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Abstract. The present work continues studies of the mathematical model of a metabolic 

process of the Krebs cycle. We study the dependence of its cyclicity on the cell 

respiration intensity determined by the formation level of carbon dioxide. We constructed 

the phase-parametric characteristic of the consumption of a substrate by a cell depending 

on the intensity of the metabolic process of formation of the final product of the 

oxidation. The scenarios of all possible oscillatory modes of the system are constructed 

and studied. The bifurcations with period doubling and with formation of chaotic modes 

are found. Their attractors are constructed. The full spectra of indices and divergencies 

for the obtained modes, the values of KS-entropies, horizons of predictability, and 

Lyapunov dimensions of strange attractors are calculated. Some conclusions about the 

structural-functional connections of the cycle of tricarboxylic acids and their influence on 

the stability of the metabolic process in a cell are presented. 

. 
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1  Introduction 
One of the possible problems of synergetics is the study of the internal 

dynamics of metabolic processes in cells. Its solution allows one to find the 

structural-functional connections defining the self-organization of these 

processes and to answer the question how the catalyzed enzymatic reactions 

create the internal space-time ordering of the cell life. 

The most general metabolic process in cells is the cycle of tricarboxylic 

acids [1]. This is the key stage of the respiration of all cells. In its course, the di- 

and tricarbon compounds, which are formed as intermediate products in the 

transformation of carbohydrates, fats, and proteins, are transformed up to CO2. 

In this case, the released hydrogen is oxidized further up to water, by taking the 

direct participation in the synthesis of ATP, being the universal energy source. 

Studies of the functioning of the Krebs cycle were carried out both 

experimentally and theretically in [2-10]. 

In the study of the given process, we use the mathematical model of the 

growh of cells Candida utilis on ethanol, which was developed by Professor 
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V.P. Gachok [11, 12]. With the help of this model, the unstable modes in the 

cultivation of cells observed in experiments were considered. The kinetic curves 

of the chaotic dynamics obtained with the help of computational experiments 

were in agreement with experimental data [13]. 

Then the given model was modified and refined in [14] due to the account 

for the influence of the CO2 level on the respiration intensity. With the help of 

the model, the structural-functional connections of the metabolic process in a 

cell, which cause the appearance of complicated oscillations in the metabolic 

process, were investigated. It was concluded that the given oscillations arise on 

the level of redox reactions of the Krebs cycle, reflect the cyclicity of the 

process, and characterize the self-organization in a cell. The fractality of the 

dynamics of oscillations of the Krebs cycle was studied as well.  

The analogous oscillatory modes were observed in the processes of 

photosynthesis and glycolysis, variations of the calcium concentration in a cell, 

oscillations in heart muscle, and other biochemical processes [15-19]. 

 

2  Mathematical Model 
 

The general scheme of the process is presented in Fig. 1. According to it 

with regard for the mass balance, we have constructed the mathematical model 

given by Eqs. (1) - (19). 

 
Fig. 1. General scheme of the metabolic process of growth of cells Candida 

utilis on ethanol. 

,)()( 1
1

110 SSV
NK

N
EVk

SK

K
S

dt

dS
α

γψ
−

+
−

++
=                                          (1) 



Chaotic Modeling and Simulation (CMSIM)  3:  207-220,  2014 209 

 

),()()()( 1
1

22
1

11
1 SV

NK

N
EVkSV

NK

N
EVk

dt

dS

+
−

+
=                                      (2) 

),()()()()()( 8243
2
231

1
22

2 SVSVkSVSVkSV
NK

N
EVk

dt

dS
−−

+
=                      (3) 

),()()()()()( 3
2
23

2
3

2
5824

3 SVSVkSVNVkSVSVk
dt

dS
−−=                                  (4) 

),()()()()()( 4847
2
3

2
5

4 SVNVkSVNVkSVNVk
dt

dS
−−=                                   (5) 

),()(2)()( 51947
5 SVTLVkSVNVk

dt

dS
−−=                                                      (6) 

,
1

)()()(2
81

2
6

2
6

10519
6

SMS

S
NVkSVTLVk

dt

dS

++
−−=                                       (7) 

),()()(
1

)()(
1

)(

3
2
23

2

92
2
7

2
7

12

711

81
2
6

2
6

10
7

SVSVkV
SMS

S
k

SVNVk
SMS

S
NVk

dt

dS

+
++

−

−−
++

=

ψ

                              (8) 

,
)(

)()()()()(
2

751

1

1
2

2
2

6824711
8

SSN

N

S

S
TVkSVSVkSVNVk

dt

dS

++
⋅

+
+−=

β
     (9) 

,
)]1()[((

)(
1 33921

9
14

2

92
2
7

2
7

12
9

SMXST

XTS
kV

SMS

S
k

dt

dS

ψµµµ
ψ

+++++
−

++
= (10) 

,
)]1()[((

2
33921

9
14 X

SMXST

XTS
k

dt

dX
α

ψµµµ
−

+++++
=                               (11) 

,
1

1
)()(4)()(

2
1

2316215
ψγ+

−+−−= OVQLVkNLVQVk
dt

dQ
                           (12) 

,)()(
1

1
)()( 2348

1
2316

22

2
2

2

0
OSVNVkOVQLk

OK

K
O

dt

dO
α

ψγ
−−

+
−−

+
=        (13) 

),()()()(

)()()()(

)()(
1

)()()(

1
111

1
22

215
2
3

2
5

711

81
2
6

2
6

1047

SV
NK

N
EVkSV

NK

N
EVk

NLVQVkSVNVk

SVNVk
SMS

S
NVkSVNVk

dt

dN

+
−

+
−

−−+−

−−
++

−−=

               (14) 



Grytsay and Musatenko 210 

,
])1()[(

)(
)(

)()()()(

33921

9
1419

2
751

1

1
2

2
2

618

439
2

117

SMXST

XTS
kk

SSN

N

S

S
TVkk

TSVTLVkVTLVk
dt

dT

ψµµµ

β

αψ

+++++
−

−
++

⋅
+

−

−−−+−=

                       (15) 

,)(
1

2

)()((4)()(4

2

92
2
7

2
7

12

2
117215

αψψ

ψ
ψ

−
++

−

−−+−=

V
SMS

S
k

VTLVkNLVQVk
dt

d

                                    (16) 

,)()( 15
1

11
12

2

2
2

2

1
1

0
ESV

NK

N
EVn

SN

N

S

S
E

dt

dE
α

β
−

+
−

++
=                             (17) 

,)()( 261
1

22
23

3

2
13

2
1

2
2

0
ESV

NK

N
EVn

SN

N

S

S
E

dt

dE
α

β
−

+
−

++
=                         (18) 

.)()( 748 CSVNVk
dt

dC
α−=                                                                              (19) 

where )1/()( XXXV +=  is the function that describes the adsorption of the 

enzyme in the region of a local coupling. The variables of the system are 

dimensionless [11, 12]. 

The internal parameters of the system are as follows: 

;3.01 =k  ;3.02 =k  ;2.03 =k  ;6.04 =k  ;16.05 =k  ;7.06 =k  ;08.07 =k  

;022.08 =k ;1.09 =k  ;08.010 =k  ;08.011 =k  ;1.012 =k  ;7.014 =k  ;27.015 =k  

;18.016 =k  ;14.017 =k  ;118 =k  ;1019 =k  ;07.01 =n  ;07.02 =n  ;2=L  

;21 =L  ;5.22 =L  ;23 =L  ;5.2=K  ;35.01 =K  ;22 =K  ;11 =M  ;35.02 =M  

;13 =M  ;6.01 =N  ;03.02 =N  ;01.03 =N  ;37.11 =µ  ;3.02 =µ  ;01.03 =µ  

;7.0=γ  ;7.01 =γ  ;5.01 =β  ;4.02 =β  ;4.03 =β  ;2
01 =E  .2

02 =E  

The external parameters determining the flow-type conditions are chosen as 

;05055.00 =S  ;06.0
02 =O  ;002.0=α  ;02.01 =α  ;004.02 =α  ;01.03 =α  

;01.04 =α  ;01.05 =α  ;01.06 =α  .0001.07 =α        

The model covers the processes of substrate-enzymatic oxidation of ethanol 

to acetate, cycle involving tri- and dicarboxylic acids, glyoxylate cycle, and 

respiratory chain. 

The incoming ethanol S  is oxidized by the alcohol dehydrogenase enzyme 

1E  to acetaldehyde 1S  (1) and then by the acetal dehydrogenase enzyme 2E  to 

acetate 2S  (2), (3). The formed acetate can participate in the cell metabolism 

and can be exchanged with the environment. The model accounts for this 

situation by the change of acetate by acetyl- CoA . On the first stage of the Krebs 
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cycle due to the citrate synthase reaction, acetyl- CoA  jointly with oxalacetate 

8S  formed in the Krebs cycle create citrate 3S  (4). Then substances 4S  - 8S  

are created successively on stages (5)-(9). In the model, the Krebs cycle is 

represented by only those substrates that participate in the reduction of NADH  

and the phosphorylation ATPADT → . Acetyl- CoA  passes along the chain to 

malate represented in the model as intramitochondrial 7S  (8) and cytosolic 9S  

(10) ones. Malate can be also synthesized in another way related to the activity 

of two enzymes: isocitrate lyase and malate synthetase. The former catalyzes the 

splitting of isocitrate to succinate, and the latter catalyzes the condensation of 

acetyl- CoA  with glyoxylate and the formation of malate. This glyoxylate-linked 

way is shown in Fig. 1 as an enzymatic reaction with the consumption of 2S  

and 3S  and the formation of 7S . The parameter 3k  controls the activity of the 

активность glyoxylate-linked way (3), (4), (8). The yield of 7S  into cytosol is 

controlled by its concentration, which can increase due to 9S , by causing the 

inhibition of its transport with the participation of protons of mitochondrial 

membrane. 

The formed malate 9S  is used by a cell for its growth, namely for the 

biosynthesis of protein X  (11). The energy consumption of the given process is 

supported by the process ADPATP → . The presence of ethanol in the external 

solution causes the “ageing” of external membranes of cells, which leads to the 

inhibition of this process. The inhibition of the process also happens due to the 

enhanced level of the kinetic membrane potential ψ . The parameter 0µ  is 

related to the lysis and the washout of cells. 

In the model, the respiratory chain of a cell is represented in two forms: 

oxidized, Q , (12) and reduced, q , ones. They obey the integral of motion 

3)()( LtqtQ =+ . 

A change of the concentration of oxygen in the respiratory chain is 

determined by Eq. (13). 

The activity of the respiratory chain is affected by the level of NADH  (14). 

Its high concentration leads to the enhanced endogenic respiration in the 

reducing process in the respiratory chain (parameter 15k ). The accumulation of 

NADH  occurs as a result of the reduction of +NAD  at the transformation of 

ethanol and in the Krebs cycle. These variables obey the integral of motion 

2)()( LtNADHtNAD =++ . 

In the respiratory chain and the Krebs cycle, the substrate-linked 

phosphorylation of ADP  with the formation of ATP  (15) is also realized. The 

energy consumption due to the process ADPATP →  induces the biosynthesis 

of components of the Krebs cycle (parameter 18k ) and the growth of cells on the 

substrate (parameter 19k ). For these variables, the integral of motion 

1)()( LtADPtATP =+  holds. Thus, the level of ATP  produced in the redox 
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processes in the respiratory chain ATPADP →  determines the intensity of the 

Krebs cycle and the biosynthesis of protein. 

In the respiratory chain, the kinetic membrane potential ψ  (16) is created 

under the running of reducing processes qQ → . It is consumed at the substrate-

linked phosphorylation ATPADP →  in the respiratory chain and the Krebs 

cycle. Its enhanced level inhibits the biosynthesis of protein and process of 

reduction of the respiratory chain. 

Equations (17) and (18) describe the activity of enzymes 1E  and 2E , 

respectively. We consider their biosynthesis (
01E  and 

02E ), the inactivation in 

the course of the enzymatic reaction ( 1n  and 2n ), and all possible irreversible 

inactivations ( 5α  and 6α ). 

Equation (19) is related to the formation of carbon dioxide. Its removal 

from the solution into the environment ( 7α ) is taken into account. Carbon 

dioxide is produced in the Krebs cycle (5). In addition, it squeezes out oxygen 

from the solution (13), by decreasing the activity of the respiratory chain. 

The study of solutions of the given mathematical model (1)-(19) was 

performed with the help of the theory of nonlinear differential equations [20, 21] 

and the methods of mathematical modeling of biochemical systems applied and 

developed by the authors. in [22-38]. 

 

3  The results of Studies 
 

For one cycle, there occurs the full oxidation of a molecule of acetyl- CoA  

up to malate and the formation of a new molecule of acetyl- CoA  at the input. In 

such a way, the continuous process of functioning of the Krebs cycle is running. 

This process has the autooscillatory character. 

The studies of the model with the help of computational experiments 

showed that if system’s parameters vary, the appearance of autooscillations with 

various frequencies, as well as chaotic oscillations, becomes possible. 

Oscillations with the same frequency will occur in all components of the given 

metabolic process.  In the present work, we will study the dependence of 

autooscillations of the system on the parameter 8k , which determines the level 

of formation of CO2 in the cycle of tricarboxylic acid. 

The different types of obtained autooscillatory modes are studied with the 

help of the construction of phase-parametric diagrams. The abscissa axis shows 

the values of parameter 8k , and the axis of ordinates gives the values of chosen 

variable )(1 tE , for example. Moreover, we used the method of cutting. In the 

phase space of trajectories of the system, we place the cutting plane 8.02 =S . 

Such a choice is explained by the symmetry of oscillations of acetate relative to 

this plane in a lot of earlier calculated modes. For every given value of 8k , we 

observe the intersection of this plane by the trajectory in a single direction, 

when it approaches the attractor. The value of )(1 tE  is put onto the phase-
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parametric diagram. In the case where a multiple periodic limiting cycle arises, 

a number of points can be observed on the plane, and they will be the same in 

the period. If the deterministic chaos arises, the points of the intersection of the 

plane by the oscillating trajectory will be positioned chaotically.  

In Fig. 2,a-d, we show the phase-parametric diagrams for the variable )(1 tE  

versus the parameter 8k  changing in the appropriate intervals. 

 

 
Fig. 2. Phase-parametric diagram for the variable )(1 tE : a - )8.0.,0(8 ∈k ; b - 

)4.0.,0(8 ∈k ; c - )3.0,25.0(8 ∈k ; d - )28.0,273.0(8 ∈k . 

As the parameter 8k  decreases, there occurs the subsequent doubling of the 

multilicity of the autoperiodic process. Such a sequence of the appearance of 

bifurcations creates a cascade of bifurcations, namely the Feigenbaum sequence 

[39]. After the multiple doubling of a period, the modes of aperiodic oscillations 

are eventually observed in the system. In other words, a chaos arises. As the 

parameter 8k  decreases further, we see the appearance of the windows of 

periodicity on the phase-parametric diagrams. The deterministic chaos is 

destroyed, and the periodic and quasiperiodic modes are established. The 

trajectory of a strange attractor in the chaotic mode is tightened to a regular 

attractor of the autoperiodic mode. We observe the self-organization in the 

system.  Then the windows of periodicity are destroyed, and the chaotic modes 

arise again. Moreover, the transitions “order—chaos” and “chaos—order” 

happen. There occurs the adaptation of the metabolic process to varying 

conditions. 

It is seen from the presented figures that, as the scale decreases, every 

subsequent phase-parametric diagram with doubling of a cycle and its windows 
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of periodicity are identicat to those of the previous diagram, as the scale 

decreases. The given sequence of bifurcations has a self-similar fractal structure. 

In Figs. 3,e-f and 4, we present the examples of the projections of phase 

portraits for some values of parameter 8k , according to the phase-parametric 

diagram in Fig. 2. 

In Fig. 5, we show the constructed kinetic curves for a strange attractor 

formed at 12.08 =k . 

These figures indicate a variation of the dynamics of a metabolic process of 

the Krebs cycle, which depends on the intensity of formation of the final 

oxidation product, CO2. 

 

 

 

Fig. 3. Projections of system’s phase portraits: a – regular attractor 122 ⋅ , 

5.08 =k ; b – regular attractor 222 ⋅ , 3.08 =k ; c - regular attractor 422 ⋅ , 

28.08 =k ; d - regular attractor 822 ⋅ , 278.08 =k ; e -  regular attractor 1622 ⋅ , 

277.08 =k ; f - strange attractor x22 ⋅ , 275.08 =k . 
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Fig. 4. Projection of the phase portrait 

of the strange attractor x22 ⋅  for 

12.08 =k . 

Fig. 5. Kinetic curve for the 

components 1S , 2S , and ψ  of the 

Krebs cycle in the mode of the strange 

attractor x22 ⋅  for 12.08 =k . 

 

In order to uniquely identify the type of obrained attractors and to 

determine their stability, we calculated the full spectra of Lyapunov indices and 

their sum ∑
=

=Λ
19

1j

jλ  for the chosen points. The calculation was carried out by 

Benettin’s algorithm with the orthogonalization of the vectors of perturbations 

by the Gram--Schmidt method [21]. 

The calculation of Lyapunov indices from this multidimensional system on 

a personal computer meets certain difficulties. The mathematical model of the 

given biochemical system contains many variables and parameters. The 

limitations in the solution of such problems arise due to the insufficient random-

access memory of a computer in the processing of the nn×  matrix of small 

perturbations. In addition, any inaccuracy on the stage of programming will 

essentially affect the redefinition of the vectors of perturbations, their 

orthogonalization, and, as a consequence, the result of calculations. 

Nevertheless, we solved the problem and obtained certain results. Below for the 

sake of comparison, we present the spectra of Lyapunov indices for some modes 

of the system. For brevity without any loss of information, we give the values of 

indices up to the fourth decimal point. 

The ratios of the values of Lyapunov indices 19321 ... λλλλ >>>>  serve 

as the criterion of the validity of calculations. For a regular attractor, we have 

obligatorily 01 ≈λ . The remaining indices can be also 0≈  in some cases. In 

some other cases, they are negative. The zero value of the first Lyapunov index 

testifies to the presence of a stable limiting cycle. 

For a strange attractor, at least one Lyapunov index must be positive. After 

it, the zero index follows. The next indices are negative. The presence of 

negative indices means the contraction of system’s phase space in the 

corresponding directions, whereas the positive indices indicate the dispersion of 

trajectories. Therefore, there occurs the mixing of trajectories in narrow places 
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of the phase space of the system, i.e., there appears the deterministic chaos. The 

Lyapunov indices contain obligatorily the zero index, which means the 

conservation of the aperiodic trajectory of an attractor in some region of the 

phase space and the existence of a strange attractor. 

For 01.08 =k , the strange attractor x22 ⋅  arises. We have 191 λλ − :  .0007;  

.0000;  -.0040;  -.0125;  -.0196;  -.0200;  -.0290;  -.0299;  -.0317;  -.0416;  -

.0416; -.0416;  -.0458;  -.0816;  -.0874;  -.0874;  -.1181;  -.1539;  -.2222; 

0672.1−=Λ . 

For 075.08 =k  –  regular attractor 
023 ⋅  (see the window of periodicity in 

Fig. 2,b). 191 λλ − :  .0000;  -.0004;  -.0040;  -.0117;  -.0194;  -.0211;  -.0285;  -

.0285;  -.0326;  -.0406; -.0406; -.0406;  -.0451;  -.0819;  -.0883;  -.0883;  -.1182;  

-.1563;  -.2241; 0702.1−=Λ . 

For 12.08 =k  – strange attractor x22 ⋅ ; 191 λλ − :  .0008;   .0000;   -.0040;  

-.0125; -.0192;  -.0210;  -.0287;  -.0300;  -.0324; -.0406;  -.0406; -.0406;  -

.0457;  -.0822;  -.0879;  -.0879;  -.1172;  -.1542;  -.2212; 0653.1−=Λ . 

For 27.08 =k  – strange attractor x22 ⋅ ; 191 λλ − : .0002;  .0000;  -.0040;  -

.0125;  -.0192;  -.0219;  -.0281;  -.0310;  -.0320;  -.0387;  -.0387; -.0387;  -

.0436;  -.0842;  -.0889;  -.0889;  -.1185;  -.1541;  -.2209; 0638.1−=Λ . 

For 275.08 =k  – strange attractor x22 ⋅ ; 191 λλ − : .0001;  .0000;  -.0040;  -

.0125;  -.0192;  -.0219;  -.0280;  -.0312;  -.0323;  -.0383;  -.0383; -.0383;  -

.0434;  -.0842;  -.0890;  -.0890;  -.1184;  -.1540;  -.2212; 0631.1−=Λ . 

For 278.08 =k  – regular attractor 822 ⋅ ; 191 λλ − : .0000;  .0000;  -.0041;  -

.0123;  -.0193;  -.0219;  -.0283;  -.0308;  -.0320;  -.0384;  -.0384; -.0384;  -

.0435;  -.0842;  -.0890;  -.0890;  -.1187;  -.1538;  -.2212; 0634.1−=Λ . 

For 278.08 =k  – regular attractor 822 ⋅ ; 191 λλ − : .0000;  .0000;  -.0041;  -

.0123;  -.0193;  -.0219;  -.0283;  -.0308;  -.0320;  -.0384;  -.0384; -.0384;  -

.0435;  -.0842;  -.0890;  -.0890;  -.1187;  -.1538;  -.2212; 0634.1−=Λ . 

For 28.08 =k  – regular attractor  422 ⋅ ; 191 λλ − : .0000;  .0000;  -.0041;  -

.0123;  -.0193;  -.0219;  -.0282;  -.0307;  -.0322;  -.0384;  -.0384; -.0384;  -

.0436;  -.0842;  -.0890;  -.0890;  -.1186;  -.1540;  -.2212; 0633.1−=Λ . 

