
1/4 mode locked oscillations in Figs. 3(b) and (c) have {2.} and {3.} as their
repeating units respectively. In contrast, the 1/3 oscillation [Fig. 3(a)] from
Lee’s work has a repeating unit of the form {1..}.

Fig. 4. Each figure gives the result for a different I0(in units of µA/cm2) and ν = 50Hz.
(a) and (b) show some typical spike sequences of the fundamental oscillation of a
periodic window. Here I0 = 1.6518 in (a) and I0 = 1.7345 in (b). In (c) we see
an intermittent spike sequence for I0 = 1.73365. A few sequences {3.2.2.2.} appear
intermittently here.

Figure 4 shows spike patterns of oscillations in periodic windows. Here
the repeating units have a form different from the ones in Fig. 3. A typical
repeating unit is of the form {m1.m2.m3.}, with multiple groups of spikes,
whereas oscillations in Fig. 3 contain only one group of spikes. Here we have
shown three groups of spikes containing m1, m2, and m3 spikes each separated
by a missing spike. However, the number of groups can be more or less (but
not less than two) than represented by {m1.m2.m3.}. Figure 4(a) and (b)
shows a 1/8 and 1/13 oscillations with repeating units {2.2.1.}, and {3.2.2.2.}
respectively.

Figure 5 shows the typical changes in V (t) that accompany period doubling
bifurcations. As an illustrative example we choose the period doubling cascade
starting from the 1/3 mode locked oscillation in Fig. 2. The repeating unit
is {2.} here. We find that the number of spikes per group remain unchanged
(equal to two) across all period doubling bifurcations starting from the 1/3
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Fig. 5. Changes in the repeating unit of spike sequences across a period doubling
bifurcation are shown here. All the figures are plotted for ν = 50Hz and I0 is in
units of µA/cm2(a) I0 = 1.731 gives 1/3 mode locking (b) I0 = 1.7324 gives 1/6 mode
locking, and (c) I0 = 1.73315 gives 1/12 mode locking, (d)-(e) show the variation in
spike amplitude for (a)-(c) respectively by plotting V (t) on a smaller scale.

oscillation. However, the amplitudes of spikes undergoes a change. Hence, the
repeating unit for 1/6, and 1/12 are {2.2.} and {2.2.2.2.} respectively. Likewise,
in a period doubling of any other periodic oscillation with a repeating unit
{m1.m2.m3.}, every period doubling doubles the length of the repeating unit
to {m1.m2.m3.m1.m2.m3.}.

A tangent bifurcation is known to be preceded by intermittency. We find
that intermittency occurs through an interesting set of changes in spike patterns
as we approach the bifurcation point on varying the forcing amplitude A. Far
from the bifurcation point V (t) is chaotic. The spike sequence is of the same
form as that for peridic oscillations. However, there exists no repetitive sequence
for chaotic oscillations. As the amplitude is brought closer to the bifurcation
point the frequency of a specific spike sequence {m1.m2.m3.} within the chaotic
sequence increases. Once the tangent bifurcation occurs {m1.m2.m3.} becomes
the repeating unit. Every periodic window arises through a similar increase in
the frequency of some unit.

4 Discussion

In the paper we presented a few results of stimulating a HH neuron by a
sinusoidal current in the regime where it evokes action potentials. We found a
complex structure of 1/m mode locked and chaotic oscillations between the 1/1
and 1/2 oscillations of Lee’s work(Lee[6]). Chaotic oscillations arise through
the period doubling route to chaos. Periodic windows emerge through a tangent
bifurcation preceded by an intermittent spike sequence. Starting from 1/2
mode locked oscillations, period doubling cascade gives rise to 1/4, 1/8,.. mode
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locked oscillations. Across a period doubling bifurcation, spike sequences do
not undergo any change. However, the amplitudes of the spikes undergo an
alteration. Intermittent spike sequences before a tangent bifurcation contain
glimpses of the spike sequences that are finally realized in the periodic oscillation
across the bifurcation. Infact, the neuron enters the 1/1 oscillation through a
tangent bifurcation.

In our work the ratio 1/m for a periodic oscillation is the ratio of time taken
for one forcing cycle to the time taken for the neuron to go once around its
closed orbit in phase space. In going around the limit cycle once the neuron
may fire several spikes. However, in literature 1/m usually implies that the
neuron fires one spike in every m cycles of forcing.

The spike sequences presented in our paper are distinct from those obtained
earlier. Spikes are organized in groups where each group may contain a different
number of spikes. These sequences of spikes alone can carry information about
the forcing amplitude. Implying that no knowledge of the rate of spiking or
that of the interpsike interval is necessary to extract information about the
forcing parameters.
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