The presented results of calculations indicate that the sum Λ  of all indices, 

which determine the flow divergencies and, hence, the evolution of the phase 

volume along the trajectory, is maximal for the regular attractor 023⋅ . It arises 

in the window of periodicity for 075.08 =k  ( 0702.1−=Λ ). For the strange 

attractors on the left and on the right (for 01.08 =k  and 12.08 =k ), the 

divergencies are, respectively, 0672.1−=Λ  and 0653.1−=Λ . This means that 

the phase volume element for the given attractor is contracted, on the whole, 

stronger along the trajectory. Here, we observe the self-organization of a stable 

cycle from chaotic modes. The Krebs cycle is adapted to the varying conditions. 
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By the given Lyapunov indices for strange attractors, we determine the 

KS-entropy (the Kolmogorov--Sinai entropy) [40]. By the Pesin theorem [41], 

the KS-entropy h corresponds the sum of all positive Lyapunov characteristic 

indices: 

The KS-entropy allows us to judge about the rate, with which the 

information about the initial state of the system is lost. The positivity of the 

given entropy is a criterion of the chaos. This gives possibility to qualitatively 

estimate the properties of attractor’s local stability. 

We determine also the quantity inverse to the KS-entropy, mint . This is the 

time of a mixing in the system. It characterizes the rate, with which the initial 

conditions will be forgotten. For  mintt << , the behavior of the system can be 

predicted with sufficient accuracy. For mintt > , only a probabilistic description 

is possible. The chaotic mode is not predictable due to the loss of the memory of 

initial conditions. The quantity mint  is called the Lyapunov index and 

characterizes the “predictability horizon” of a strange attractor. 

In order to classify the geometric structure of strange attractors, we 

calculated the dimension of their fractality. The strange attractors are fractal sets 

and have the fractional Hausdorff-Besicovitch dimension. But its direct 

calculation is a very labor-consuming task possessing no standard algorithm. 

Therefore, as a quantitative measure of the fractality, we calculated the 

Lyapunov dimension of attractors by the Kaplan--Yorke formula [42, 43]: 

1

1

+

=

∑
+=

m

m

i

i

F mD
r λ

λ

,                                                                                            (11) 

where m  is the number of the first Lyapunov indices ordered by their 

decreasing. Their sum 0

1

≥∑
=

m

i

iλ , and 1+m  is the number of the first Lyapunov 

index, whose value 01 <+mλ . 

For the above-considered strange attractors ∞2 , we obtained the following 

indices. 

For 01.08 =k : 0007.0=h , 6.1428min =t , 175.2=
rFD . 

For 12.08 =k : 0008.0=h , 1250min =t , 2.2=
rFD . 

For 27.08 =k : 0002.0=h , 5000min =t , 05.2=
rFD . 

For 275.08 =k : 0001.0=h , 10000min =t , 025.2=
rFD . 

By these indices, we can judge about the difference of the given strange 

attractors. 

 

Conclusions 
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With the help of the mathematical model of the Krebs cycle, we have studied 

the dependence of the cyclicity of the metabolic process on the amount of a final 

product of the oxidation, i.e., on the amount of the formed carbon dioxide. The 

multiplicity of the cycle is doubled by the Feigenbaum scenario, until the 

аperiodic modes of strange attractors arise. From them as a result of the self-

organization, the stable periodic modes appear. This means that the system is 

adapted to the varying conditions. We have calculated the full spectra of 

Lyapunov indices and the divergencies for various modes. For the  strange 

attractors, we have determined the KS-entropies, “predictability horizons,” and 

Lyapunov dimensions of attractors. The results obtained allow us to study the 

structural-functional connections of the cycle of tricarboxylic acids, their 

influence on the cyclicity of metabolic oscillations in a cell, and the physical 

laws of self-organization in it. 
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Abstract. Key agreement protocol  is used to establish shared secret key for the network 

system, which is quite important to guarantee secure communication. This paper 

proposes a two-party key agreement protocol. In order to improve the efficiency and 

enhance the security, we utilize extended chaotic maps to generate the shared key, which 

can be used to encrypt and decrypt the transmitted messages in the subsequent 

communications. The proposed protocol can guarantee anonymity of user’s identity and 

provide mutual authentication. In addition, it also can resist various attacks. The explicit 

analysis show that the protocol is secure, reliable and applicable in practice. 

Keywords: Key agreement protocol, Chaotic maps, Anonymous authentication. 
 

 

1  Introduction 
 

Key agreement protocols are basic to modern cryptography, which are used to 

guarantee the security of secret keys which are exchanged over the insecure 

public network. The shared keys are used in the subsequent communication for 

encryption, authentication, access control, and so on. In 1976, Diffie and 

Hellman[1] introduced the first key agreement protocol. However, both of 

communication parties don’t verity the identity of each other and it is vulnerable 

to man-in-the-middle attack. In order to solve the problem, an authenticated key 

agreement protocol[2] is proposed. The authenticated key agreement not only 

allow two parties to agree on a session key, but also ensure the authentication of 

the participant. Since then, many related key agreement protocols have been 

proposed[3-5].  

Chaotic systems have complicated behaviors, which are sensitive to initial 

conditions and system parameters, and are not predictable in the long term. 

These properties, as required by several cryptographic primitives, render chaotic 

systems a potential candidate for constructing cryptosystem. The application of 
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chaotic maps in cryptography has been studied for more than twenty years. 

There are chaos-based symmetry key cryptosystem[6,7], public key 

cryptosystem[8,9], Hash functions [10,11], and so on.  

In 2005, Xiao et al.[12] proposed a chaos-based key agreement protocol, 

which utilizes Chebyshev chaotic maps. Alvarez[13] demonstrated this protocol 

is vulnerable to man-in-the-middle attack. Xiao et al.[5] proposed an improved 

key agreement to enhance the security, but Han et al.[14] pointed out the 

improved protocol cannot resist the replay attack. Tseng et al.[15] proposed an 

anonymous key agreement protocol using smart cards. Niu et al.[16] 

demonstrated the protocol is vulnerable to the insider attacker and cannot 

protect user anonymity and then proposed a new key agreement protocol, which 

is also proved to have low computational efficiency problem by Yoon[17].  

Recently, Tan[18] proposed a novel authenticated key agreement protocol 

with strong anonymity, which is based on smart cards. However, the expense of 

smart cards and readers will make the protocols costly in practical use. In 

Ref.[19], Gong et al. proposed a secure chaotic maps-based key agreement 

protocol without using smart cards and claimed that the protocol is secure. 

Wang et al.[20] pointed out that there are some problems existing in Gong et 

al.’s protocol, such as the stolen-verifier attack, forged message flood and key 

management problems. Then they proposed a new key agreement protocol. We 

have explicitly analyzed Wang et al.’s protocol. The protocol cannot provide the 

anonymity of users’ identities. But in many insecure channels, especially in e-

commerce applications, anonymity is also an very important issue. There also 

exits key distribution and management problems, which can be easily avoided. 

Lee et al.[21] proposed a three-party password-based authenticated key 

exchange protocol with user anonymity. However, the introduced trusted third 

party not only adds extra overhead, but also becomes another security and 

performance bottleneck, which will bring potential threats to the system. 

Motivated by this, this paper proposed a two-party key agreement protocol with 

anonymous authentication. an anonymous authenticated key agreement protocol 

based on extended chaotic maps to solve these problems. It doesn’t need smart 

cards and at the same time preserves user anonymity. Besides, “two-party” will 

decrease the computation and communication cost and at the same time make 

the protocol secure and efficient. Explicit security analysis and performance 

analysis of the proposed protocol are also given in this paper. 

This paper is organized as follows. Section 2 introduces the preliminaries 

about extend Chebyshev chaotic maps. Then the proposed two-party key 

agreement protocol is described in section 3. Security and performance analysis 

are given in section 4 and section 5 separately. The last section presents the 

conclusions. 
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2  Preliminaries 
 

Definition 1. Let n Z +
∈  and [ 1,1]x∈ − , then a Chebyshev polynomial 0 of 

order n , ( ) :[ 1,1] [ 1,1]
n
T x − → − is defined as: 

( ) cos( arccos( ))
n
T x n x= ⋅                      

It is recursively defined using the following recurrent relation:  

1 2
( ) 2 ( ) ( ), 2
n n n
T x xT x T x n

− −
= − ≥  

where 
0
( ) 1T x =  and 

1
( )T x x= . 

The first few Chebyshev polynomials are 
2

2

3

3

4 2

4

( ) 2 1

( ) 4 3

( ) 8 8 1

T x x

T x x x

T x x x

= −

= −

= − +

L

 

The Chebyshev polynomials exhibit the following important properties: the 

semigroup property and the chaotic property. 

(1) The semi-group property: 

( ( ))r sT T x =

=

=

=

1 1

1

( )

cos( cos (cos( cos ( ))))

cos( cos ( ))

( ( ))

sr x

s r

r s x

rs x

T

T T x

− −

−

 

r and s  are positive integer numbers and [ 1,1]x∈ − . 

(2) The chaotic property 

When the degree 1n > , the Chebyshev polynomial map ( ) :[ 1,1]
n
T x − →  

[ 1,1]− of degree n  is a chaotic map with its invariant density 

* 2( ) 1/ ( 1 )f x xπ= − , and positive Lyapunov exponent ln 0nλ = > . 

To improve security, Zhang[22] proved that the semi-group property holds 

for extend Chebyshev polynomials defined on ( , )−∞ +∞ , which can enhance the 

property, as follows: 

1 2
( ) 2 ( ) ( ) mod
n n n
T x xT x T x P

− −
= −  

where 2n ≥  and P is a large prime. We can also obtain: 

( ( )) ( ) ( ( )) mod
r s sr s r
T T x T x T T x P≡ ≡  

Definition 2 The discrete logarithm problem (DLP) is explained by the 

following: Given an element y , the task of DLP is to find the integer s , such 

that ( )
s
T x y= . 

Definition 3 The Diffie-Hellman problem (DHP) is explained by the following: 

Given the elements ( )
r
T x and ( )

s
T x , the task of DHP is to compute ( )

rs
T x . 

It is generally believed that there is no polynomial time algorithm to solve the 

DLP and DHP problems with non-negligible probability. 
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Table 1. The notations in the protocol 

Notations Descriptions 

i
ID  Identity of client

i
U  

S
ID  Identity of server S  

( ), ( )
k k
E D⋅ ⋅  Secure symmetric encryption and decryption 

( )H ⋅  Secure one-way hash function 

( )
k
T ⋅  Cheybeshev chaotic map 

x  The seed of Chebyshev chaotic map 

1 2
, , ,r s r r  The degree of Chebyshev chaotic map 

i
PW  Password of client 

i
U  

S
K  The secret key of server S  

1 2 3
, ,T T T  Time stamps 

1 2
,T T∆ ∆  The specified valid time period 

sn  The session identifier 

KA  The established shared session key 

 

 

3  The proposed protocol 

 
This section will present our proposed two-party key agreement protocol based 

on extended Chebyshev chaotic maps. It consists of four phases: (1) the 

parameter generation phase; (2) the registration phase; (3) the key agreement 

phase; (4) the password updation phase. For the easy understanding of 

subsequent content, the commonly used notations are listed in Table 1. 

1. Parameter generation phase 

In order to perform the protocol, the server S firstly needs to generate some 

parameters as follow: 

(1) S selects a secure symmetric cryptosystem with encryption ( )
k
E ⋅ and 

decryption ( )
k
D ⋅ , where k  is the key of symmetric cryptosystem; 

(2) S selects a secure one-way hash function ( )H ⋅ ; 

(3) S select a private key
S
K  ,which is specialized for client registration. 

(4) Utilizes the public key cryptosystem based on Cheybshev chaotic maps, S  

chooses two random large integers x  and s  as the seed and degree of 

Chebyshev maps respectively and computes ( )
s
T x . Then publish 

( , ( ))
s

x T x as the public parameters and keep s  private. 

 

2. Registration phase  
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The Client 
i
U with the identity

i
ID registers with server S by the following 

two steps: 

(1) 
i
U selects a password 

i
PW ,and sends the 

i
ID and

i
PW  to S through a 

secure channel.  

(2) After receiving 
i

ID and 
i

PW , S use its private key 
S
K  to computes 

( , , )
reg i i S

M H ID PW K=  and store 
reg

M  as the register message securely.  

 

3. Key agreement phase 

The client and server need to perform the following four steps to realize 

mutual authentication and establish a common session key to complete the 

protocol. The simplified description of the phase is shown in Fig.1. The details 

are described in the following steps: 

(1)
i
U → S : 

1 11 1 1{ ( ), ( , , , , ( ), )}r SK i S i rM T x C E sn ID ID PW T x T= = . 

i
U selects a random large integer 

1
r , and computes 

1
( )rT x and

1
( ( ))r sSK T T x= . SK is used as the temporary key of symmetric 

cryptosystem to compute 
11 1( , , , , ( ), )SK i S i rC E sn ID ID PW T x T=  , where sn  is a 

session identifier and 
1
T  is a timestamp. Then 

i
U sends the message 

11 1{ ( ), }rM T x C= to the server. 

(2) S → 
i
U : 

22 2 1 1{ , ( , ( ), ( , ) , )}SK r SM sn C E sn T x H H KA ID T= = = . 

After receiving the message 
1

M , S first compute
1

( ( ))s rSK T T x= and use it to 

decrypt 
1
C . Then S  checks whether 

2 1 1
T T T− ≤ ∆ ,where 

2
T  is the current 

timestamp and 
1
T∆  is the specified valid time period. S continues to compute 

( , , )
reg i i S

M H ID PW K′ =  and validates whether 
reg reg

M M′ = . If so,  S can 

authenticate the identity of client 
i
U , otherwise, the process will be terminated 

immediately. S selects a random large integer 
2
r , and computes 

2
( )rT x , 

2 1
( ( ))r rKA T T x= , 

1
( , )

S
H H KA ID= and 

22 1( , ( ), ( , ), )SK r SC E sn T x H KA ID T= . 

S sends the message
2 2

{ , }M sn C=  to the client. 

 

(3)
i
U → S : 

3 2
{ , ( , , )}

i
M sn H H sn ID KA= = . 

   Upon receiving the message
2

M  from S , 
i
U first decrypts 

2
C  with the secret 

key SK . Then 
i
U checks whether 

3 1 2
T T T− ≤ ∆ ,where 

3
T  is the current 

timestamp. 
i
U computes 

1 2
( ( ))r rKA T T x=  and 

1
( , )

S
H H KA ID′ = , and validates 

whether 
1 1
H H′ = . If so , 

i
U will authenticate the identity of S . Any fail will 

lead to the termination of the protocol. 
i
U continues to compute 

2
( , , )

i
H H sn ID KA= and sends 

3 2
{ , }M sn H= to the server. 
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(4)    Having received the message 
3

M  from the client 
i
U , S will 

compute
2

( , , )
i

H H sn ID KA′ =  and check whether
2 2

H H′ = . If so, the server S  

can affirm that 
i
U has received KA and KAwill be the common session key 

used in the subsequent communications. 

 

4. Password updation phase 

If the client 
i
U  want to update the password, 

i
U and S need to perform the 

following steps: 

(1)    
i
U selects a random large integer r , and computes 

( )
r
T x and ( ( ))

PW r s
K T T x= . Similar with the first step in key agreement phase, 

PW
K will be used  as  the temporary key of  symmetric cryptosystem.  Then 

i
U encrypts ( , , , ( ))

PWPW K i i i rC E ID PW PW T x′=  and sends and 

{ ( ), }
PW r PW

M T x C=  to the server, where 
i

PW ′  is the updated password. 

(2)    Having received the message 
PW

M from 
i
U , S firstly computes 

( ( ))
PW s r
K T T x= and decrypts 

PW
M . Then S checks the validity of 

i
ID and 

i
PW . If so, then S continues to computes ( , , )

reg i i S
M H ID PW K′ ′=  and store 

reg
M ′  as the updated register message securely.  

 

1
( ( ))

r s
SK T T x=

11 1( , , , , ( ), )SK i S i rC E sn ID ID PW T x T=

1r

11 1
{ ( ), }

r
M T x C=

2 1 1T T T− ≤ ∆

( , , )reg i i SM H ID PW K′ =

reg regM M′ =

2 1
( ( ))

r r
KA T T x=

1
( , )

S
H H KA ID=

22 1
( , ( ), ( , ), )

SK r S
C E sn T x H KA ID T=

2 2{ , }M sn C=

3 1 2T T T− ≤ ∆

 3
( , )

A B
M H ID ID=

1 2
( ( ))

r r
KA T T x=

1 1H H′ =

3 2{ , }M sn H=

2 ( , , )iH H sn ID KA=
2 ( , , )iH H sn ID KA′ =

2 2H H′ =

1
( , )

S
H H KA ID′ =

                Fig. 1. The key agreement phase of the proposed protocol 

 

 

4  Security analysis 

 
In this section, we will analyze the security of the proposed protocol and show it 

can resist various attacks. Here, we claim that our protocol satisfy the following 

security properties: 
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(1)   Identity anonymity With the popularization of internet application, 

identity privacy has become an important requirement. Identity anonymity 

means that in the key agreement phase, the attacker cannot find the information 

about user’s ID by intercepting the communication messages. The attacker may 

eavesdrop the communication channel and try to find some sensitive 

information to trace the real identity. In the proposed protocol, the identity of 

Client and Server are encrypted by secure symmetric 

cryptosystem
11 1( , , , , ( ), )SK i S i rC E sn ID ID PW T x T= . In order to decrypt , the 

attack need the temporary secret key , which involve the DHP difficult problem 

mentioned in section 2. Only the server can decrypt the message and get the 

identity information. Thus, anonymity can be achieved during the key 

agreement phase. 

(2)   Mutual authentication  The goal of mutual authentication is to confirm 

both the identities of the client and server and establish a common shared 

session key between them. In step 2 of the key agreement phase, only the server 

can decrypt the message
11 1( , , , , ( ), )SK i S i rC E sn ID ID PW T x T= and authenticate 

the identity of the client by comparing the
i

ID and
i

PW with registered 

message
reg

M . Client can authenticate the identity of server by the session 

identifier sn and comparing hash value
1

( , )
S

H H KA ID′ = . The illegal attacker 

may modify the communication messages being transmitted over an insecure 

network. It is extremely difficult for the attacker to fabricate the false 

authentication information and any message modification during transmission 

will be detected by the protocol participant. So the proposed protocol can 

achieve the mutual authentication. 

(3)   Resistance to tamper attacks  A tamper attack is an attempt by an 

adversary to modify information in an unauthorized manner. This is an attack 

against the integrity of the information. We have stressed the problem in the 

analysis above and will explain how our protocol can resist this attack in this 

part. In the key agreement phase, the session identifier sn and
1
( )rT x are 

transmitted in the plaintext form and ciphertext form, respectively, which is 

used to validate whether the plaintext or cipherctext is being tampered. What is 

more, hash function is also utilized to further realize message integrity. If the 

adversary forges the message, the receiver can detect it by checking Hash value 

immediately. This leads to the termination of the protocol. According to the 

analysis, our protocol can resist the tamper attacks. 

(4)   Fairness in the key agreement  The property fairness in the key 

agreement is also called the contributory property, which means that the session 

key is determined cooperationally by both the communicating parties. In 0, the 

author has given a strictly formal definition. The fairness in key agreement 

means that any communicating party cannot decide a shared session key in 

advance. In this protocol, we can see client and server choose random 

integers
1
r and

2
r separately. Through the commutative property of extended 

Chebyshev chaotic map, they can compute the shared session 
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key
1 2 2 1
( ( )) ( ( ))r r r rKA T T x T T x= = . Therefore, the protocol can ensure the fairness 

in the key agreement. 

(5)   Resistance to man-in-the-middle attack  Man-in-the-middle means that 

an active attacker intercepts the communication messages between 

communication participants and adopts some special means to successfully 

masquerade as the both parties communicate with each other. From previous 

analysis, the attack even doesn’t know the identities of communicating parties 

since they are kept anonymous and any modification to the transmitted message 

will be detected. So the attacker cannot impersonate one participant to another 

during key agreement process. Therefore, the proposed protocol can withstand 

man-in-the-middle attack. 

(6)   Resistance to replay attack  A replay attack is an offensive action in 

which an adversary impersonates or deceives another legitimate participant 

through the reuse of information obtained in a protocol. The proposed protocol 

can resist the replay attacks, which is realized by using the session 

identifier sn and time stamps 
1 2 3

( , , )T T T . Time stamp is attached to verify 

freshness of every transmitted message. Furthermore, it cannot be modified 

because it is encrypted during transmission process. Thus, it is impossible for 

the replayed message to pass the verification with incorrect session identifier 

and timestamp. Therefore, our protocol can resist replay attack. 

(7)    Resistance to password-based attacks Dictionary attack is always used 

to crack the password in the protocol. There are three kinds of dictionary 

attack[21]: Off-line dictionary attack, undetectable on-line dictionary attack and 

detectable on-line dictionary attack. Both off-line and undetectable on-line 

dictionary attack can cause serious consequences among them. In the key 

agreement phase, the attacker needs to decrypt the 

message
11 1( , , , , ( ), )SK i S i rC E sn ID ID PW T x T= to steal the password

i
PW .  To 

obtain the secret key SK , the attack faces the DHP difficult problem. So the 

attacker cannot launch any of these attacks. Therefore, our protocol is quite 

effective to resist password-based attacks. 

(8)    Resistance to stolen-verifier attack Then stolen-verifier attack means 

that an adversary who steals the password verification information from the 

server can use it directly to masquerade as a legitimate user in authentication 

phase[16]. In the protocol, we assume the registered message  

( , , )
reg i i S

M H ID PW K= is safely stored by the server and cannot be accessed 

by the attacker. Even if it is stolen, the attacker still cannot carry out the stolen-

verifier attack to get the client’s password 
i

PW  without the server’s secret 

key
S
K . So the secret key

S
K can strength the security of password and resist the 

stolen-verifier attack. 

(9)   High efficiency in key distribution and management It need Server S to 

publish its public parameters ( , ( ))
s

x T x  and store the registered 

value ( , , )
reg i i S

M H ID PW K= . Each entity only needs to keep his own 

password 
i

PW . This will improve the performance of the key distribution. 
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What’s more, the symmetric secret keys SK  are established temporarily 

utilizing the Chebyshev semigroup property and will be altered in each session 

according to the selected random numbers
1
r .So the communication entity does 

not need to store SK  and it can decrease the key management cost and 

strengthen the security. 

 

5  Performance analysis 

 
In this section, we will compare the performance and security of our protocol 

with Tseng et al.’s protocol[15] and Wang et al.’s protocol[20]. For the 

convenience of evaluating the computational complexity, let 
X
T , 

S
T , 

C
T and

H
T be the computation cost of one XOR operation, one symmetric 

encryption/decryption operation, one Chebyshev polynomial computation and 

one Hash operation, respectively. From table 2, we can see that our key 

agreement protocol need ( )
S C
T T+ more computation cost for the client and 

( )
S C H
T T T+ + more for the server than Wang et al.’s. In practical use, 

symmetric encryption/decryption and hash function can be quite efficient. As 

for the Chebyshev operation, the authors in[5,24,25] gave some implementation 

methods to decrease the computational cost. Our protocol provides user 

anonymity and can be more efficient in key distribution and management 

compared to Wang et al.’s protocol. What’s more, our two-party protocol can 

decrease the communication cost. Our protocol only needs 3 times message 

transmission, which the number is 4 in Wang et al.’s protocol. 

 
Table 2:  Performance analysis and comparisons 

 Tseng et al.’s Wang et al.’s Our protocol 

User anonymity No No Yes 

Mutual authenticity No Yes Yes 

Fairness Yes Yes Yes 

Man-in-the-middle attack No No No 

Replay attack No No No 

Password-based attack No No No 

Stolen-verifier attack No No No 

Cost of Client 
2 2

2 5

X S

C H

T T

T T

+ +

+
 

2

2

s C

H

T T

T

+

+
 

2 3 2
s C H
T T T+ +

 

Cost of Server 
2

2 3

X S

C H

T T

T T

+ +

+
 

2

2

s C

H

T T

T

+

+
 

2 3 3
s C H
T T T+ +

 

 

Conclusions 
 

In this paper, we propose a two-party key agreement protocol based on extended 

chaotic maps. It securely establishes a shared session key, and provides identity 

anonymity and mutual authentication at the same time. It is demonstrated that 
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the protocol can resist various attacks, such as man-in-the-middle attack, replay 

attack, stolen-verifier attack, and so on. The protocol is also very efficient in key 

distribution and management. Compared with some previously proposed 

protocols, our protocol has shown its advantage in security and efficiency, 

which can be applicable in practical use. However, the two-party party protocol 

may not be suitable in large peer-to-peer network situations, which still needs 

further research. 
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Chaos in Pendulum Systems with Limited
Excitation in the Presence of Delay

A.Yu. Shvets and O.M. Makasyeyev

National Technical University of Ukraine Kyiv Polytechnic Institute, Kyiv, Ukraine
(E-mail: alex.shvets@bigmir.net, makaseyev@ukr.net)

Abstract. Dynamic system ”pendulum - source of limited excitation” with taking
into account the various factors of delay is considered. Different approaches to write
a mathematical model of this system using three- or fifteen-dimensional systems of
differential equations without delay is suggested. It is established that for small values
of the delay it is sufficient to use three-dimensional mathematical model, whereas for
relatively large values of the delay the fifteen-dimensional mathematical model should
be used.

Genesis of deterministic chaos is studied in detail. Maps of dynamic regimes,
phase portraits of attractors of systems, phase-parametric characteristics, Poincare
sections and maps are constructed and analyzed. The scenarios of transition from
steady-state regular regimes to chaotic ones are identified. It is shown, that in some
cases the delay is the main reason of origination of chaos in the system ”pendulum -
source of limited excitation”.

Keywords: pendulum system, limited excitation, delay, deterministic chaos..

1 Introduction

In mathematical modeling of oscillatory processes a mathematical model of
a relatively simple dynamical system is often used to study the dynamics of
much more complex systems. A typical example of this approach is the exten-
sive use of pendulum models to study the dynamics of systems of an entirely
different nature. Pendulum mathematical models are widely used to describe
the dynamics of various technical constructions, machines and mechanisms, in
the study of cardiovascular system, financial markets, etc. Such widespread
use of pendulum models makes it relevant to study directly the dynamics of
pendulum systems.

The study of the non-ideal by Zommerfeld–Kononenko [1] dynamical system
“pendulum–electric motor” in the absence of any delay factors was initiated in
[2], [3]. In this system the existence of deterministic chaos was identified and
studied. It was proved that limited excitation is the main cause of chaos in this
system.
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In this paper the oscillations of “pendulum–electric motor” system with
taking into account various factors of delay are considered. The delay fac-
tors are always present in rather extended systems due to the limitations of
signal transmission speed: waves of compression, stretching, bending, current
strength, etc. The aim of this work is to study the influence of various factors
of delay on steady-state regimes of this system.

2 Delay factors in “Pendulum–electric motor” system

In the absence of any delay factors the equations of motion of the system
“pendulum–electric motor” were obtained in [2]:

dy1
dτ

= Cy1 − y2y3 −
1

8
(y21y2 + y32);

dy2
dτ

= Cy2 + y1y3 +
1

8
(y31 + y1y

2
2) + 1;

dy3
dτ

= Dy2 + Ey3 + F ;

(1)

where phase variables y1, y2 describe the pendulum deviation from the vertical
and phase variable y3 is proportional to the rotation speed of the motor shaft.
The system parameters are defined by

C = −δ1ε−2/3ω−1
0 , D = −2ml2

I
, F = 2ε−2/3(

N0

ω0
+ E) (2)

where m - the pendulum mass, l - the reduced pendulum length, ω0 - natural

frequency of the pendulum, a - the length of the electric motor crank, ε =
a

l
,

δ1 - damping coefficient of the medium resistance force, I - the electric motor
moment of inertia, E, N0 - constants of the electric motor static characteristics.

Let us consider the following system of equations [4]:

dy1(τ)

dτ
= Cy1(τ − δ)− y2(τ)y3(τ − γ)− 1

8
(y21(τ)y2(τ) + y32(τ));

dy2(τ)

dτ
= Cy2(τ − δ) + y1(τ)y3(τ − γ) +

1

8
(y31(τ) + y1(τ)y22(τ)) + 1;

dy3(τ)

dτ
= Dy2(τ − γ) + Ey3(τ) + F .

(3)

Positive constant parameter γ was introduced to account the delay effects
of electric motor impulse on the pendulum. We assume that the delay of the
electric motor response to the impact of the pendulum inertia force is also equal
to γ. Taking into account the delay γ conditioned by the fact that the wave
velocity perturbations on the elements of the construction has a finite value
that depends on the properties of external fields, for instance, the temperature
field. In turn, the constant positive parameter δ characterizes the delay of the
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medium reaction on the dynamical state of the pendulum. This delay is due
to the limited sound velocity in that medium.

Assuming a small delay, we can write

yi(τ − γ) = yi(τ)− y1(τ)

dτ
γ + ..., i = 2, 3

yi(τ − δ) = yi(τ)− y1(τ)

dτ
δ + ..., i = 1, 2

Then, if Cδ 6= −1, we get the following system of equations [4]:



ẏ1 =
1

1 + Cδ

(
Cy1 − y2 [y3 − γ (Dy2 + Ey3 + F )]− 1

8
(y21y2 + y32)

)
;

ẏ2 =
1

1 + Cδ

(
Cy2 + y1y3 − y1γ(Dy2 + Ey3 + F ) +

1

8
(y31 + y1y

2
2) + 1

)
;

ẏ3 = (1− Cγ)Dy2 −
Dγ

8
(y31 + y1y

2
2 + 8y1y3 + 8) + Ey3 + F.

(4)

The obtained system of equations is already a system of ordinary differential
equations. Delays are included in this system as additional parameters.

In order to approximate the system (3) another, more precise, method can
be used [5], [6]. Let us divide each of the segments [−γ; 0] and [−δ; 0] into m
equal parts. We introduce the following notation

y1(τ − iδ

m
) = y1i(τ), y2(τ − iγ

m
) = y2i(τ), y2(τ − iδ

m
) = ỹ2i(τ),

y3(τ − iγ

m
) = y3i(τ), i = 0,m.

Then, using difference approximation of derivative [5], [6] the system of
equations with delay (3) can be reduced to the following system of equations
without delay:
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

dy10(τ)

dτ
= Cy1m(τ)− y20(τ)y3m(τ)− 1

8
(y210(τ)y20(τ) + y320(τ));

dy20(τ)

dτ
= Cỹ2m(τ) + y10(τ)y3m(τ) +

1

8
(y310(τ) + y10(τ)y220(τ)) + 1;

dy30(τ)

dτ
= Dy2m(τ) + Ey30(τ) + F ;

dy1i(τ)

dτ
=
m

δ
(y1 i−1(τ)− y1i(τ)), i = 1,m;

dy2i(τ)

dτ
=
m

γ
(y2 i−1(τ)− y2i(τ)), i = 1,m;

dỹ2i(τ)

dτ
=
m

δ
(ỹ2 i−1(τ)− ỹ2i(τ)), i = 1,m;

dy3i(τ)

dτ
=
m

γ
(y3 i−1(τ)− y3i(τ)), i = 1,m.

(5)

Should be noted that the main variables in this system are only y10, y20, y30.
In other words the solutions y1, y2, y3 of the system (3) are described by the
functions y10, y20, y30 of the system (5).

The system (5) is a system of ordinary differential equations of (4m+ 3)-th
order. Choosing a sufficiently large m in the system (5), the system (3) will
be very well approximated by the system (5) [5]. In this paper the system of
equation (5) was considered at m = 3. In this case, the system (5) has 15 equa-
tions. The calculations of cases m > 3, with a significant increase the number
of equations, were also carried out. It was established, that increasing the num-
ber of equations has practically no effect on identification and description of
steady-state regimes of “pendulum–electric motor” system. But it significantly
increases the complexity of constructing characteristics, which are necessary
for study the steady-state regimes of oscillations. Therefore, the use of math-
ematical model (5) at m = 3 is the most optimal for studying the influence of
delay on regular and chaotic dynamics of “pendulum–electric motor” system.

3 Maps of dynamic regimes

Therefore, we obtained three-dimensional (4) and fifteen-dimensional (5) mod-
els each describing the system of equations with delay (3). These models are the
systems of non-linear differential equations, so in general the study of steady-
state regimes can be carried out only by using numerical methods and algo-
rithms. The methodology of such studies is described in detail in [2].

In the study of dynamical systems the information about the type of steady-
state regime of the the system depending on its parameters is crucial. This
information can provide a map of dynamic regimes. It is a diagram on the
plane, where two parameters are plotted on axes and the boundaries of different
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dynamic regimes areas are shown. The construction of dynamic regimes maps
is based on analysis and processing of spectrum of Lyapunov characteristic
exponents [2,7]. Where necessary, for more accurate determination of steady-
state regime of the system, we study other characteristics of attractors: phase
portraits, Poincare sections and maps, Fourier spectrums and distributions of
the invariant measure.

Let us consider the behavior of the systems (4) and (5) when the parameters
are C = −0.1, D = −0.6, E = −0.44, F = 0.3. In fig. 1 the maps of dynamic
regimes are shown. The map in fig. 1a was built for three-dimensional model (4)
and the map in fig. 1b was built for fifteen-dimensional model (5). These figures
illustrate the effect of delays γ and δ on changing the type of steady-state regime
of the systems. The dark-grey areas of the maps correspond to equilibrium
positions of the system. The light-grey areas of the maps correspond to limit
cycles of the system. And finally, the black areas of the maps correspond to
chaotic attractors.

We can notice a certain similarity the maps in fig.1a, b. In delay absence
in these systems, the steady-state regime is stable equilibrium position. With
an increase of the delay of the medium δ the type of steady-state regime of the
systems (4) and (5) does not change. It still remains an equilibrium position
(dark-grey areas in the figures). However, with an increase of the delay of
interaction between pendulum and electric motor γ, the equilibrium position is
replaced by the area of limit cycles with ”mounted” area of chaos. With further
increase of the delay γ, the attractor of both systems is again equilibrium
position.

Let us study the dynamics of the system (4) and (5) at other values of
the parameters. At C = −0.1, D = −0.58, E = −0.6, F = 0.19 the steady–
state regime of both systems is limit cycle. In fig. 2a the map of dynamic
regimes of three-dimensional system (4) and in fig. 2b the map of dynamic
regimes of fifteen-dimensional system (5) are shown. At small values of the
delays the steady-state regime of both systems does not change, it is periodic.

a b

Fig. 1. Maps of dynamic regimes
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a b

c d

Fig. 2. Maps of dynamic regimes

The attractors are limit cycles (light-grey areas in the figures). With a further
increase of the delay values the maps in fig. 2a, b are certainly different. At
small values of the delay γ and with increase of the delay δ the type of steady–
state regime of the system (5) is replaced by chaotic regimes, whereas the type
of steady–state regime of the system (4) does not change, it remains periodic.
Further in both figures there are a rather wide area of chaos in which fairly
narrow strips of periodic regimes are built in.

In fig. 2c, d the maps of dynamic regimes of respectively the system (4) and
the system (5) at C = −0.1, D = −0.53, E = −0.6, F = 0.19 are constructed.
In delay absence and at small values of the delays both systems have chaotic
attractors (black areas in the figures). With an increase of the delay values the
region of chaos is replaced by the region of periodic regimes. Then again chaos
arises in the system. Further this area is replaced by the area of limit cycles.

As seen from the constructed maps of dynamic regimes, the dynamics of
the system (4) and (5) is the same only for small values of the delay γ and δ.
With an increase of the delays the differences of the dynamics of these systems
is very significant.
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4 Regular and chaotic dynamics

Let us study the types of regular and chaotic attractors that exist in the systems
(4) and (5). We implement a horizontal section of the maps of dynamic regimes
in fig.2c, d along the delay γ at δ = 0.15. In other words, let us consider the
behavior of the systems (4) and (5) when parameters are C = −0.1, D = −0.53,
E = −0.6, F = 0.19 and the delays δ = 0.15 and 0 ≤ γ ≤ 0.3.

In fig. 3a,b the dependence of maximum non-zero Lyapunov’s characteris-
tic exponent and phase-parametric characteristic of three-dimensional system
(4) are shown respectively. These figures illustrate the influence of the delay
of interaction between pendulum and electric motor γ on chaotization of the
system (4).

Let us construct the same characteristics at the same values of the param-
eters for fifteen-dimensional system (5). In fig. 4a,b respectively the depen-
dence of maximum non-zero Lyapunov’s characteristic exponent and phase-
parametric characteristic are shown.

In fig.3a, 4a we can clearly see the presence of intervals γ in which maximum
Lyapunov exponent of the systems is positive. In these intervals the systems
have chaotic attractors. The area of existence of chaos is clearly seen in phase-
parametric characteristics of the systems. The areas of chaos in the bifurcation
trees are densely filled with points. A careful examination of the obtained
images allows not only to identify the origin of chaos in the systems, but also
to describe the scenario of transition to chaos. So with a decrease of γ there
are the transitions to chaos by Feigenbaum scenario (infinite cascade of period-
doubling bifurcations of a limit cycle). Bifurcation points for the delay γ are
clearly visible in each figures. These points are the points of approaches of
the Lyapunov’s exponent graph to the zero line (fig.3a, 4a) and the points of
splitting the branches of the bifurcation tree (fig.3b, 4b). In turn, the transition
to chaos with an increase of the delay happens under the scenario of Pomeau-
Manneville, in a single bifurcation, through intermittency.

a b

Fig. 3. The dependence of maximal non-zero Lyapunov’s characteristic exponent (a),
phase-parametric characteristic (b) of three-dimensional system (4)
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a b

Fig. 4. The dependence of maximal non-zero Lyapunov’s characteristic exponent (a),
phase-parametric characteristic (b) of fifteen-dimensional system (5)

A careful analysis of these figures allows to see qualitative similarity of the
respective characteristics of the systems (4) and (5). However, with increasing
the delay the differences in the dynamics of these systems become very signif-
icant. So for instance at γ = 0.05 the steady–state regime of the system (4)
is limit cycle. While at this value of the delay the attractor of the system (5)
is chaotic attractor. Conversely, for example at γ = 0.11 the system (4) has
steady–state chaotic regime. While at this value of the delay the system (5)
has periodic regime of oscillations.

This suggests that three-dimensional system of equations (4) should be used
to study the system (3) only at very small values of the delay. With increasing
values of the delay to study regular and chaotic oscillations of ”pendulum–
electric motor” system, fifteen-dimensional system of equations (5) should be
used.

5 Conclusion

Various factors of delay have significant influence on the dynamics of “pendulum–
electric motor” system. The presence of delay in such systems can affect the
type of steady-state regime change. It is shown that for small values of the
delay it is sufficient to use three-dimensional mathematical model, whereas for
relatively high values of the delay the fifteen-dimensional mathematical model
should be used.

In future research is planned to construct and research mathematical models
of “pendulum–electric motor” system in the presence of variable in time delay
factors.
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Abstract. Following Mulligan and Sala-i-Martin (1993) we study a general class of
endogenous growth models formalized as a non linear autonomous three-dimensional
differential system. We consider the abstract model. By using the Shilnikov Theorem
statements, we determine the parameters space in which the condition for the existence
of a homoclinic Shilnikov orbit and Smale horseshoe chaos are true.

The Lucas model (1998) can be considered as an application of the general result.
The series expression of the homoclinic orbit is derived by the undetermined coefficient
method. We show the optimality for the solutions path based on the Shilnikov
Theorem. Some economic implications of this analysis are discussed.
Keywords: homoclinic Shilnikov bifurcation, Smale horseshoe chaos..

1 Introduction

We consider a class of endogenous growth two sector models as formulated by
Mulligan B. and X. Sala-i-Martin (1993). Some examples of this class are well
known and deeply study in recent literature (see inter al. D. Fiaschi, S. Sordi,
2002). A lot of research has been done in indeterminacy results and in the
conditions of existence and stability of cycles, in a special way Hopf bifurcations
(see G. Benhabib and R. Perli, 1994, p.124; P. Mattana and B. Venturi, 1999;
M. Boldrin, K. Nishimura, T, Shigoka, M. Yano, 2000; D. Fiaschi, S. Sordi,
2002; P. Mattana, 2004; S. Slobodyan, 2005; K. Nishimura , T.Shigoka, 2008; A.
Antoci, M. Galeotti, and P. Russu, 2011; G.Bella, P. Mattana and B.Venturi,
2013).

In particular, our analysis focuses on the context in which the application
system, the Lucas model, admits only one steady state which corresponding,
after a change of variables, in standard way, to an equilibrium point of a non
linear three-dimensional autonomous system.

As described by Guckenheimer J. and Holmes P. (1983), and Wiggins S.
(1990) usually a chaotic attractor has two or more fixed points: one determines
the location and the structure of the attractor, and another is used to build a
suspended flow which forms the spine of the attractor. However, as reported in
recently papers one equilibrium point is still possible to form a chaotic attractor.
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(In order to study the long-run properties of the equilibrium) we treat this
class as a general dynamical system. We give the conditions under which the
Shilnikov chaos occurs in a appropriated parameter set. Using Cardano formula
and series solution of the differential equations, the eigenvalues problem and the
rigorous proof of the existence of the homoclinic orbit are pursued and applied
to the Lucas model.

The work develops as follows. The second Section introduces the considered
class of generalized two sector models of endogenous growth, as a dynamical
system. We refer to the original paper of B. Mulligan and X. Sala-i-Martin,1993
and R. Lucas 1988 for an appropriate economic description of the system and its
application. The third Section is devoted to characterize the parameter set in
which the Shilnikov Theorem statements hold. We give a rigorous proof of the
emergence of a homoclinic Shilnikov orbit. In view of its evaluation , in the first
we found the set in which the system has a saddle-focus (of index 2) and in the
second, we determined the coefficients of the series expression of the stable and
unstable manifolds of such equilibrium point (the saddle-focus). As application
of these results we consider the Lucas model. At the end we show the optimality
for the solutions path based on the Shilnikov Theorem. Numerical simulation
demonstrate that there is a route to chaos. Some economic implications of this
analysis are discussed.

2 The Generalized Class of Two Sector Models of
Endogenous Growth

We review the generalized class of two sector models of endogenous growth, with
externalities, as formulated by B. Mulligan and X. Sala-i-Martin (1993).The
model deal with the maximization of a standard utility function:∫ ∞

0

c1−σ − 1

1− σ
e−ρtdt (2.1)

where c is per-capita consumption, ρ is a positive discount factor and σ is the
inverse of the intertemporal elasticity of substitution. The constraints to the
growth process are represented by the following equations

.

k = A((h(t)αhu(t)αu)(ν(t)ανk(t)αk)
∧
h(t)

α∧
hk(t)

α∧
k − τkk(t)− c(t)(2.2)

ḣ = B((h(t)βh(1− u(t)βu))((1− ν(t)βνk(t)βk)
∧
h(t)

β∧
hk(t)

β∧
k − τhh(t)

where k is physical capital, h is human capital, αkand αhbeing the private share
of physical and the human capital in the output sector, βk and βh being the
corresponding shares share in the education sector, u and v are the fraction
of aggregate human and physical capital used in the final output sector at
instant t ( and conversely, (1 − u) and (1 − v) are the fractions used in the
education sector), A and B are the level of the technology in each sector, τ
is a discount factor, α∧

k
is a positive externality parameter in the production

of physical capital, α∧
h
is a positive externality parameter in the production
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of human capital. The equalities αk + αh = 1 and βk + βh = 1 ensure that
there are constant returns to scale at the private level. At the social level,
however, there may be increasing, constant or decreasing returns depending on
the signs of the externality parameters. All other parameters ω = (αk, α∧

k
, αh,

α∧
h
, βk,β∧

k
, βh ,β∧

h
, σ, γ, δ, ρ) live inside the following set Ω ⊂ (0, 1)×(0, 1)×(0,

1)×(0, 1)×(0, 1)×(0, 1)×(0, 1) ×R4
+

The representative agent’s problem (1.1)-(1.2) is solved by defining the
current value Hamiltonian.

H =
c1−σ − 1

1− σ
+ λ1(A((h(t)αhu(t)αu)(ν(t)ανk(t)αk)

∧
h(t)

α∧
hk(t)

α∧
k − τkk(t)− c(t)) +

+λ2(B((h(t)βh(1− u(t)βu))((1− ν(t)βνk(t)βk)
∧
h(t)

β∧
hk(t)

β∧
k − τhh(t))(2.3)

where λ1 and λ2 are co-state variables which can be interpreted as shadow
prices of the accumulation. The solution candidate comes from the first-order
necessary conditions (for an interior solution) obtained from the Maximum
Principle, with the usual transversality condition

lim
t→∞

[
e−ρt (λ1k + λ2h)

]
= 0 (2.4)

We
consider only the competitive equilibrium solution. After eliminating v(t) the
rest of the first order conditions and accumulation constraints entail four first
order non linear differential equations in four variables: two controls (c and u)
and two states (k and h). By using new variables, since h, k and c grow at
a constant rate and u is a constant, Mulligan B.-Sala-i-Martin X.(1993) have
transformed a system of ordinary differential equations for c, u, k and h, , into
a system of three first order ordinary differential equations.

Setting A = B = 1 and

x
1

= h

a
ĥ

(a
ĥ
−1)

k ; x
2

= u; x
3

=
c

k
(2.5)

we get:

ẋ1 = φ1(x1, x2, x3, αk, αk̂, αh, aĥ, βk, βk̂, βh, βĥ, σ, γ, δ, ρ)
ẋ2 = φ2(x1, x2, x3, αk, αk̂, αh, αĥ, βk, βk̂, βh, βĥ, σ, γ, δ, ρ)
ẋ3 = φ3(x1, x2, x3, αk, αk̂, αh, αĥ, βk, βk̂, βh, βĥ, σ, γ, δ, ρ)

(2.6)

where the φi with i = 1, 2, 3 are complicated nonlinear functions ; which
depend of the parameters (x1, x2, x3, αk, α∧

k
, αh, α∧

h
, βk, β∧

k
, βh, β∧

h
, σ, γ, δ, ρ) of

the model.

3 Shilnikov Theorem and The Emergence of a
Homoclinic Orbit.

In order to verify that our system satisfies the Shilnikov Theorem statements, we
follow strictly D. Shang M.Han, 2005. In the first we determine the parameter



246 Venturi

space in which our system has a homoclinic orbit. We remember that a
homoclinic orbit is a transversal intersection between the stable manifold with
the unstable manifold of a hyperbolic equilibrium point (connects a saddle to
itself). Under regularity conditions (continuity since the second order ) the
model (2.6), has at least one stationary point P ∗(x∗1, x∗2, x

∗
3).

Lemma 1. In Ω exists a parameters subset
∧
Ω such that the equilibrium point

P ∗(0, 0, 0) is a saddle focus of index 2.

Proof. By using Cardano’s formula, we determine a parameters space in which
the solutions (roots) ri, i = 1, 2, 3 of the polynomial characteristic of the
Jacobian matrix J , evaluated in the stationary point J∗ = J(P ∗) satisfies the
following conditions

r1 = − â
3

+ u+ v (3.1)

r2,3 = − â
3
− u+ v

2
±
√

3
u− v

2
i

where i =
√
−1 is the imaginary root, u = 3

√
−m2 +

√
∆ and v = 3

√
−m2 −

√
∆,

with, l = 3b̂−â2
3 and m = ĉ + 2â3

27 −
âb̂
3 , â = −Tr(J∗), b̂ =B(J∗), and ĉ =

−Det(J∗), whereas ∆ =
(
l
3

)3
+
(
m
2

)2
is the discriminant. For the scope of our

paper, a saddle-focus (of index 2) emerges when

∆ > 0 (3.2)

3

√
−m

2
+
√
∆+ 3

√
−m

2
−
√
∆ < −2â

3

that is explicitly (
ĉ

2
+
â3

27
− âb̂

6

)2

>

(
â2 − 3b̂

9

)3

(3.3)

Thus (3.2) holds the characteristic equation has one real root and a conjugate
pair of complex , and the real root is positive (negative) since Det(J∗) > 0(< 0).

To ensure that the real part of the complex conjugate roots is positive
(negative) and that the equilibrium point is a saddle focus (of index 2) it is
further required that :

3

√√√√−( ĉ
2

+
â3

27
− âb̂

6

)
+
√
∆+ 3

√√√√−( ĉ
2

+
â3

27
− âb̂

6

)
−
√
∆ < −2â

3
(3.4)

In other word when (3.1) (3.2) (3.3) are satisfied the characteristic equations

of the Jacobian J∗in
∧
Ω has one positive real and two complex conjugate

eigenvalues whose real parts is negative: then the equilibrium point P ∗in
∧
Ω is

a saddle focus and the real eigenvalue is bigger than the absolute value of the
real part of the complex conjugate eigenvalues.
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Lemma 2. In
∧
Ω ⊂ Ω the system (2.6) has an homoclinic Shilnikov orbit.

Proof. We compute the stable and unstable manifolds of the saddle focus
equilibrium point to construct the Shilnikov type homoclinic orbit in an analytic
style.

Theorem 1. The system (2.6) exhibits a Smale horseshoe type of chaos. In
other words (2.6) has at least a finite number of Smale horseshoes in the discrete
dynamics of the Shilnikov map defined near the homoclinic orbit.

Proof. Theorem 1 is a direct application of the Shilnikov Theorem (see Guckenheim-
Holmes1983, pp.151-152). We only have to verify that the assumptions of
Shilnikov theorem are satisfied.

4 Application: The Lucas Model

The general model just presented collapses to Lucas’s model (1988) that is
analyzed by Benhabib and Perli (1994), Mattana and Venturi (1999) and
Mattana (2004) when depreciation is neglected and the following restrictions
are imposed

αν = α∧
k

= 0;β∧
k

= β∧
h

= βν = βk = 0;αν = α
h

= 1− α
k
;β

u
= β

h
(4.1)

The equations of the Lucas’s model can be formalized in R3 in the following
form

ẋ1 = xβ1x
β−1
2 − x1x3 + ψ (β−1)

β (1− x2)

ẋ2 = ηx22 + ψ (β−1)
β x2 + x1x3

ẋ3 = φx1−β2 xβ−11 x3 − ρ
σx3 + x23

(4.2)

as a system of three first order differential equations where

φ =
β − σ
σ

η =
δ(β − 1)

β
ψ =

δ(1− β + γ)

β − 1
ξ =

ρ

σ
(4.3)

A stationary (equilibrium) point P ∗of the system is any solution of

x∗1−β1 x∗ β−12 − x∗1x∗3 + ψ(1− x2)x∗1 = 0

ηx22 + ψ (β−1)
β x2 − x∗2 x∗3 = 0

φx∗1−β2 x∗β−11 x∗3 − ξx∗3 + x∗23 = 0

(4.4)

Then, we solved the system in (4.4) and we get the following steady state values

x∗1 = x∗2

[
βρ− δσ (1− u∗) + δ(β − γ)

β (β − σ)

]1/(β−1)
(4.5a)

x∗2 =
(1− β) (ρ− δ)

δ − [γ − σ(1− β + γ)]
(4.5b)
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x∗3 = ηx∗2 + δ
(1− β + γ)

β
(4.5c)

where φ = β−σ
σ simplifies the notation.

The system (4.2) possesses an interior steady-state characterized by the
stationary values in (4.5.a), (4.5.b) and (4.5.c) for x∗1, x∗2 and x∗3. It is well-
known that many theoretical results relating to the system depend upon the
eigenvalues of the Jacobian matrix evaluated at the stationary point.

Let J be the Jacobian matrix and P ∗(x∗1, x∗2, x
∗
3) the stationary point

(J(P ∗) = J∗ , see appendix A). The “feasible” restrictions in the parameters
are satisfied if and only if the parameters lie in one of the following subsets

Remark 1. i) if ω ∈ Ω1, J∗ has one negative eigenvalue and two eigenvalues
with positive real parts. (This means that the competitive equilibrium path is
locally unique). ii) ω ∈ Ω2, J∗ has one positive eigenvalue and two eigenvalues
with negative real parts. iii) ω ∈ Ω3 there exist two subsets ΩA3 and ΩB3 , and
such that:
if ω ∈ ΩA3 J∗has one eigenvalue with a positive real part and two eigenvalues with

negative real parts. ΩA3 =
{
ρ ∈ (δ,−ψ), σ ∈ (0.1, ρ/ψ), γ ∈ ( (1−β)(ρ−δ)

δ ,
 
γ )
}

where
 
γ is the Hopf bifurcation value found in Mattana P. and Venturi B.(1999);

if ω ∈ ΩB3 J∗has three eigenvalues with positive real parts:

ΩB3 =
{
ρ ∈ (δ,−ψ), σ ∈ (0.1, ρ/ψ), γ ∈ (

 
γ , β)

}
. So, there is either a continuum

of equilibria converging towards the steady-state or no stable transitional paths
at all.

We focuses our attention in the set ΩA3 and we rigorously prove that our
system in this subset satisfies all conditions stated in the Shilnikov Theorem.

In the first we translate the unique equilibrium point P ∗ in the origin W ∗,we
get

dwi
dt

= fi(w1, w2, w3) with i = 1, 2, 3 (4.6)

and we make use of the normal form (see Appendix B and Mattana and Venturi,
1999).

Lemma 3. If ω ∈ ΩA3 the equilibrium point W ∗(0, 0, 0) is a saddle focus.

The Jacobian J∗in ΩA3 has one positive real and two complex conjugate
eigenvalues whose real parts is negative: then the equilibrium point W ∗in ΩA3
is a saddle focus and the real eigenvalue is bigger than the absolute value of the
real part of the complex conjugate eigenvalues. By using Cardano Formula we
have verified analytically, and numerically the statement.

Lemma 4. In ΩA3 the system (4.6) has an homoclinic Shilnikov orbit Γ .

Proof. We show that the equilibrium point W ∗(0, 0, 0) of system (4.6) is
doubly asymptotic with respect to time t along the solution manifold. See
Appendix B for details.
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Figure 1: The homoclinic orbit

In Figure 1. we have the graph of the Homoclinic Shilnikov Orbit Γ .

Remark 2. In the set ΩB3 the Jacobian J∗ has one positive real and two complex
conjugate eigenvalues whose real parts is positive. In this situation the model is
expanding and thus it cannot have homoclinic orbits .

Theorem 2. The system (4.6) exhibits a Smale horseshoe type of chaos. In
other words (4.6) has at least a finite number of Smale horseshoes in the discrete
dynamics of the Shilnikov map defined near the homoclinic orbit.

Proof. By lemma1 the equilibrium point W ∗is a saddle focus in ΩA3 and the
real eigenvalue r1 ∈ R is bigger than the real part of the complex conjugate
eigenvalues r2/3 = −p ± iq and r1p > 0. with a further constraint |r1| > |p|.
By lemma 2 the system has a homoclinic Shilnikov orbit Γ in ΩA3 . It follows
directly from the Shilnikov Theorem that if the third-order autonomous system
(4.6) has a saddle-focus (of index 2) in the unique equilibrium points, W ∗ with
eigenvalues associated to J∗ given by r1 ∈ R and r2/3 = −p+ iq ∈ C, such that
r1p > 0. with a further constraint |r1| > |p|, and there exists a homoclinic orbit
Γ connecting W ∗, then the Shilnikov map, defined in a neighborhood of the
homoclinic orbit of the system, possesses a countable number of Smale horseshoes
in its discrete dynamics. and for any sufficiently small C1-perturbation g of f
the perturbed system dwi

dt = gi(w1, w2, w3) with i = 1, 2, 3 exhibits a Smale
horseshoe type of chaos has at least a finite number of Smale horseshoes in the
discrete dynamics of the Shilnikov map defined near the homoclinic orbit.
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5 Transversality Conditions

Proposition 1. The transversality conditions are satisfied on the homoclinic
orbit Γ .

As shown in BP the transversality conditions are satisfied on the balanced
growth paths. Let W ∗ (β∗, δ∗, ρ∗, σ∗, γ∗) be the only steady state in ΩA3 . Let
U in R3be a small open neighborhood of W ∗.So for each (β, δ, ρ, σ, γ ) ∈ ΩA3 ,
if we choose U sufficiently small, each path inside, starting from a point in the
homoclinic orbit Γ , satisfies the transversality conditions. It follows directly
from continuity arguments (the theorem of the permanence of the sign for
continuous functions).

Proposition 2. The transversality conditions hold near the homoclinic orbit
where the Shilnikov Theorem is true.

Proof. Let gi , i = 1, 2, 3, be a C1perturbation of fi, i = 1, 2, 3, where the

Shilnikov Theorem is true near the homoclinic orbit. Then for each (β, δ, ρ,
σ, γ ) ∈ Γ in ΩA3 there exists a constant L such that

|f(w(t))− g(w(t))| < L |w(t)−w(t)| (5.1)

i.e., in vectorial form the distance between a path starting in the homoclinic
Shilnikov orbit Γ and a Smale horseshoe chaotic path of g can be arbitrary
small. From proposition 1 the transversality conditions are satisfied on the
homoclinic orbit Γ then their are satisfied also in the chaotic solutions. We
can choose an arbitrary small open set U of f a path starting in the homoclinic
orbits in which there is a path that exhibits a Smale horseshoe chaos. But the
Shilnikov Theorem stated that for any sufficiently small C1-perturbation g of f ,
the perturbed system exhibits a Smale horseshoe chaos. Then the transversality
condition is satisfied.

6 Conclusions

This paper aims to give a contribution of research to conditions which determine
a chaotic behavior in the long-run properties of an economic model . Investi-
gations of this kind are important in economic theory since help mapping the
regions of the parameters space in correspondence of which the capacity of the
models to produce indications on future economic outcomes starting from given
fundamentals is drastically impaired. The aim of the present paper is to point
out some basic ideas that may be useful to prove the transition to bounded and
complex behavior, and to explain how the presence of an Homoclinic Shilnikov
orbit and chaos in a model of a general class of economic-financial models can
be interesting from an economic and dynamic point of view.
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7 Appendix A

As shown in the text, Luca′s model gives rise to the following system of
first-order differential equations

·
x1 = xβ1x

1−β
2 − x1x3 + ψ(1− x2)x1;

·
x2 = ηx22 + ψ (β−1)

β x2 − x2x3;
·
x3 = φx1−β2 xβ−11 x3 − ξx3 + x23;

(A.1)

where φ = β−σ
σ , η = δ(β−γ)

β , ψ = δ(1−β+γ)
β−1 , ξ = ρ

σ .

The system has the single equilibrium point: P ∗(x∗1, x
∗
2, x
∗
3)

x∗1 = x∗2

[
βξ−δ(1−β+γ)+δ(β−γ)x∗2

βφ

]1/(β−1)
x∗2 = (1−β)(ρ−δ)

δ−[γ−σ(1−β+γ)]
x∗3 = ηx∗2 + δ (1−β+γ)

β

(A.2)

The Jacobian matrix J associated with the system (A.1) evaluated at the
unique equilibrium point P∗ is given by J (P∗):

J(P ∗) =

 J∗11
x∗1
x∗2

(J11 + ψx∗2) −x∗1
0 −ηx∗2 x∗2

J11φx
∗
3

x∗1

J11φx
∗
3

x∗2
x∗3

 (A.3)

where

J∗11 =
(β − 1)[γρ− δσ(1− β + γ)]

β[γ − σ(1− β + γ)]
(A.4)

and

Tr(J ∗) =
δ(2β − γ)

β
x∗2 (A.5)

Det(J ∗) = J∗11x
∗
2x
∗
3

δ(γ − σ(1− β + γ))

σ(β − 1)
(A.6)

B(J ∗) = J∗11x
∗
3 +

δ2(β − γ))

β
x∗22 (A.7)

8 Appendix B.

The Shilnikov type homoclinic orbit in an analytic style.
To apply the Shilnikov theorem to the system (A.1), we have to prove that

the system has a homoclinic Shilnikov orbit at the equilibrium point P*. If the
parameters lie in the following subsets:

ΩA3 =
{
ρ ∈ (δ,−ψ), σ ∈ (0.1, ρ/ψ), γ ∈ ( (1−β)(ρ−δ)

δ ,
 
γ )
}

,

where
 
γ is the Hopf bifurcation value found in Mattana and Venturi (1999). By

using Cardano Formula, and numerical evaluation we shown that the singular
equilibrium point P∗ ∈ ΩA3 is a hyperbolic saddle focus of index 2 .
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In other words, the eigenvalues of the Jacobian matrix of the system (A.1)
evaluated in P∗are of the form r = r1 and r2/3 = −p ± iq,a saddle focus,
with r1 > 0, p > 0, q 6=0 and r1 > p > 0. We remember that a homoclinic orbit
joining the equilibrium point P∗of system (A.1) is doubly asymptotic with
respect to time t along the solution manifold.

We translate the equilibrium point P∗ in the origin W ∗(0, 0, 0) and we put
the system (A.1) in normal form

Body Math

·
w1= r w1+F 1aw1w2 +F 1bw1w3 +F 1cw2w3 +F 1dw

2
1+F 1ew

2
2+F

1fw
2
3;

·
w2= pw2 −qw3 +F 2aw1w2 +F 2bw1w3 +F 2cw2w3 +F 2dw

2
1+F 2ew

2
2+F 2f w

2
3

·
w3=qw2 +pw3 +F 3aw1w2 +F 3bw1w3 +F 3cw2w3 +F 3dw

2
1+F 3ew

2
2+F 3f w

2
3

(B.1)
We compute the stable and unstable manifolds of the saddle focus equilib-

rium point W ∗ to construct the Shilnikov type homoclinic orbit in an analytic
style. Parameter values are set as β = 0.76, ρ = 0.055, δ = 0.05499, σ =
0.1 and γ = 0. 042. So let’s begin with the analytic expression of the
one-dimensional unstable manifold associated with the real eigenvalue
r1 where am .bm .cm.are undetermined coefficients.

So for t¡0 the trajectory will tend to zero (to steady state) along the unstable
manifolds.

w1(t) = a0 +
∞

k=1
ake

krt;

w2(t) = b0 +
∞

k=1
bke

krt;

w3(t) = c0 +
∞

k=1
cke

krt

When k = 4 we get:

w1(t) = ξe0,05307121t−ξ20, 10856e0,10614t−ξ40, 00064e0,159214t−ξ81, 5E−08
e0,212285t

w2(t) = −0, 275059245ξ2 e0,106142t + 0, 5911103 ξ4e0,159214t −ξ883, 1E − 07
e0,212285t

w3(t) =−0, 3075101ξ2 e0,106142t−0, 008405ξ4 e0,159214t +ξ880, 0003196e0,212285t

We choose ξ ≤ 1.

As t→ ∞, the trajectory will tend to zero along the stable manifold. We
choose r2 = −p+ iq the complex eigenvalue

w1(t) = a0 +
∞

k=1
ak(ς, η)ek(−p+iq)t = ∞

k=2
[a1k(ς, η) + ia2k(ς, η)]ek(−p+iq)t

w2(t) = b0 +
∞

k=1
bke

k(−p+iq)t = ∞
k=1

[b1k(ς, η) + ib2k(ς, η)]ek(−p+iq)t

w3(t) = c0 +
∞

k=1
cke

k(−p+iq)t = ∞
k=1

[c1k(ς, η) + ic2k(ς, η)]ek(−p+iq)t

w1(t) = e−2pt [a12(ς, η) cos(2q) + ia12(ς, η)sin(2q)] + i[a22(ς, η) cos(2q) + ı̀a22(ς, η) sin(2q)]+
...
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w2(t) = e−pt[−ς cos(q)− iς sin(q)] + i[η cos(q) + ı̀η sin(q)]+
+e−2pt [b12(ς, η) cos(2q)+ib12(ς, η) sin((2q)]+i[b22(ς, η) cos(2q)+ı̀b22(ς, η) sin(2q)]....
w3(t) = e−pt[−η cos(q)− iη sin(q)] + i[ς cos(q) + ı̀ς sin(q)]
+e−2pt [c12(ς, η) cos(2q)+ib12(ς, η) sin((2q)]+i[c22(ς, η) cos(2q)+ı̀c22(ς, η) sin(2q)]....

a12=−3, 7E − 06;b12=−0, 004825;c12=−0, 00046
a13=5, 49E − 10;b13=4, 03E − 06;c13=4, 66E − 07
a22=-1,1E-09;b22=7,148E-07;c22=−1E − 07
a23=-1,1E-23;b23=-1,2E-20;c23=-4,1E-20
Body Math When k = 3 we get:

w1(t) = e−0,00302t ς2([(3, 7E−06) cos(0, 11053t)−(−1, 1E−09) sin(0, 11053t)]+
+ı̀[(−1, 1E − 09) cos(0, 11053t) + (3, 7E − 06)sin(0, 11053t))+
+e−0,0045t ς4([(5, 49E − 10) cos(0, 016579t)− (1, 1E − 23) sin(0, 016579t) +

i[(1, 1E − 23) cos(0, 016579t) + (5, 49E − 10) sin(0, 016579t)])...

w2(t) = e−0,00151tς([− cos(0, 005523t)−sin(0, 005523t)]+ i[cos(0, 005523 t)−
sin(0, 005523 )])+

+e−0,00302t ς2(([(−0, 004825) cos(0, 11053t)− (7, 148E − 07) sin(0, 11053t)] +
i[(7, 148E − 07) cos((0, 11053t))− 0, 004825 sin(0, 11053t]+

+.e−0,0045t ς4([(4, 03E − 06) cos(0, 016579t)− (1, 2E − 20) sin(0, 016579t) +
i((−1, 2E − 20)) cos(0, 016579t) + (4, 03E − 06) sin(0, 016579t))]

w3(t) = e−0,00151tς([− cos(0, 005523t)−sin(0, 005523t)]+ i[cos(0, 005523 t)−
sin(0, 005523 )])+

+e−0,00302t ς2(([(−0, 00046) cos(0, 11053t)− (7, 148E − 07) sin(0, 11053t)] +
i[(7, 148E − 07) cos((0, 11053t))− (0, 00046) sin(0, 11053t]+

+.e−0,0045t ς4([(4, 66E − 07) cos(0, 016579t) + (4, 1E − 20) sin(0, 016579t) +
i((−4, 1E − 20) cos(0, 016579t) + (4, 66E − 07) sin(0, 016579t))]

We assume ς = η ≤ 1.
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Abstract. The Newtonian and special-relativistic Lyapunov exponents are compared for 

a low speed system – the periodically-delta-kicked particle. We show that although the 

agreement between the Newtonian and special-relativistic transient Lyapunov exponents 

rapidly breaks down initially, they converge to values which are very close to each other.  
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1  Introduction 
 

It is conventionally believed [1-3] that if the speed v of a dynamical system 

is low compared to the speed of light c, that is, v << c, then the special-

relativistic dynamical predictions for the system will be well-approximated by 

the Newtonian predictions. However, it was shown in recent numerical studies 

[4-9] that, contrary to the conventional belief, the agreement between the 

Newtonian and special-relativistic dynamical predictions for a single trajectory 

[4-7] and for an ensemble of trajectories [8,9] can break down completely 

although the speed of the system is low. Here, we extend the previous studies 

[4-9] to a comparison of the Newtonian and special-relativistic predictions for 

the Lyapunov exponent of a prototypical chaotic Hamiltonian system – the 

periodically-delta-kicked particle – at low speed. Details of the system and 

calculations will be given next, followed by the results and discussion. 

 

 

2  Method 
 

In the Newtonian framework, the equations of motion for the periodically-

delta-kicked particle are reducible to an exact mapping, which is called the 

standard map [10,11]: 

( )
11

2sin
2

−− −=
nnn

X
K

PP π
π

     (1) 

( ) 1 mod  
1 nnn

PXX += −      (2) 
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where Xn and Pn are, respectively, the dimensionless scaled position and 

momentum of the particle just before the nth kick (n = 1, 2, …), and K is a 

dimensionless positive parameter.  

 

In the special-relativistic framework, the equations of motion for the 

periodically-delta-kicked particle are also reducible to a mapping, which is 

called the relativistic standard map [12,13]: 

( )
11

2sin
2

−− −=
nnn

X
K

PP π
π

     (3) 

1 mod  
1

22
1 














+
+= −

n

n

nn

P

P
XX

β
    (4)   

where β, like K, is also a dimensionless positive parameter. 

 

The transient Lyapunov exponent for a map is generally defined [14] as 

( )[ ]
nn

M
n

 traceabsln
1

=λ       (5) 

where Mn = Jn Jn-1 … J2 J1 and Jn is the Jacobi matrix. In the limit n → ∞, λn 

yields [14] the largest Lyapunov exponent. A hallmark of chaos is the existence 

of a positive Lyapunov exponent. For the standard map in Eqs. (1) and (2), the 

Jacobi matrix is 

( )
( )







−

−
=

n

n

n
XK

XK
J

π
π
2cos11

2cos1
.     (6) 

For the relativistic standard map in Eqs. (3) and (4), the Jacobi matrix is 

( )
( ) ( ) ( )[ ]







+−+

−
= −

+

−

+ nnn

n

n
XKPP

XK
J

πββ
π

2cos111

2cos1
2/32

1

22/32

1

2
.  (7) 

 

In each theory, the transient Lyapunov exponent [Eq. (5)] is calculated 

twice to determine its accuracy. The calculation for the transient Lyapunov 

exponent is first performed in 32-significant-figure precision and then repeated 

in quadruple (35 significant figures) precision. The accuracy of the transient 

Lyapunov exponent is determined by the common digits of the 32-significant-

figure-precision and quadruple-precision calculations. For example, if the 

former calculation yields 1.234… and the latter calculation yields 1.235…, the 

transient Lyapunov exponent is accurate to 1.23. 

 

 

3  Results and discussion 
 

Here we will present an example to illustrate the typical result. In this 

example, X0 = 0.5, P0 = 99.9, K = 7.0 and β = 10
-7

. For these initial conditions 

and parameters, both the Newtonian and special-relativistic trajectories are 
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chaotic. In this case, the speed of the particle is low, about 10
-5

c, up to 8800 

kicks. 

 

Fig. 1, which plots the Newtonian and special-relativistic transient 
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Fig. 1. Newtonian (squares) and special-relativistic (diamonds) transient 

Lyapunov exponents versus kick. 

 

Lyapunov exponents for the first 30 kicks, shows that the two transient 

Lyapunov exponents agree with each other for the first 10 kicks but the 

agreement breaks down from kick 11 onwards. The agreement between the 

Newtonian and special-relativistic transient Lyapunov exponents breaks down 

rapidly because the difference between the two grows, on average, 

exponentially – see Fig. 2. The exponential growth constant of the difference 
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Fig. 2. Difference between the Newtonian and special-relativistic transient 

Lyapunov exponents versus kick. 
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between the two transient Lyapunov exponents, measured from kick 1 to kick 

10, is 0.96.  

 

However, asymptotically, the Newtonian and special-relativistic transient 

Lyapunov exponents converge to values which are very close to one another. In 

particular, at kick 8800, the Newtonian and special-relativistic transient 

Lyapunov exponents are both accurate to 1.27, which is quite close to the 

analytical estimate [10] of the asymptotic Newtonian Lyapunov exponent given 

by ln(K/2) = 1.253. This result is surprising since the chaotic trajectories 

predicted by the two theories agree only for the first 16 kicks, which suggests 

that the two asymptotic Lyapunov exponents should not agree. 

 

 

Conclusions 
 

We have shown that although the agreement between the Newtonian and 

special-relativistic transient Lyapunov exponents rapidly breaks down initially, 

the asymptotic special-relativistic Lyapunov exponent is well-approximated by 

the asymptotic Newtonian value. The same result should hold for other low-

speed chaotic Hamiltonian systems since the periodically-delta-kicked particle 

is a prototype. 
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Abstract: Cold atmospheric pressure plasma jets have been shown to exhibit 

considerable potential for use in plasma medicine applications such as in wound 

treatment. New pulsed atmospheric pressure plasma jets are being developed that have 

inherent plasma stability and low gas temperatures. This study examines a new digital 

enhancement technique to characterise the far field plasma plume and effluent region of 

the plasma. The digital technique provides spatial information that identifies possible gas 

treatment zones for medical applications. Using images from a fast a capture (10 µm 

second) ICCD camera the study shows the luminous plume extends up to 7 mm from the 

reactor exit nozzle and has a kinked, or wrinkled, appearance but nonluminous 

perturbation of the gas is detected up to 3 cm away to the front and either side of the 

visible plasma plume. 
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1. Introduction 
The development of the cold temperature atmospheric pressure plasma jets in 

recent years has led to the promising new science of plasma medicine. 

Treatments are generally applied using a hand-held atmospheric plasma sources 

that utilise a wide range of electric drive frequencies and reactor geometries. 

Examples of cell treatment leading to apoptosis using these plasma jets have 

been reported by a number of authors [1, 2]. One of the first clinically proven 

hand-held plasma jets is the kINPen med® developed by the Leibniz Institute 

for Plasma Science and Technology (INP), Greifswald, Germany in cooperation 

with neoplas GmbH, Greifswald, Germany is now undergoing in-vivo clinical 

investigation of plasma antiseptic properties on human skin [3], chronic venous 

leg ulcers [4] and cosmetic surgery [5]. These clinical trials require the 

relatively small 1.6 mm diameter plasma to treat large areas of thermally 

sensitive living tissue and microorganisms. Earlier studies using the kINPen 0.9 

versions [6-8] of the plasma jet on microorganism have shown that cells are 

killed outside the visible plasma plume immediate treatment area, indicating 
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what has been termed a ‘spillover’ occurs [9]. Further to this, kINPen med® 

plasma induced activation studies on poly(ethylene-terephthalate) PET at a 

nozzle-to-surface distance of 5-15 mm have shown that a similar immediate 

activation (1 day) post treatment ‘spillover’ can be induced  up to 20 mm in 

diameter on the polymer surface [10]. 

This work reports on the spatial and temporal visual imaging of the kINPen 

med® plasma plume fluid structure using a photodiode (PD) to trigger a gated 

ICCD camera, with the addition of a new digital image processing technique  of 

the ICCD camera images. This post image processing technique is used to 

enhance the immediate area (up to a distance of approximately 3 cm) around the 

luminous plasma plume to reveal the fluid structure emanating from the gas 

flow. This digital image enhancement approach differs from the shadowgraph 

and Schlieren imaging technique previously for air/hydrogen jet [11], air 

discharge [12] and helium jets [13, 14] all of which probe the use of back 

lighting to probe the refractive index changes by density gradients in the fluid 

distortion Here no back lighting is required. This approach differs from the high 

temporal resolution flame-front visualization technique [15], and also differs 

from large time scale (10s) flow imaging of complex vortex mixing in DBDs 

[16]. In this work the widely available National Instrument LabVIEW software 

packages is used as an example.  

 

2. Experiment apparatus and methods 
Figure 1a shows a photograph of the plasma jet used in this study. The plasma 

reactor is a cylindrical dielectric barrier discharge made from a glass ceramic 

with an internal diameter of D = 1.6 mm. The inner metal electrode has a 

diameter of ~0.3 mm. The outer body is grounded to produce a cross-field jet 

configuration i.e. an electric field perpendicular to the gas flow.  Here a gas flow 

rate of 5 SLM of 99.99% pure argon is used, equating to a gas velocity through 

the reactor tube of v = 36.7 m.s
-1

. Since the plasma region is 20 mm long there 

is a gas residence time of about 0.5 ms. 

 

 
Figure 1: Photograph of the kINPen Med® plasma interacting with a fingertip. 

 

The inner electrode is powered by a 1 MHz electrical drive frequency that is 
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pulse modulated with 2.5 kHz square wave (50 % duty cycle) signal [10]. In this 

work the plasma plume, and effluent expands unobstructed into atmospheric 

pressure air, and is investigated with a PD, fast imaging camera and post image 

capture enhancement technique to reveal the fluid structure around the plasma 

plume (0-30 mm) in front and to the side of the plume. 

The PD used was a Hamamatsu MPPC with a rise time of 10 ns and spectral 

range between 320 and 900 nm [17]. The light was collected at right angles to 

the plume, 1 mm downstream of the nozzle exit, via a fibre optic with a 

collimating lens, the combination producing a focal area of 1 mm in diameter at 

a length of 6 mm from the lens: Thus making the interrogation area smaller than 

to the diameter of the jet discharge (~1.6 mm). The rising edge of the 2.5 kHz 

modulated plasma light is used to trigger the ICCD Camera. 

The Andor iStar 334T ICCD camera is used to capture the plasma images. A 

14 cm focal length glass lens focused the region from between 2 mm upstream 

to 20 mm downstream of the exit nozzle. Using this combination the overall 

optical chain (between camera and plasma-plume) is of the order of 2 m and the 

camera spectral range is restricted to 300 to 850 nm by the glass lens. The 

camera was triggered, via a delay generator, from the rising edge of the PD 

signal. Within the camera the images are processed using a false-colour scale 

from blue (low intensity) to yellow (high intensity) for maximum visual 

differentiation the gain was set to 2817 out of a maximum of 4095, where the 

final digital images are formatted as a 24-bit red-green-blue (RGB) JPEG (Joint 

Photographic Experts Group) with a N x N pixel array, where N = 1024. 

Through an initial survey of the pulse-on and pulse-off periods of plasma the 

ICCD was synchronised to the respective time periods. 

The gas behaviour beyond the luminous plasma region is explored by using 

LabVIEW based software [18]. This software essentially extracts the lowest 

intensity colour plane (blue plane) from the original RGB image and then uses 

pixel resolution enhancement through digital filtering and a thresholding 

algorithm. Care is taken at each step to ensure that the morphology in the 

recorded data is not distorted by reference at each step to experimentally 

available information, and the goals of the operation and limitations of the 

algorithms. The final images were achieved using four standard sequential steps. 

 

1. The 8-bit “blue” plane is selected from the original 24-bit RGB image. 

2. A fast Fourier Transform (FFT) is then applied to this plane to convert the 

spatial information into its frequency domain.  A low-pass filter is used to 

smooth the noise with a truncation process to remove any remaining high 

frequency component above the user defined cut-off point.  

3. An inverse FFT is then applied to bring the frequency domain data back 

into the spatial domain. 

4. A local Nibalck thresholding segmentation algorithm is then used to 

produce a binary image. In this operation the background particles are set 

to I = 0 (black) while setting fluid structure to a pixel value of I = 1 

(white). The result of this process produces a black-and-white binary 

image that represents the fluid structure within the original blue image. 
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3. Results. 

 

3.1 Visible plasma imaging 
Figures 2 provide examples of 15 individual ICCD images sampled from 31 

images obtained for the argon plasma. The images span from the beginning of 

the pulse at t = 0 µs to the end stages of the pulse at, t = 185 µs. With the gain 

fixed at 2817 each image has the same intensity scale and therefore their 

intensities may be compared directly. To add comparison a scale bar is 

displayed at the top of the figure. The figure shows a linear increase in the 

length of the plume between 0 µs to 40 µs and rapid decrease in length beyond 

185 µs when the plume is almost completely gone. Apart from the earliest and 

latest times the plumes vary in visible length and exhibit a kinked or wrinkled 

structure along the length of each plume. 

 
Figure 2: A selection (a total 15) of space and time resolved images of the 

nozzle and argon plasma. 

 

Using all the 31 ICCD images, the distal length of each discharge plume 

have been calculated but are not shown here. The calculations reveal that the 

plasma expands from the nozzle and reaches, and maintains, a maximum length 

of about 4.5 or 6 mm until the voltage pulse is terminated. The initial velocity of 

the visible plume front is about 200 m.s
-1

.  However at about 4.25 mm the argon 

the front rapidly accelerates to about 300 m.s
-1

 before reaching its maximum 

length with a periodic cycling ranging from 6.5 to 5 mm: with each cycle period 

taking 40 to 45 microseconds, which equates to a frequency of 20 to 22 kHz. 
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3.2 Spatial enhancement of non-visible plasma region  
Figure 3 show a screen shot image of the LabVIEW colour plane extraction and 

line profile front panel for the pulse-on period. In this figure the left-hand 

images is the original 32-bit image with interactive line intensity profile (LIP) 

cursor; the second column of images are the three extracted blue, green and red 

planes (presented here in grayscale); the third column of graphs depict the 

selected LIP for each plane; and the final column is basic descriptive analysis of 

the LIP for each plane. The information presented on this front panel reveals 

that majority of the plasma information (white to grey colours) is aligned along 

the flow of the plume in the red and green planes. In contrast the far-field low 

intensity fluid structure information is captured within the blue plane as 

speckled noise surrounding the plume with an outer white ring at a typical 

distance of 2-4 plume diameters either side of the plume. 

 
Figure 3: LabVIEW RGB colour plane and line profile. 

 

We now turn to the digital filtering and threshold processing of the blue 

image. Figure 4 shows the processing of the duration of the pulse-on period and 

the duration of pulse-off period. It is interesting the structure observed on short 

time scale (figures 2) is absent in the long exposure image. It is also apparent 

from figure 4b that there is afterglow. In figure 4c we are imaging the structure 

of the background gas. This shows a distinct ripple-like feature centred in the 

proximity of the maximum light emission from the plume. Figure 4f show that 

this is absent when there is no discharge present. 

To understand these fluid structure images we consider the dimensionless 

Reynolds number (Re) as defined in equation 1 when interpreting figures 4c and 

4f, as it provides a measure of the ratio of inertial forces to viscous forces and 

quantifies the relative importance of these two types of forces. 
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Av

QD
R

k

e =                                                    (1) 

 

Where Q is the neutral argon flow rate (8.35 x 10-5 m
3
.s

-1
), D is the diameter of 

the nozzle (0.0016 m), vk is the gas kinematic viscosity (0.000014 m
2
.s

-1
) and A 

is the cross sectional area of the nozzle (2 x 10
-6

 m
2
). For argon gas flows of 5 

SLM, Re equates to 4465 which implies the inertial forces are expected to be 

more dominant than viscous forces and large-scale fluid motion would be un-

damped in the pulse-off period. However when the plasma is turn-on, the 

neutral gas flow rate will increase due to the associated gas heating. 

a: raw

b: B-plane extraction

& FFT filter

c: threshold

d: raw

e: B-plane extraction

& FFT filter

f: threshold

1 cm

 
Figure 4: 0.2 µ second exposure ICCD images of plasma in pulse-on (a) and 

pulse-off period (d); images (b) and (c) depict the image enhancement of the 

pulse-on period; and images (e) and (f) depict the image enhancement for the 

pulse-off period. 



Chaotic Modeling and Simulation (CMSIM)  3:  261-269,  2014 267 

 

 

Considering the processed image of the pulse-on period (figure 4c) a ripple 

structure is observed to radiate from a point along the axis of the plasma plume 

and extends with a complex structure in the direction of effluent flow up to 4 cm 

from the nozzle. This repeating far-field wave-like structure with a white peak 

distances separation of typically 1-2 mm is within an order of magnitude of the 

expected travel distance of the neutral gas within the capture time-frame of the 

camera image. In addition the ripple pattern is found to be asymmetric with 

respect to the effluent flow axis, producing a complex broken structures to the 

top beyond which the discontinuities the structures extend into the ambient air. 

The distance disturbance occurs at around 0.5 cm from the plume distal point. 

In the case of the pulse-off period (figure 4f) the wave-like structures has 

collapsed to form irregular and small-scale chaotic structures with scale lengths 

of the order of the nozzle diameter. These observations are consistent with the 

Reynolds number dimensionless analysis and the loss of driving force to heat 

the plasma gas when the electrical drive power is switched-off. Under these 

conditions the heated gas is expected to begin to equilibrate with the 

surrounding ambient air. This imaging technique is also supported by the work 

of Roberts et al who have used the Schlieren technique to look at a pulsed 

helium jet. In their work they found. They found rapid changes in the stability at 

the start and end of the pulse period. 

Using the work of Ghasemi et al [14], we can obtain, to a first 

approximation, the increase in gas velocity when the plasma is turn-on by using 

the continuing mass flow equation (2). In this equation: ρ1, 2 are the densities of 

the argon gas at room temperature (1.62 kg.m
3
) and plasma temperature 

1.47kg.m
3
 (330 K [1, 2]). A is the cross-sectional area of the jet nozzle and V1, 2 

are the argon gas velocities at room temperature and plasma temperature, 

respectively. 

                                           2211 AVAV ρρ =           (2) 

 

Assuming the argon gas mass flow rate is the same in both case (5 SLM), the 

argon gas velocity increase from 41 m.s
-1

 at room temperature  (~300 K) to 45 

m.s
-1

 at the expected plasma temperature  of ~33.0 K. 

 

4. Conclusion 

The spatial and temporal visual imaging of an argon-based pulsed plasma jet 

designed for medical use has been studied using photodiode and ICCD camera 

imaging, plus post exposure enhancement of the camera images. This combined 

measurement and diagnostic approach provides a spatial and temporal picture of 

the plasma plume and its effluent. The PD measurements show that the plasma 

is modulated by a fast rising and falling 2.5 kHz square wave time-base profile. 

Microsecond time scale imaging of the discharge using the ICCD camera 

reveals that the argon plasma plume is continuous through the 0.2 ms pulse-on 

period of the discharge. However the plume morphology takes on a kinked or 

wrinkled appearance. In addition the plume rapidly decays at the end of the 
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voltage pulse suggesting micro-turbulence is the driving force in the production 

of the kinks within the plasma jet. 

To gain access to the effluent gas being expelled from the plasma plume the 

technique of image plane extraction has been developed and demonstrated. Here 

the blue plane of the ICCD digital images has revealed pulsed plasma induced 

fluid structures extending up to 2-3 cm form the visible plume. This far-field 

fluid structure information may be used in the understanding ‘spillover’ effect 

when plasma treating thermally sensitive polymers and their biomaterial counter 

parts. 
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Abstract: The maximum amount of water loses from the reservoirs take place 

through evaporation. Thus it is important to know the dynamical system that 

governs   the evaporation process. In this study, the Trajectory Method has been 

applied in order to obtain the differential equation from reconstructed phase 

space using evaporation time series. The trajectory method has been 

successfully applied in order to obtain the dynamical system that represents the 

periodic behavior of evaporation process.  

Keywords: Dynamical system, Trajectory Method, Ordinary Differential 

Equations, Water Losses, Evaporation 

1. Introduction 

Water is the most vital substance for sustainability of life on planet earth. 

Unfortunately its distribution on earth both in time and in space is not uniform. 

This means that the water problem existed in the past, exists today and will exist 

in the future.  On the other hand, especially in recent years water problem has 

gained much importance due to climate change. The state of the art climate 

models have shown that water related problems will be experienced more 

frequently in the future. This worsens the water related problems to a great 

extent. Thus it is mandatory to make intensive researches on the water resources 

and managements. In this context, water loses from all kind of water reservoirs 

are very important to be brought to a minimum level.  As known well, the 

maximum amount of water loses from the reservoirs take place through 

evaporation. Thus it is important to know the dynamical system that governs   
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the evaporation process. In this study, the Trajectory Method has been applied 

to reconstruction of differential equation that governs the behavior of 

evaporation process. The brief history of the trajectory method used in this study 

is as follows. Crutchfield and McNamara (1986) have made some important 

attempt to reconstruct the differential equation from time series. These two 

researchers have suggested two approximations about the issue.  The first of 

them is the determination of local dynamic that considers the short-term 

behavior of the system while the second approach deals with the dynamic of the 

whole attractor that consider the long-term behavior of the system. Almost at the 

same time with the aforementioned studies, Cremers and Hübler (1986) have 

developed the flow method that considers the sort-term behavior of the system. 

The flow method is applied to all points on the attractor. Thus it does not 

consider the long-term behavior of the system dynamic. Then Breeden and 

Hübler have developed this approach to include all of the system variables that 

could not be observed. In the end, Eisenhammer et al. (1991) have combine both 

short and long-term behavior of the system and they called their approach 

“trajectory method”. In this study, the trajectory method has been successfully 

applied in order to obtain the dynamical system of evaporation process.  

2. Trajectory Method 

Trajectory method is based on the reconstruction of differential 

equations which produce the trajectory resembling the original trajectory. In 

other word, the reconstructed model is the best possible model reflecting the 

original model (Perona et al., 2000). 

A set first order ordinary differential equations can be given as 

)t,x(fx                    (1) 

where x and t represent the variable vector and time, respectively. To 

reconstruct the equation of motion it is necessary to obtain the differential 

equations of model trajectory as close as possible to the original trajectory. On 

the other hand, mathematical form of the model should be determined ab initio.  

According to theory of dynamical system, time evolution of a system 

can be given by its trajectories in a phase space. Coordinates of this space are 

formed by state variables which are necessary to reflect the time evolution of the 

system under study. Every trajectory in this space represents the different time 

evolution of the system that corresponds to different initial conditions. Phase 

portraits have distinct patterns that attract all trajectories. This type of a pattern 

is called attractor. All initial conditions of which trajectories captured from the 

attractor defines a domain of attraction. Systems that show deterministic 

evolution have low dimensional attractors like point, limit cycle and torus. 

These kinds of attractors can be characterized by an integer dimension. An 

important property of these kinds of attractors is that trajectories that converge 

onto them remain in a fixed distance from each other.  This property ensures the 
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system to be predictable for a long period of time (Koçak, 1996). 

 

It is possible to reconstruct the phase space from a time series of one 

state variable sampled at regular time intervals Δt. For this to be done, some 

information and topological properties (e.g. dimension) of the attractor should 

be first estimated from the time series. Dimension of an attractor is the number 

of variable necessary to define the dynamics of the underlying system.  

Packard et al., (1980) have suggested the reconstruction of phase space 

in order to obtain some invariant measures from an observed turbulent or 

chaotic flow. This can be achieved via transformation of the dynamical process 

to a higher dimensional space (embedding) by adding an extra independent 

dimension until no further information gain is impossible. One of these 

coordinates is formed by the time series itself and the remaining independent 

coordinates are formed by derivatives of the time series up to (m-1)
th
 order. As a 

result, phase portrait of time evolution of a dynamical system can be represented 

in a new m-dimensional space spanned by a single state variable and its 

successive derivatives. 

 

In this study, phase space is reconstructed from univariate or single time series 

(evaporation). Thus it is necessary to mention briefly from phase space 

reconstruction.  Let’s take a time series given as   

x Ri  ,       i =1, 2,...,N .      (2) 

Then the reconstruction procedure is given as 

X x x x R

i m m N N

i i i i m

m 

     

  ( , ,..., )

( ) , ( ) ,..., ,

( ) 

 

1

1 2 1 11
    (3) 

where Xi is an m-dimensional vector.   

This pseudo-phase space preserves the structure of the attractor 

embedded in the original phase space, (Takens, 1981). In Eq (3)  is called time 

delay and should be calculated from time series by using autocorrelation 

function or mutual information function. Differential equation used in the 

trajectory method is assumed in the following form: 

D1,2,...,i            )x,...,x,x(Fcx Dk,i

K

k
k,ii 


21

1

                          (4) 

where ci,ks are coefficients of differential equation and Fi,k(x1,x2,…,xD)s 

are approximating functions. On the other hand K and D represent the number 

of approximating function and state variable, respectively. If  Fi,k is chosen as 



BAYDAROĞLU and KOÇAK 274 

the 3
rd

 degree polynomial then Eq (4) can given as 

 

 

(5) 

  

 

 

 

The trajectory method is very effective way of representing both short 

and long term behavior of dynamical system in the space of K functions.  

Figure 1 outlines  the trajectory method. As shown in this figure, model 

(Eq (4)) is run with the  initial conditions (j=1,2,…,jmax) chosen along the 

original trajectory (xr(tn), n=1,2,…,N). 

 

 

Figure 1. Schematic presentation of trajectory method in a phase space  

 (after Perona et al., 2000). 

The model equation is used to predict the state variable at the instants 

(tj + ∆tl).  A quality function Q is obtained by repeating this approach for 

different initial conditions. 
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where the notation     shows the Euclidean norm. xr(tj)  and xm(tj) in 

Eq (6) are the initial conditions on the original trajectory and trajectory 

produced by the model, respectively. At the beginning xr(tj) and xm(tj) are the 
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same data point. On the other, hand lmax determines how many steps the model 

will be run in order to catch both sort and long-term behavior of the system. In 

other words, lmax  is the number of points used for comparison between the 

single reconstructed trajectory and the original trajectory, starting from the 

initial state set on the latter. ∆tl in Eq (6) is the time interval between the 

integration steps of the model equation.  This quantity can be calculated as  

)2( 1 l

l ht                                                                                                  (7)  

where h is the interval between the observations or integration step in 

case of numerical integration. The optimum value of ci,k are obtained by 

minimization the quality function Q.  

QQ
kiC ,

minmin 
             (i = 1,2,…,D; k = 1,2,…K)                          (8) 

Eq (6) can be stated as given below 
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The integral given in Eq (9) represents the change of )(tx
im

 between the time 

interval [tj, tj+Δtl] and can be stated as 
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           (10)  

The integrals in Eq (10) should be calculated numerically because the functions 

Fi,k are all unknown functions. If the partial derivative of Q with respect to 

unknown coefficients ci,k  is set to zero, then the following set of linear equation 

is obtained:  
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The matrix 
)(

,

i

zkA and the vector 
)(i

kB are as given in Eqs (12) and (13), 

respectively. 
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The matrix A is reversible. By solving Eq (11) a new set of coefficients 

ci,k are obtained then these coefficients are used in the next optimization cycle. 

This process continues until the optimum values of coefficients are obtained 

(Perona et al., 2000).   

 

 

3. Application to Evaporation Data 

Daily evaporation totals used in this study are observed in the Ercan 

Meteorology Station located in North Cyprus. Observation period covers 2001-

2010; total number of data points is 3652. In this study, before the application of 

the trajectory method, the original time series smoothed out by using loess 

method (Cleveland, 1979).  Figure 2 shows the original and the smoothed out 

time series together. 

 

Figure 2. Evaporation time series (black) and smoothed out series (white). 

By using smoothed time series phase space is reconstructed. As mentioned 

before, for phase space reconstruction two parameters namely time delay and 

embedding dimension are necessary. The time delay is determined by using 

Mutual Information Function (MIF) approach (Fraser, 1986). The first minimum 

value is taken as the optimum time delay (see Figure 3). As seen from Figure 3, 
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the first minimum of the MIF is =112. On the other hand embedding dimension 

is assumed m=3.  

 

Figure 3. Mutual information of smoothed evaporation time series. 

The phase space of evaporation process is reconstructed by taking time delay 

112 and embedding dimension 3. Projection of the resulting attractor onto 2-

dimension is given in Figure 4. As depicted in this figure smoothed attractor 

shows almost quasi-periodic behavior. Put another way, the behavior of this 

attractor in phase space is neither periodic nor aperiodic.  This result shows that 

it will be reasonable to model the periodic structure or limit cycle of this 

attractor. The trajectory model has been applied to smoothed evaporation time 

series. The resulting limit cycle is given in Figure 5. As shown from this figure 

starting from an initial condition, the trajectory eventually converge the stable 

periodic orbit.  

 

Figure 4. Projection of the attractor onto plane. 
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Figure 5. Periodic attractor of evaporation process. 

4. Results and Discussion 

Water reservoirs are very important in producing hydraulic energy, irrigation, 

flood control, drinking water, recreational purposes, etc. On the other hand there 

are some water loses from water reservoirs. The most important water loses take 

place by evaporation process. Thus, it is important to know the main dynamic of 

the evaporation.  

In this study the trajectory method, the state art of the inverse problem solving 

method, is applied to evaporation process. Other variables that affect the 

evaporation such as temperature, wind speed, relative humidity, solar radiation, 

etc. are not considered in this application. In other words phase space 

reconstruction from univariate time series is used instead of multivariate 

approach. After the reconstruction process, the trajectory method is applied to 

smoothed evaporation data. The limit cycle or periodic behavior of the 

evaporation has been successfully reconstructed in the form of a set of 

differential equation which has three state variables.  
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Abstract: The investigation deals with the revealing of influence of a 

geomagnetic field on human electroencephalogram by means of recurrence 

quantification analysis (RQA). The EEG base of 10 subjects was processed. The database 

included electroencephalogram records carried out from 16 points under three 

background conditions. Each subject took part in 15–50 experiments. EEG was 

registered from frontal, temporal, central, parietal and occipital areas of the left and right 

hemispheres. For every subject for each of 16 points of EEG registration 9 recurrent 

measures of EEG were calculated (RR, DET, L, DIV, ENTR, RATIO, LAM, TT, 

CLEAN). Then the factor of correlation of these measures with a planetary index of 

geomagnetic activity of Ap and local daily K-index in a day of carrying out experiment 

was calculated. As a result of this research the following conclusions were received. 

1. Significant influence of intensity of a geomagnetic field on recurrent EEG dynamics 

indicators is shown. Thus the relationship between recurrent EEG measures and indexes 

of local intensity of a geomagnetic field appeared higher than with planetary indexes.  

2. Existence of significantly bigger number of relations between geomagnetic activity 

and recurrent measures  of the left hemisphere EEG is shown. 

3. The conclusion suggests that the geomagnetic field makes the main impact on a 

chaotic component of EEG. 

Keywords: Nonlinear methods, Recurrance quntification analysis, 

Electroencephalogram, Geomagnetic field, Magnitobiology.  

 

1. Introduction 
The investigation deals with the revealing of influence of a geomagnetic 

field on human electroencephalogram by means of recurrence quantification 

analysis (RQA). In contrast with chaos method, an important advantage of RQA 

is that it can deal with a noisy and short time series. 

 

2. Methods and experiments  
Recurrence Plots are introduced by Eckmann et. al. (1987)  as a tool for 

visualization of recurrence of states  Xi in phase space. This approach enables 

us to investigate the m-dimensional phase space through a two-dimensional 

representation of its recurrences. 

Zbilut and Webber (1992, 1994) developed RQA for definition of 

numerical indicators. They offered the measures using density of recurrent 
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points and diagonal structures of the diagram: indicator of similarity (RR), 

determinism (DET), maximum length of diagonal lines (L), the maximal length 

of diagonal structures or its inversion — the divergence (DIV), entropy (ENTR), 

the ratio between  DET and RR (RATIO). Slightly after Marwan et.al. (2004, 

2007) offered the measures based on horizontal (vertical) structures of recurrent 

diagrams: laminarity (LAM) and indicator of a delay (TT). V.B.Kiselev (20007) 

suggests the indicator CLEAN which shows influence of a stochastic 

component of process, thus prevalence of the stochastic component leads to 

increase of CLEAN value. 

Expressions for RQA measures are shown below. 

The simplest measure of the RQA is the recurrence rate (RR) or percent 

recurrences which is a measure of the density of recurrence points in the 

recurrent points. Note that it corresponds to the definition of the correlation 

sum.  

The ratio of recurrence points that form diagonal structures (of at least 

length lmin) to all recurrence points is introduced as a measure for determinism 

(DET) (or predictability) of the system. The threshold lmin excludes the 

diagonal lines which are formed by the tangential motion of the phase space 

trajectory.  

L is the average time that two segments of the trajectory are close to each 

other. This measure can be interpreted as the mean prediction time. 

Another RQA measure considers the length Lmax of the longest diagonal 

line found in the recurrent points, or its inverse, the divergence, DIV=1/Lmax. 

These measures are related to the exponential divergence of the phase space 

trajectory. The faster the trajectory segments diverge, the shorter are the 

diagonal lines and the higher is the measure DIV. 

ENTR refers to the Shannon entropy of the frequency distribution of the 

diagonal lines lengths. This measure reflects the complexity of the deterministic 

structure in the system. 

RATIO is the ratio between  DET and RR. This measure is useful to 

discover transitions when RR decrease and DET does not change at the same 

time. 

LAM is analogous to the definition of determinism. This measure is the 

ratio between the recurrence points forming the horizontal structures and the 

entire set of recurrence points. The computation of LAM is realized for 

horizontal line length that exceeds a minimal length Vmin. 

TT shows average length of laminar states in the system. 

In periodical systems fluctuations and noise influence leads in separate 

points and very short diagonals. The measure cleanness (CLEAN) is the ratio 

between recurrence points in diagonals with lengths less than lmin and 

recurrence points in diagonal lines with lengths equal or more than lmin. The 

measure quantifies influence of noise and fluctuations on system trajectory and 

should be used if studied system shows periodic behavior. 

In this work the EEG base of ten clinically normal subjects (six males 

and four females in the age range 20– 65 years) was processed. The database 

included records of electroenchephalogram, carried out from 16 sites  under 
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three background conditions: two with open eyes and one with close eyes. 

During background condition with open eyes subject  has to look passively at a 

picture or thumb through the book.  During close eyes subject has to consider 

drops which were modelled by phonostimulator.  In our opinion such simple 

activity more will balance subjects with each other in comparison with a 

standard background condition at which it is impossible to check internal state 

of the subject. 

Each subject took part in 20-50 experiments which are carried out to the 

period of time from half a year till two years. Registration of EEG was carried 

out in the international system 10/20 in  frontal (Fp1, Fp2, F3, F4, F7, F8), 

temporal (T3, T4, T5, T6), central (C3,C4),  parietal (P3, P4) and occipital (O1, 

O2) sites of the left and right hemispheres. The length of record EEG was about 

1 minutes for each of three backgrounds, EEG was quantized with frequency of 

250 times a second. The constant of time was 0.3 seconds, and the top frequency 

of a cut equaled 30 Hz. 

 

3. Results 
Before data processing all records were filtrated to escape EEG from 

different artifacts. For every subject for each of 16 sites and the 3rd background 

conditions 9 recurrent measures of EEG were calculated (RR, DET, L, DIV, 

ENTR, RATIO, LAM, TT, CLEAN). Then the coefficient of correlation of 

these measures with an index of geomagnetic activity was calculated. The 

coefficient of correlation was calculated on two rows: one row corresponded to 

defined EEG indicator, and the second – represented values of an index of 

geomagnetic activity in day of carrying out experience. 

As a result of carrying out one experiment about 500 values of recurrent 

measures (9х16х3) turned out. Two geomagnetic indexes were thus used: 

planetary Ap and local daily K-index which undertook from a site of the Finnish 

observatory (Sudancula). At calculation of coefficients of correlation with an 

index of geomagnetic activity value of correlation were averaged on three 

background conditions. Tests were significant at P < 0.05. 

At the first analysis stage significant correlations of 9 recurrent measures 

of EEG were compared with indexes of planetary and local geomagnetic 

activity. It appeared that all measures significantly correlated with geomagnetic 

activity. Total number of significant interrelations for all 10 subjects made in 

relation to a planetary index was 271, and in relation to a local indicator - 347. 

Considering that fact that the local index of geomagnetic activity was more 

sensitive to recurrent EEG measures in comparison with a planetary index, in 

further calculations it was used only. Thus the maximum quantity of 

correlations made 44 (for an indicator of DIV), and the minimum number 

equaled 32 (for a TT indicator). Statistically significant distinctions between 

quantity of correlations for each of measures it was revealed not. On this basis 

in the subsequent analysis data on all measures were averaged. 

In table 1 are submitted data by number of statistically significant 

coefficients of correlation between recurrent measures of EEG and local K-
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indexes of geomagnetic activity.  First, the fact of individual differences in 

number of correlations which are in range from 14 to 57 attracts attention. 

 

 

Table 1. Quantity of significant correlations of recurrent measures of EEG with 

local K-index  

 
Subjects RR DET L DIV ENTR RATIO LAM TT CLEAN Summa 

1 5 4 5 7 5 7 4 5 4 46 

2 2 1 4 4 3 1 1 3 0 19 

3 11 4 2 8 7 7 9 1 8 57 

4 2 2 1 2 1 1 3 0 2 14 

5 1 4 3 3 3 4 2 4 4 28 

6 4 5 7 9 8 3 3 5 3 47 

7 1 5 2 5 3 4 8 3 5 36 

8 4 8 5 1 5 2 6 5 7 43 

9 1 5 5 4 6 7 4 5 5 42 

10 3 1 1 1 1 3 1 1 2 14 

Summa 34 39 35 44 42 39 41 32 40 346 

  

The second interesting result consisted that all recurrent measures were 

characterized by a large amount of correlations for EEG of the left hemisphere 

in comparison with right. However statistically significant differences took 

place only for DET measure (Р <0.02). As a whole, when averaging all 9 

recurrent EEG measures differences between the left and right hemisphere were 

statistically high-significant (Р <0.001). 

At the following analysis stage interhemisphere differences of 

coefficients of correlation for each pair of sites (tab. 2) were considered. 

Except for pair of sites of C3 and C4 where in the right hemisphere the 

quantity of correlations was higher, than in left, and in T5, T6 sites where it 

was equal, in all other pairs of EEG sites the number of correlations at the left 

was higher than in right. However statistically significant difference was 

observed only between temporal sites  T3 and T4. 

 

Table 2. Quantity of significant correlations of 9 recurrent measures of EEG in 

different sites with local K-index of geomagnetic activity (data were avaraged 

on 10 subjects) 

  

C3 C4 F3 F4 F7 F8 Fp1 Fp2 

24 34 16 14 22 12 37 19 

        

O1 O2 P3 P4 T3 T4 T5 T6 

32 21 10 6 35 12 26 26 

 

Research of changes of classical rhythms EEG (α, β, θ) in reply to 

changes of a geomagnetic field hasn't revealed significant interrelations with K 
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index. On the other hand primary not filtered signal EEG has revealed such 

relationship. 

 

 

 

4. Discussion 
The fact of existence of a large number of correlations between various 

recurrent EEG measures and index of geomagnetic activity appeared the most 

important. It testifies that the nonlinear component of EEG for which analysis 

the RQA method was used, is very sensitive to changes of a geomagnetic field. 

Carruba et.al. (2007) show that magnetosensory evoked potentials weren't 

detected when the EEGs were analyzed by time averaging, indicating that the 

evoked potentials were nonlinear in origin. Obviously, the geomagnetic field 

influences electric activity of a brain in a nonlinear way. This fact can cause 

failures in search of reflections in EEG of influences from a geomagnetic field. 

That fact that a local index was more closely connected with recurrent 

EEG measures in comparison with a planetary index is explained by that a local 

index more precisely, in comparison with planetary, reflects a condition of a 

geomagnetic field in St. Petersburg being on close longitude. 

The fact of very high individual differences found in work concerning 

quantity of correlations of various recurrent EEG measures with geomagnetic 

activity, was explained obviously, existence of individual differences 

concerning sensitivity of subjects to influence on the central nervous system of 

changes of a geomagnetic field. It should be noted that subjects differed 

concerning that what by sites EEG significantly correlated with indicators of 

geomagnetic activity. At the 4th of 10 subjects correlated mainly frontal and 

temporal sites, at 4 subjects significant correlations were observed practically 

for all sites, at 2 subjects correlated either frontal, or temporal sites. Similar 

individual differences were observed in the work of Carruba et.al. (2007). They 

show that magnetosensory evoked potentials so strongly differ at various 

subjects that when the results obtained within subjects were averaged across 

subjects, evoked potentials couldn't be detected. 

The most interesting fact concerns high-significant differences 

concerning number of correlations with recurrent EEG measures of the left and 

right hemispheres. This result based on a tendency to excess of number of 

correlations with every recurrent measures of the left hemisphere in comparison 

with right, and on the high-significant difference received at averaging of all 

recurrent measures of EEG. The question of why the bigger number of EEG 

sites of the left hemisphere correlates with changes of a geomagnetic field, 

remains open. We know that the right hemisphere is closely connected with 

adaptation processes. So, for example,  V.P. Leutin and E.I.Nikolayeva (1988) 

on the basis of numerous experimental studies drew a conclusion that right brain 

hemisphere activation is decisive factor, providing adaptation to extreme 

climate conditions. In our experiments devoted to studying of influence of a 

geomagnetic field on an indicator of spatial synchronization of EEG, it was 
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shown that in reply to changes of a geomagnetic field activation of the right 

hemisphere authentically increases. We connected this result with the stress 

reaction caused by changes of a geomagnetic field.  

In the real experiments more sensitive in relation to variations of a 

geomagnetic field there was a nonlinear component of EEG of the left 

hemisphere. The understanding of this result will require further researches. 

5. Conclusions  

As a result of this research the following conclusions were received. 

1. Significant influence of intensity of a geomagnetic field on recurrent EEG 

dynamics indicators is shown. Thus the relationship between recurrent EEG 

measures and indexes of local intensity of a geomagnetic field appeared higher 

than with planetary indexes.  

2. Existence of significantly bigger number of relations between geomagnetic 

activity and recurrence measures  of the left hemisphere EEG is shown. 

3. The conclusion suggests that the geomagnetic field makes the main impact on 

a chaotic component of EEG. 
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Abstract. The action potentials in a sinusoidaly forced Hodgkin-Huxley neuron are
known to possess mode locked or chaotic oscillations depending on the values of forcing
parameters. We have numericaly studied the spiking dynamics of the sinusoidaly forced
Hodgkin-Huxley neuron by making fine variations in the amplitude while keeping the
frequency fixed. We find that the dynamics of the neuron is far richer than previously
known. Increasing the resolution of forcing amplitude (I0) uncovers 1/m mode locked
oscillations with increasingly larger values of m. Moreover, a mode locked oscillation of
type 1/m can exist over multiple disconnected intervals of forcing amplitude. Chaotic
oscillations are found interspersed with mode locked oscillations. By varying I0 we
have further explored the transition between qualitatively different types of oscillations.
On increasing I0, every 1/m mode locked oscillation is found to go through a sequence
of period doubling bifurcations giving rise to 1/2m, 1/4m, ... mode locked oscillations
and finally chaos. Chaotic oscillations further undergo a transition to a 1/m′ mode
locked oscillation through a tangent bifurcation. The observed spiking patterns in
mode-locked oscillations are unusual and encode the stimulus strength.

Keywords: Hodgkin-Huxley model, Neurons, Bifurcation.

1 Introduction

Hodgkin Huxley model serves as a paradigm for axonal membranes of spiking
neurons. The model arose from the electrophysiological experiments of Hodgkin-
Huxley with squid giant axons. Consequently, a lot of experimental work with
squid axons and theoretical work with the Hodgkin-Huxley (HH) model has
been carried out.

A nerve membrane is an excitable system. An appropriate stimulus evokes a
strong response (action potential) resulting in a train of spikes in the membrane
potential. For forcing by a steady current, a subcritical Hopf bifurcation causes
the rest state of the neuron to become unstable giving rise to a periodic train
of spikes (a limit cycle) (Xie et. al.[1]). Periodically varying stimuli evoke a
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rich variety of response. Mode-locked (periodic), chaotic, and quasiperiodic
oscillations of membrane voltage have been found in experiments with squid
giant axons (Kaplan et. al. [2], Matsumoto et. al.[3], Aihara and Matsumoto[4],
Guttman et. al.[5]) and in numerical simulations of the HH model (Lee[6],
Borkowski[8], Borkowski[7], Parmananda et. al.[9]).

A periodicaly stimulated neuron does not fire action potentials unless the
forcing amplitude is above a threshold value. The threshold amplitude depends
on the forcing frequency. The firing threshold curve (in forcing parameter space)
of a HH neuron under sinusoidal forcing has been explored extensively. Firing
onset occurs through a variety of bifurcation mechanisms(Lee[6]). The firing
region in parameter space is dominated by mode locked oscillations of the type
1/1, 1/2, and 1/3 while there is a smaller region that exhibits chaotic oscillations.
Bifurcations mechanisms that bring about a change in the mode-locking ratio
of the periodic oscillations have not been explored so far. Our work explores
this question.

In their simulations Lee[6] carried out a characterization of the HH neuron’s
firing response in the forcing amplitude-frequency parameter space. However,
there exists a strip in parameter space lying between the 1/1 and 1/2 mode
locked regions that has not been explored adequately. In order to uncover the
bifurcations between various mode-locked oscillations, it is imperative to carry
out an exhaustive investigation of this strip. We have found that a complex
structure of interwoven periodic and chaotic dynamics connected by period
doubling and tangent bifurcations exist in this strip.

2 Hodgkin-Huxley Model

The Hodgkin-Huxley model of an axon describes the dynamics of its membrane
voltage (V ), activation variable (m) and the inactivation variable (h) of its
sodium channels, and the activation variable (n) of its potassium channels. The
model consists of the following set of four coupled differential equations

C
dV

dt
= −ḠNam

3h(V − VNa)− ḠKn
4(V − VK)− ḠL(V − VL) + Iext, (1)

dm

dt
= αm(1−m)− βmm, (2)

dh

dt
= αh(1− h)− βhh, (3)

dn

dt
= αn(1− n)− βnn, (4)

where,

αm =
0.1(25− V )

exp [(25− V )/10]− 1
, βm = 4exp [−V/18] , (5)

αh = 0.07exp [−V/20] , βh =
1

exp [(30− V )/10] + 1
, (6)
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αn =
0.01(10− V )

exp [(10− V )/10)]− 1
, βn = 0.125exp [−V/80] . (7)

Capacitence of the axonal membrane C = 1µF/cm2. The reversal potentials
of sodium, potassium, and leakage channels are VNa = 115mV , VK = −12mV ,
and VL = 10.5995mV respectively. The maximal conductances of the membrane
for sodium, potassium, and leakage currents are ḠNa = 120mS/cm2, ḠK =
36mS/cm2, ḠL = 0.3mS/cm2 respectively. In our work we stimulate the neuron
with a sinusoidal current Iext = I0sin(2πνf t), where I0 is the forcing amplitude
and νf is its frequency.

In our work we choose the frequency νf = 50Hz and the amplitude I0 is
varied in the range 1.6µA/cm2−2.0µA/cm2. At the lower and upper end of this
range, the neuron exhibits 1/1 and 1/2 mode locked spiking oscillations (Lee
[6]). By carrying out fine variations in the amplitude over this range, we have
uncovered a complex dynamical structure between these two periodic spiking
oscillations.

We carry out numerical simulations of the Hodgkin-Huxley equations (Eq.
1- 4) using the fourth order Rungke-Kutta method. We choose the time step dt
in our simulations as dt = Tf/1000.

3 Results

Dynamics of forced nonlinear systems are often studied by sampling their
phase space trajectory stroboscopically. Following this approach, we sample
the phase space trajectory of the HH model once every time period of the
sinusoidaly varying external current. Doing so, yields a sequence of voltage
values V0, V1, V2, ..., Vi, .... For periodic oscillations, a repetitive sequence will
be present. Let T be the the time taken for the neuron’s phase space trajectory
to complete one full cycle. For periodic oscillations Tf/T = 1/m. We will
characterize periodic oscillations by this ratio and refer to these as 1/m mode
locked oscillations. The repetitive sequence of voltage values for a 1/m oscillation
will contain m distinct values.

We have plotted the stroboscopically generated voltage sequences against
the forcing amplitude as a bifurcation parameter. The resulting bifurcation
plot is shown in Figure 1 over the amplitude range I0 = (1.6 − 2.0)µA/cm2.
Two ends of the plot display the 1/2 and 1/1 mode locked oscillations, known
from Lee’s work (Lee [6]). This interval is believed to contain a rich dynamical
structure (Lee [6], Parmananda et. al. [9]) but very few details are known.

Figure 1 shows that the amplitude interval between the known 1/1 and
1/2 oscillations contain many more periodic oscillations. Infact, the interval
is dominated by periodic oscillations. On increasing the forcing amplitude
from I0 = 1.6µA/cm2 onwards we observe 1/2, 1/3, 1/4, 1/5, ..., 1/m, 1/(m +
1), ... mode locked oscillations. A 1/m oscillation contains m branches in the
bifurcation diagram. A new branch gets added to the bifurcation diagram on
crossing over from a 1/m to a 1/(m + 1) oscillation. Figure 1 suggests the
presence of a 1/m mode locked oscillation for every positive integer m.
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Fig. 1. Bifurcation diagram with variation in forcing amplitude I0 with forcing
frequency fixed to ν = 50Hz.

The amplitude interval lying between 1/m and 1/(m + 1) oscillations de-
scribed above contains a rich dynamical structure not discernible in Fig. 1.
We see an instance of this richness on magnifying the amplitude interval lying
between 1/3 and 1/4 mode locked oscillations (see Fig. 2(a)). This interval
contains a myriad of periodic and chaotic oscillations. The region between
every 1/m and 1/(m+ 1) oscillations of Fig. 1 contain such periodic and chaotic
oscillations.

In Fig. 2(a)-(b) we observe that the 1/3 mode locked oscillations (on the
extreme left of the figure) undergo a cascade of period doubling bifurcations
giving rise to a sequence of 1/6, 1/12,... oscillations finally converging to chaos.
Similar period doubling bifurcations are present in other periodic windows in
Fig. 2(a). In general, starting from a 1/n periodic window, period doublings
will result in 1/(2n), 1/(4n),... oscillations. Each successive periodic oscillation
obtained through period doubling takes double the time to go around its phase
space trajectory once. Each cascade of period doublings finally converges to
chaos.

Periodic windows in Fig. 2(a) emerge from chaotic oscillations through a
tangent bifurcation. The bifurcation is identified by plotting a return map
between Vi and Vi+n if a 1/n mode locked oscillation results from the bifurcation.
Close to tangent bifurcation, the return map has n curve segments tangent to
a 450 line. After the tangent bifurcation occurs the return map crosses the
450 line at 2n points. Half of these points lie on a stable trajectory and the
other half like on an unstable trajectory. All periodic windows arise in the same
manner. Once a periodic oscillation is created through a tangent bifurcation,
the subsequent changes in the qualitiative dynamics of the membrane voltage
arise from period doubling bifurcation.

Typical spike sequences generated due to sinusodial forcing are depicted
in Figs. 3 and 4. Figure 3(a) shows a 1/3 mode locked oscillation obtained



Chaotic Modeling and Simulation (CMSIM) 3: 287–294, 2014 291

Fig. 2. (a) Bifurcation diagram for the amplitude interval lying between the 1/3 and
1/4 mode locked oscillation of Fig. 1. (b) Panel (a) figure is further magnified over its
initial amplitude interval to depict period doubling.

with forcing parameters chosen from the large region of 1/3 oscillations in Lee’s
paper. Here a spike occurs once every three cycles of forcing. In our work we
have found a novel set of spike patterns.

Fig. 3. Some typical spike sequences for periodic oscillations. Each figure gives the
result for a different I0 (in units of µA/cm2) and ν = 50Hz. The sinusoidal curve in
each figure indicates the profile of this current (a)I0 = 4, (b) I0 = 1.7, (c) I0 = 1.78,
(d) I0 = 1.82. Repeating units of spike sequences in (a)-(d) are of form {1..} , {2.},
{3.}, and {4.} respectively.

The spike sequences in Fig. 3(b)-(d) are representative of the 1/m periodic
oscillations that dominate the amplitude interval in Fig. 1. In each of these
periodic oscillations, we find that a spike occurs consecutively over (m − 1)
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forcing cycles, following which there is no spike in the mth forcing cycle. We
will represent this spike pattern by {(m− 1).}, with (m− 1) representing the
group of consecutive (m − 1) spikes and the dot ′.′ representing the missing
spike in the mth forcing cycle. The {(m − 1).} pattern repeates itself every
m forcing cycles and thus we will regard it as a repeating unit. The 1/3 and
1/4 mode locked oscillations in Figs. 3(b) and (c) have {2.} and {3.} as their
repeating units respectively. In contrast, the 1/3 oscillation [Fig. 3(a)] from
Lee’s work has a repeating unit of the form {1..}.

Fig. 4. Each figure gives the result for a different I0(in units of µA/cm2) and ν = 50Hz.
(a) and (b) show some typical spike sequences of the fundamental oscillation of a
periodic window. Here I0 = 1.6518 in (a) and I0 = 1.7345 in (b). In (c) we see
an intermittent spike sequence for I0 = 1.73365. A few sequences {3.2.2.2.} appear
intermittently here.

Figure 4 shows spike patterns of oscillations in periodic windows. Here
the repeating units have a form different from the ones in Fig. 3. A typical
repeating unit is of the form {m1.m2.m3.}, with multiple groups of spikes,
whereas oscillations in Fig. 3 contain only one group of spikes. Here we have
shown three groups of spikes containing m1, m2, and m3 spikes each separated
by a missing spike. However, the number of groups can be more or less (but
not less than two) than represented by {m1.m2.m3.}. Figure 4(a) and (b)
shows a 1/8 and 1/13 oscillations with repeating units {2.2.1.}, and {3.2.2.2.}
respectively.

Figure 5 shows the typical changes in V (t) that accompany period doubling
bifurcations. As an illustrative example we choose the period doubling cascade
starting from the 1/3 mode locked oscillation in Fig. 2. The repeating unit
is {2.} here. We find that the number of spikes per group remain unchanged
(equal to two) across all period doubling bifurcations starting from the 1/3
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Fig. 5. Changes in the repeating unit of spike sequences across a period doubling
bifurcation are shown here. All the figures are plotted for ν = 50Hz and I0 is in
units of µA/cm2(a) I0 = 1.731 gives 1/3 mode locking (b) I0 = 1.7324 gives 1/6 mode
locking, and (c) I0 = 1.73315 gives 1/12 mode locking, (d)-(e) show the variation in
spike amplitude for (a)-(c) respectively by plotting V (t) on a smaller scale.

oscillation. However, the amplitudes of spikes undergoes a change. Hence, the
repeating unit for 1/6, and 1/12 are {2.2.} and {2.2.2.2.} respectively. Likewise,
in a period doubling of any other periodic oscillation with a repeating unit
{m1.m2.m3.}, every period doubling doubles the length of the repeating unit
to {m1.m2.m3.m1.m2.m3.}.

A tangent bifurcation is known to be preceded by intermittency. We find
that intermittency occurs through an interesting set of changes in spike patterns
as we approach the bifurcation point on varying the forcing amplitude A. Far
from the bifurcation point V (t) is chaotic. The spike sequence is of the same
form as that for peridic oscillations. However, there exists no repetitive sequence
for chaotic oscillations. As the amplitude is brought closer to the bifurcation
point the frequency of a specific spike sequence {m1.m2.m3.} within the chaotic
sequence increases. Once the tangent bifurcation occurs {m1.m2.m3.} becomes
the repeating unit. Every periodic window arises through a similar increase in
the frequency of some unit.

4 Discussion

In the paper we presented a few results of stimulating a HH neuron by a
sinusoidal current in the regime where it evokes action potentials. We found a
complex structure of 1/m mode locked and chaotic oscillations between the 1/1
and 1/2 oscillations of Lee’s work(Lee[6]). Chaotic oscillations arise through
the period doubling route to chaos. Periodic windows emerge through a tangent
bifurcation preceded by an intermittent spike sequence. Starting from 1/2
mode locked oscillations, period doubling cascade gives rise to 1/4, 1/8,.. mode
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locked oscillations. Across a period doubling bifurcation, spike sequences do
not undergo any change. However, the amplitudes of the spikes undergo an
alteration. Intermittent spike sequences before a tangent bifurcation contain
glimpses of the spike sequences that are finally realized in the periodic oscillation
across the bifurcation. Infact, the neuron enters the 1/1 oscillation through a
tangent bifurcation.

In our work the ratio 1/m for a periodic oscillation is the ratio of time taken
for one forcing cycle to the time taken for the neuron to go once around its
closed orbit in phase space. In going around the limit cycle once the neuron
may fire several spikes. However, in literature 1/m usually implies that the
neuron fires one spike in every m cycles of forcing.

The spike sequences presented in our paper are distinct from those obtained
earlier. Spikes are organized in groups where each group may contain a different
number of spikes. These sequences of spikes alone can carry information about
the forcing amplitude. Implying that no knowledge of the rate of spiking or
that of the interpsike interval is necessary to extract information about the
forcing parameters.
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Abstract: In order to establish a universal perspective on phonological word proximity 

in child speech development, the relationship between phonological word proximity 

(PWP) and the proportion of consonants correct (PCC) is derived analytically for a whole 

speech sample, in terms of the proportion of vowels (PV) and the proportion of 

phonemes deleted minus phonemes added (PPD). PWP depends linearly on the weighted 

averages of PCC and PPD and non-linearly on the weighted average of PV; the PV 

dependence is linearized quite accurately for a wide range of PV values. Upper and lower 

bounds on PWP are obtained for minimum and maximum PPD. Further, PWP changes 

are obtained relative to PCC and PPD changes, thus, determining which of these 

measurements better discriminates performance between speech samples. The method 

and analysis is applied to PWP, PCC and PPD computations from the data of a bilingual 

child’s speech traced longitudinally from age 2;6 to age 3;9. The results reveal a growth 

pattern for PCC and PPD and, consequently, for PWP, which is associated with three 

stages of phonological development. The middle stage is nearly cyclic with a strange 

attractor and seven months long while the other two stages are progressive of the double-

logistic type. The developmental PWP values lie chaotically inside a trapezoid within a 

triangle bounding general child phonological development in a (PCC, PWP) plane. 

Keywords: Child Speech, Development, Phonological Word, Measurement. 

 

1    Introduction 

Quantifying progress in child speech has been of interest in the literature since 

the 1920s. Nice [1] introduced the average length of sentence (ALS) as such an 

attempt which, in her words, ‘may well be the most important single criterion 

for judging a child’s progress in the attainment of adult language’. McCarthy [2] 

set specific rules on how to count words in the sentence and re-named Nice’s 

measure as mean length of response (MLR). Brown [3] introduced a similar 

measure, the mean length of utterance (MLU), counting however morphemes in 

the utterance which, in his words, is ‘an excellent simple index of grammatical 

development’. In language sample analysis (LSA) which is widely used by 

speech-language pathologists (see, for example, Kemp & Klee [4]), the mean 

length of response (MLR) has found yet another name, mean length of utterance 
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in words (MLUw), to distinguish it from Brown’s mean length of utterance in 

morphemes (MLUm). These two measures were compared by Parker & Brorson 

[5]  for 40 language transcripts of 28 typically developing English speaking 

children between the ages of 3;0 and 3;10. The two measures were found to be 

perfectly correlated suggesting that, the simpler to calculate, MLUw may be 

used instead of MLUm. However, correctness of segments or words is totally 

ignored in all these measures as they are grammatical and not phonological in 

nature.  

Consonant correctness and its measurement has been discussed just about as 

long (e.g. Wellman et al. [6], Poole [7]) but Shriberg’s work with colleagues has 

refined the measure by addressing issues such as distortions (Shriberg & 

Kwiatkowski [8]) and speech profiles (Shriberg et al. [9]).  Their proposed 

proportion of consonants correct (PCC) measures the number of consonants 

produced correctly in context in proportion to the targeted consonants in the 

speech sample. As for whole-word correctness, Schmitt et al. [10] suggested 

that the measure of whole-word accuracy (WWA) would favorably complement 

other measures such as the proportion of consonants correct (PCC). They based 

this result on data they collected from children between the ages 3;0 and 3;6. 

Whole words, however, do not only vary in their correctness but also in their 

complexity and intelligibility. Ingram & Ingram [11] and Ingram [12] proposed 

to measure phonological word complexity in child speech by the phonological 

mean length of utterance (PMLU). It is a similar measure to Brown’s 

grammatical mean length of utterance in that it also measures length of 

utterance even though utterance in PMLU refers to word length while utterance 

in MLU refers to sentence length. PMLU measures individual segments 

(consonant or vowel sounds) in the utterance while MLU measures morphemes. 

But PMLU differs substantially from MLU in that it does not count all the 

measurable quantities equally, doubling the count of consonant segments 

produced correctly in the context of intended target, to emphasize the fact that 

children’s errors more often occur in consonants (e.g. Ingram [13], Stemberger 

[14]) and do not vary nearly as much as vowel errors between transcribers (e.g. 

Powell [15]).  

Further, Ingram & Ingram [11] and Ingram [12] introduced the phonological 

whole-word proximity (PWP), an indirect indication of word intelligibility, as a 

measurement of the phonological proximity between produced and targeted 

words in child speech. PWP was defined as the ratio of the produced 

phonological mean length of utterance, PMLU, to the targeted one in which all 

the consonants are by definition correct in context. For utterances consisting of 

more than one word, PMLU and PWP were defined as the arithmetic mean of 

their corresponding single word values.  

Following the proposed whole word phonological measures, PMLU and PWP, 

several studies have used them to assess sample utterances of monolingual or 

bilingual, normal or phonologically impaired children across languages. 

Taelman et al. [16] discussed how to use CLAN (MacWhinney [17]) to compute 

PMLU from children’s data. Other works on the subject published between 

2005 and 2009 are described in Bunta et al. [18] and will not be repeated here.  
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Bunta et al. [18] compared 3-year old Spanish-English bilingual children to their 

monolingual peers to compute, among other quantities, PWP and the proportion 

of consonants correct, PCC. They found that while PWP and PCC differ in 

general, bilinguals only differ on PCC from their monolingual peers in Spanish. 

They further found that when comparing the Spanish and English of the 

bilingual participants, PCC was significantly different but PWP was almost the 

same. Burrows & Goldstein [19] compared PWP and PCC accuracy in Spanish-

English bilinguals with speech sound disorders to age-matched monolingual 

peers. Macleod et al. [20] compared the change in PWP to that in PCC for two 

samples of twenty children each, both taken at the age of 18 months and at 36 

months. One of the samples involved monolingual English children while the 

other involved bilingual French-English children. For each sample, their results 

showed that the change in PWP was larger than that in PCC. Saaristo-Helin [21]  

measured PMLU and PWP for both typically developing children and children 

with a specific language impairment acquiring Finnish and concluded that the 

phonologies of the impaired children largely resembled the ones of younger, 

typically developing children. Goldstein & Bunta [22] compared PWP and PCC 

for Spanish-English bilingual children, who have parent-reported language use 

and proficiency measures commensurate with those of their monolingual peers, 

to the PWP and PCC for their monolingual peers. Bilingual children did not 

differ from their monolingual peers in Spanish while they outperformed their 

monolingual English-speaking peers. Last, Freedman & Barlow [23] examined 

the effect of phonotactic probability and neighborhood density on PWP and 

compared it between five Spanish-English children and five age-matched 

monolingual peers. Phonotactic probability refers to the frequency with which 

sounds occur and co-occur in the language, while neighbourhood density is 

defined as the number of real words that can be created by adding, substituting, 

or deleting a phoneme in any word position. No differences were found between 

bilinguals and monolinguals in the respective languages or between languages, 

even though bilinguals evidenced greater phonological complexity in Spanish 

than English on words with low phonotactic probability and low neighborhood 

density.  

Besides phonological whole-word proximity and its related phonological mean 

length of utterance, Ingram & Dubasik [24] proposed six other measures in a 

multidimensional assessment of phonological similarity (MAPS) for a complete 

comparison between children’s utterance samples or within a child’s sample. 

The number of preferred syllable shapes, the proportion of monosyllables, the 

phonetic inventory articulation score for onsets and codas and the relational 

articulation score onsets and codas  in word initial position and word final 

position, respectively. 

While most studies cited compare speech sample values for the two 

phonological measures, PWP and PCC, the comparison between them has not 

been examined in general; Flipsen et al. [25] has compared the two measures by 

looking into word intelligibility. As a consequence, results though interesting, 

are not placed in perspective in child speech development, which, if done, 

would make them more meaningful and useful for practical applications. The 
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present study achieves this by obtaining analytically the relationship between 

phonological word proximity (PWP) and proportion of consonants correct 

(PCC) in terms of the proportion of vowels (PV) and the proportion of 

phonemes deleted minus added (PPD). Cumulatively, for all the words in a 

speech sample, PWP is computed as the weighted average of single-word PWPs 

and not as their arithmetic mean as done in previous studies. This way, the 

relationship between PWP and PCC for the whole speech sample is expressed 

analytically and has the same form as for the single word, enabling us to obtain 

upper and lower PWP bounds in terms of PCC and PV for minimum and 

maximum PPD, respectively.  

The analytical results for general child speech development are applied to a 

speech sample of a bilingual normal child traced longitudinally between the 

ages 2;6 and 3;9. The growth patterns of the child’s computed PCC, PPD and 

PWP values are obtained and are placed in perspective in general child speech 

development.  

 

2    Method 
 

2.1   The PWP-PCC relationship 

In order to place speech sample values of phonological word proximity (PWP) 

in a universal perspective in child speech development, we obtain the analytical 

relationship between PWP and PCC. Before considering the whole speech 

sample, we take a single word. Ingram & Ingram [11] and Ingram [12] defined 

PWP as the ratio of the produced phonological mean length of utterance 

(PMLU) to its targeted counterpart, that is, the ratio of the sum of in context 

correctly produced consonants in context (called from now on correct 

consonants) and all produced segments (consonants plus vowels) to weighted 

targeted segments (targeted consonants plus all targeted segments). We re-

arrange this formula first by separating the two terms of the sum in the 

numerator resulting in the sum of two ratios: correct consonants to weighted 

targeted segments plus all phones to weighted targeted segments. In turn, each 

ratio is now expressed as the product of two ratios. The former ratio, call it 

ratio-1, is written as the correct consonants divided by the targeted consonants, 

called in the literature proportion of consonants correct (PCC) (Shriberg & 

Kwiatkowski [8], Shriberg et al. [9]), times the targeted consonants divided by 

the weighted targeted segments. In terms of the proportion of vowels (PV) to 

segments in the targeted word, this last ratio, call it p, becomes (1-PV)/(2-PV). 

Ratio-2 is expressed as the product of the produced segments to targeted 

segments times the ratio of targeted segments to the weighted targeted 

segments. This last ratio is clearly equal to 1-p. Since targeted segments may 

equivalently be written as the produced segments plus the deleted segments 

minus the epenthetic segments, the former ratio in the product may be expressed 

as 1-PPD, where PPD stands for the proportion of phonemes (segments) deleted 

minus phonemes added. Deleted and epenthetic segments are taken into account 

since it is known (Ingram, [26]; Stoel-Gammon & Dunn [27],  Bernhardt & 
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Stemberger [28]) that during child phonological development it is not unusual to 

have targeted consonants deleted and vowels added. It is less usual to have 

epenthetic consonants, even adjacent to a targeted consonant, in normal as well 

as disordered children (e. g. Ingram [29], Stemberger [14], Babatsouli [30]).  

We have, therefore, derived an expression for the phonological word proximity 

(PWP) of a single word in terms of three phonological parameters PCC, PV and 

PPD, as 

 

)1)(1( PPDppPCCPWP −−+=    (1a) 

 

)2/()1( PVPVp −−=     (1b) 

 

     Going now from a single word’s PWP to the PWP of a speech sample 

consisting of N words, we propose taking the weighted average of the single 

word PWPs instead of their arithmetic mean so that the cumulative PWP 

becomes the ratio of the arithmetic mean of the produced single word PMLUs to 

the arithmetic mean of the targeted PMLUs, i.e., 

 

)//()/( )()( NPMLUNPMLUPWP tp

∑∑=  (2) 

  

The choice of weighted average yields a cumulative PWP of exactly the same 

form as that of the single word given by Eq. (1a, b), with the three phonological 

parameters PCC, PV and PPD now computed as weighted averages directly 

from the whole sample. For example, PCC is now the ratio of the correct 

consonants produced in context to the targeted consonants in the whole sample. 

Moreover, the choice of weighted average makes it possible to obtain upper and 

lower bounds on the cumulative PWP by taking the minimum and maximum 

PPD, respectively.  

In general, the three phonological parameters PCC, PV and PPD vary across 

speech samples within a child or between children. Eq. (1a, b) shows that the 

phonological word proximity (PWP) depends linearly on PCC and PPD and, 

nonlinearly, on PV. However, the PV value may be kept constant when 

comparing samples by appropriately selecting the words in them. At the early 

age of a few months, an infant’s PCC is negligible giving PWP as (1-p)(1-PPD). 

At complete acquisition, attained by normal children usually at school age or 

later, PCC is almost one, PPD is negligible and, therefore, PWP becomes one 

independent of PV.     

 

2.2   The weighting parameter p 

The weighting parameter p which represents the proportion of targeted 

consonants to weighted targeted segments, weighs the contribution of PCC to 

the value of PWP as shown in Eq. (1a). Similarly, 1-p weighs the contribution of 

1-PPD. It may be seen that p, as given by Eq. (1b), monotonically decreases 

with PV. The minimum PV is 0, yielding 0.5 as the maximum p. Thus, 1-p is 
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greater than p for all the values of PV. The maximum PV is 1 giving 0 as the 

minimum p. PV norms in adult speech are 0.45 for English and Dutch, 0.5 for 

Italian and Spanish and 0.55 for Japanese (Ramus et al. [31]). For example at 

PV=0.45, p=0.35 and 1-p=0.65. For children, the proportion of vowels (PV) in 

targeted word samples in English usually varies in practice between 0.25 and 

0.5. When most words contain consonant clusters, the lower value is approached 

as will be seen in the samples below. For this range of PV values, p is proposed 

to approximately depend on PV in a linear fashion as 

 

                       2/)53(*),*1(* −=−+≈ PVPVPVPVp  (3) 

 

This is the one-term Taylor series expansion of p about PV*≈0.382, the only 

acceptable PV value less than 1 for which p=PV. For PV between 0.25 and 0.5, 

the root mean square error in approximating p by Eq. (3) is calculated to be 

0.0018, while the maximum error is 0.0038 at PV=0.25. For the range of PV 

values in discussion, we compared the approximation given by Eq. (3) to that of 

a linear interpolation of p between 3/7 (PV=0.25) and 1/3 (PV=0.5). It turns out 

that the latter approximation’s root means square error is 0.0026, larger than the 

former’s. Therefore, it is more accurate to use the linear approximation given by 

Eq. (3). 

A consequence of approximating p linearly on PV values between 0.25 and 0.5 

is the linear approximation of PWP of Eq. (1a) on PV. In this range of PV 

values, the error in approximating PWP, denoted by ∆(PWP), is given in terms 

of the error in p, denoted by ∆p, as    

 

                                pPPDPCCPWP ∆−−−=∆ )1()(                           (4) 

                      

Since the ratio of the produced segments to targeted segments, 1-PPD, is larger 

than the proportion of consonants correct, as will be discussed in the subsection 

that follows, the factor multiplying ∆p is greater than zero. It is also smaller than 

one since PCC and PPD are positive. As a result, the error in approximating 

PWP using, instead of the exact p, that of Eq. (3) is smaller than the error in 

approximating p, itself.                                                     

 

2.3   Upper and lower PWP bounds      

For a given sample of targeted words, the proportion of vowels (PV) is known 

and, thus, the PWP value depends on the PCC and PPD values which are 

measured from the produced speech.  

It is seen from Eq. (1a) that, for the same PCC, PWP is larger for a smaller PPD. 

Therefore, PPD’s minimum and maximum values yield upper and lower PWP 

bounds. We take the smallest PPD to be equal to zero when there is no deletion 

or epenthesis. The largest PPD is equal to (1-PCC)(1-PV) when there is no 

epenthesis, no deleted vowels, and no substitutions for targeted consonants; only 

correct consonant productions and consonant deletions. Substituting these two 
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extreme values of PPD in Eq. (1a) we obtain, respectively, the upper and lower 

PWP bounds as: 

 

                    Upper bound:        )1)(1( PCCpPCCPWP −−+=max       (5)                                          

 

              Lower bound:        )1)(21( PCCpPCCPWP −−+=min    (6)                                           

 

Clearly, PWP is larger than PCC, except at complete acquisition when PCC 

equals one and they become equal. For the same p and PCC values, subtracting 

the two bounds yields the largest possible spread in PWP values between any 

children as p(1-PCC). For p2<p1 and PCC2>PCC1, which is the case of more 

consonants produced correctly in context when the proportion of vowels is 

larger, subtracting the upper bound on PCC2 from the lower bound on PCC1 

gives the largest spread of PWP as (2p1-p2)(1-PCC2)+2p1∆(PCC). The PWP 

bounds may also be used, as follows, to determine sufficient conditions on the 

changes of p and PCC across samples in order to have an increasing  

PWP. 

For the same targeted sample, PCC generally changes with a child’s age. It also 

generally changes within a child and between children for two targeted samples 

of the same p but of distinctly different word constituency, for example, 

singleton and cluster words. Taking the lower PWP bound for the larger PCC, 

say PCC2, and the upper PWP bound for the smaller PCC1, we derive from Eqs. 

(5) and (6) that PWP2 will be for sure larger than PWP1 only when PCC2 is 

larger than (1+PCC1)/2, meaning that PCC2 will necessarily have to be larger 

than 0.5. When PCC2 is smaller than (1+PCC1)/2, then PWP2 is either larger or 

smaller than PWP1 depending on the values of PPD1 and PPD2. This is 

investigated further in the subsection that follows.  

With p also changing across samples, PWP2 is for sure larger than PWP1 only 

when PCC2 is larger than 1-[p1(1-PCC1)/(2p2)], meaning that PCC2 will 

necessarily have to be larger than 1-[p1/(2p2)]. However, since PCC2 was taken 

larger than PCC1 we must have p2 larger than p1/2, which from Eq. (1b) yields, 

PV2 smaller than 2/(3-PV1).      

 

2.4   PWP and PCC changes 

Generally, PWP changes between speech samples within a child and between 

children. It is of interest to determine the magnitude of PWP change in terms of 

changes in PCC, PV and PPD. In doing so, an answer will be given to the 

question: which is a better measurement PCC or PWP, in the sense of 

discriminating performance between speech samples?  

Consider two targeted samples with their corresponding single productions or 

one targeted sample with two different productions. In either case, the 

parameters in the two sets are distinguished by the subscripts 1 and 2 and the 

change in their values (2 minus 1) is denoted by the Greek capital letter ∆. Then, 

subtracting Eq. (1a) with subscript 1 in the parameters from Eq. (1a) with 
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subscript 2 in the parameters, results in the following expression for the change 

of PWP, ∆(PWP), 

                         

)()1()()1()( 1122 PPDpPCCppPPDPCCPWP ∆−−∆+∆−−−=∆ (7) 

                    

The change in p, ∆p, in terms of the change in PV, ∆(PV), is obtained similarly 

from Eq. (1b) as  

 

)()1)(1( 21 PVppp ∆−−−=∆                         (8) 

                                                    

However, for PV values between 0.25 and 0.5, p may be approximated by Eq. 

(3), as discussed above, which yields a much simpler expression for ∆p,  

 

                                             )(2/)53( PVp ∆−−≈∆                              (9)                                                                

 

We see from Eq. (7) that PWP increases in proportion to increases in PV and 

PCC and a decrease in PPD. When the same sample is targeted or when two 

targeted samples have the same PV, it is concluded from Eq. (7) that PWP 

increases whenever the change in PCC is larger than the change in PPD divided 

by (1-PV), that is,  

 

                                     )()1()(:0)( PPDpPCCpPWP ∆−≥∆≥∆     (10) 

                                       

We note that positive ∆(PCC) and negative ∆(PPD) automatically satisfy (10), 

resulting to a positive change in PWP.  

Changes of PCC and PPD are, however, bounded since 1-PPD-PCC is bounded 

above and below by 1 and 0, respectively, as discussed above. This means that  

when changes in PCC and PPD values have opposite signs, their magnitudes 

may vary anywhere between 0 and 1. But when the PCC and PPD changes have 

the same sign, they are bounded above by the sum of their magnitudes not 

exceeding 1. That is, the bounds on ∆(PCC) and ∆(PPD) are given as   

                   

    

1)(,)(0,0)()()

1)()(,0)()()

 :)∆( ),∆(

≤∆∆≤>∆∆

≤∆+∆<∆∆

PPDPCCPPDPCCii

PPDPCCPPDPCCi

PPDPCC on Bounds

        (11) 

                 

A practical question that may arise is: which is a better measurement, PWP or 

PCC, with regard to discriminating performance in two productions? In other 

words, what is really the difference between the two measurements in practice? 

We will answer this, generally, by taking the same targeted sample and two 

different productions and compare the magnitude of the PWP change to that of 

PCC. Practitioners may want either a small or a large disparity between the two 
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values of the measurement they use, depending on whether they want to 

discriminate performance in the two productions. Taking the absolute value of 

∆(PWP) of Eq. (7) with ∆p=0 and comparing it with the absolute value of 

∆(PCC), we find that it is larger only when ∆(PCC) ∆(PPD) satisfy the 

following conditions:    

           

)()1()()1(,0)()()

)()(,0)()()

:)()(

PPDpPCCpPPDPCCii

PPDPCCPPDPCCi

PCCPWP

∆−≤∆+>∆∆

∆≤∆<∆∆

∆≥∆

(12) 

       

in which ∆(PCC) and ∆(PPD) are bounded according to (11). If conditions (12) 

are violated, the magnitude of ∆(PCC) is larger than the magnitude of  

∆(PWP). 

Considering (10) and (12) simultaneously, since (1-p)/p is larger than (1-

p)/(1+p) we conclude that only when ∆(PPD) is negative, ∆(PWP) may be 

positive and, at the same time, larger than ∆(PCC). Even then, this will be true 

only when 

                            

)()1()()1(,)()( PPDpPCCpPPDPCC ∆−≤∆+∆≤∆        (13)                           

    

with ∆(PCC) and ∆(PPD) bounded according to (11).  

When comparing two productions between two stages in general, the largest 

possible ∆(PWP)/∆(PCC) as obtained in the preceding subsection is 2p+p(1-

PCC2)/∆(PCC), where ∆(PCC) is positive. This will approach 2p from above as 

stage 2 reaches complete acquisition, where PCC2 is almost 1. Therefore, 

∆(PWP)/∆(PCC) will generally be larger than 1 when necessarily (1-

2p)∆(PCC)<p(1-PCC2) in accordance with the first case of (12), as ∆(PPD) is -

(1-PCC1)(1-PV). Last, when two speech samples are compared in general, and 

∆(PCC) is positive while ∆(PPD) is negative, we are in the first case of (12) 

and, therefore, the ratio ∆(PWP)/∆(PCC)  will be smaller than 1 only when the 

magnitude of ∆(PCC) is larger than the magnitude of ∆(PPD).                                 

These observations have also implications on the age dependence of the PWP 

change relative to the PPC change between two speech samples. We take 

sample-2 to be much easier to produce correctly than sample-1. For example, 

take the words in sample-2 to contain only singletons and all the words in 

sample-1 to contain consonant clusters. Then, near complete acquisition, the 

first term of Eq. (7) is negligible, ∆(PPD) is expected to be negative 

approaching zero before ∆(PCC) which is expected to be positive and, thus, 

∆(PWP)/∆(PCC) becomes smaller than one, approaching p1. As we get away 

from complete acquisition, the first term of Eq. (7) is positive since p2 is smaller 

than p1, and we expect that in general ∆(PWP)/∆(PCC) will increase with 

decreasing age with its largest value, obtained in the preceding subsection, being 

equal to 2p1+(2p1-p2)(1-PCC2)/∆(PCC) as ∆(PPD) is -(1-PCC1)(1-PV1). 
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Therefore, ∆(PWP)/∆(PCC) will generally be larger than 1 when necessarily (1-

2p1)∆(PCC)<(2p1-p2)(1-PCC2). Since ∆(PPD) is negative and ∆(PCC) is 

positive for the case at hand, the necessary and sufficient condition for ∆(PWP) 

to be larger than ∆(PCC), on use of Eq. (7), becomes 

                              

)1/()1()()( 122 pPPDPCCpPPDPCC −−−∆+∆≤∆      (14) 

                              

Comparing (14) with (12), we see that when the proportion of vowels is not the 

same between targeted samples, the range of ∆(PCC) values for which ∆(PWP) 

is greater than ∆(PCC) is larger. This means that, when ∆(PCC) is smaller than 

∆(PPD), condition (14) is automatically satisfied and ∆(PWP) is for sure larger 

than ∆(PCC). 

If one wants to measure only consonants in a speech production and ignores 

vowels altogether, the phonological word proximity (PWP) becomes what we 

will call ‘phonological word consonants proximity’ (PWCP). It is interesting to 

compare directly the two measures, PCC and PWCP, as the first measure counts 

consonants only when they are produced correctly in context while the second 

measure counts consonants when they are produced correctly, independent of 

context, even though the correct consonants in context are counted twice. In this 

case, the magnitude of ∆(PWCP) is larger than the magnitude of ∆(PCC) only 

when the changes of the proportion of consonants deleted minus added, 

∆(PCD), and of ∆(PCC) satisfy the inequalities given by (12) with PWCP in 

place of PWP, PCD in place of PPD, and p=0.5 since PV=0. 

  

3    The speech data 

The data is taken from a Greek/English bilingual female child’s speech in 

English from age 2 years and 6 months to age 3 years and 9 months. Her 

spontaneous speech in English during thirty-minute daily routine interactions 

with the first author was recorded and, subsequently, time aligned and 

phonetically transcribed by the first author in a CLAN (MacWhinney [17]) 

database, using the International Phonetic Association (IPA) symbols. The 

purpose here is to compute the child’s phonological word proximity (PWP) and 

trace its monthly change with age together with its components PCC and PPD, 

placing them in perspective within general child speech development, as 

examined above. For this reason, the same sample of targeted words was 

considered at each age. The sample taken consists of 25 words which were 

selected in order to satisfy two main criteria: first, that the same 25 words could 

be found in the child’s speech at least once a month between the ages of 2;6 and 

3;9 and, second, that they are a mixture of different complexities in terms of 

consonant place and manner of articulation, consonant position in the word, 

singleton consonants and consonant clusters, and number of syllables. As 

expected, the child’s natural utterances contained a varying number of words, so 

that the 25 word types in the sample were extracted from different utterances, on 

a different day or week of the month, in general. However, the first production 
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of each word in the month was included in the sample, so that the child’s age 

increased by about a month between word productions. The targeted words in 

the child’s speech sample in alphabetical order are: again, also, and, another, 

any, bag, blanket, close, clothes, come, don’t, English, finished, give, go, hold, 

inside, make, play, ready, the, together, took, why, wolf.  

It is expected that when the speech sample considered changes substantially, 

PWP will in general also change as its components PV, PCC and PPD vary 

between samples. In the present study, this is exemplified by selecting a second 

sample comprising of all the word types in the child’s speech at the age of 3;0 

that contain at least one consonant. In order to have a large sample of word 

types, we selected the words within ten days after the child’s third birthday upon 

first production. As a result, the following 158 targeted word types are included 

in the sample: accident, again, airplane, already, also, and, animals, another, 

any, back, bag, balance, beach, because, bed, birdie, bit, blanket, block, boots, 

box, bread, breakfast, bridge, bring, brush, bunnies, bunny, called, case, cat, 

chicken, chicken, chocolate, clean, clock, close, clothes, colors, come, cotton, 

counter, crunchy, cucumber, destroying, dirty, dog, dolphin, don’t, donkeys, 

door, downhill, downstairs, dream, English, every, excellent, falling, farm, 

finished, fish, five, floor, food, found, full, garden, give, glasses, go, grab, 

grandpa’s, hair, have, head, help, here, hide, hold, inside, juice, kettle, kiss, 

later, leave, left, lick, licking, look, loose, lost, make, meatballs, middle, milk, 

moon, more, morning, myself, nice, no, nose, now, once, open, outside, panty, 

pieces, piglet, plain, play, polite, potatoes, pull, pushing, put, puzzles, rain, 

ready, red, remember, restaurant, scatter, seeds, shopping, shoulder, shower, 

slide, small, someone, space, spaghetti, stopped, street, stroller, sunscreen, 

table, teacher, the, there, things, throw, toast, today, together, took, train, trash, 

trouble, umbrella, upset, washed, what, where, why, wolf, working, yes. The 

changes in the phonological parameters PWP, PCC, and PPD between the two 

samples will be calculated and viewed in relation to the method and analysis 

presented above. 

 

4    Numerical results 

 
4.1   Child data in general 

The method and analysis for general child speech development, as far as 

phonological word proximity (PWP) and its components are concerned, were 

examined above. Here, numerical results will be presented graphically. In terms 

of its components, PWP is given by Eq. (1a, b). In a three-dimensional (PCC, 

PV, PWP) rectangular coordinate system, all children’s PWP values lie inside a 

body which is bounded above and below by the surfaces given by Eq. (5) and 

Eq. (6), respectively. These bounds on PWP are calculated for PCC values 

ranging from 0 to 1 and PV from 1/3 to 3/4 and are plotted in a (PCC, (2-

PV)/(1-PV), PWP) space where they are easy to view. Note that (2-PV)/(1-

PV)=1/p ranges from 2.5 to 5. The results are shown in Fig. 1.  
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Fig. 1. Upper (black) and lower (red) bounds on PWP in child speech 

development. 

 

The black surface in Fig.1 is the upper bound while the red surface is the lower 

bound. These surfaces are shaped as hyperbolic paraboloids and they form the 

wings of a phonological word proximity (PWP) glider. When we have the same 

sample of targeted words, PV does not change and children’s PWP values lie 

inside the glider’s section which, as seen in the figure, is triangular with its base 

equal to p at zero PCC. As PV increases, 1/p also increases and the base of the 

bounding triangle becomes smaller. The largest triangular section base in the 

figure is equal to 0.4 at 1/p=2.5 (the left end of the figure) and the smallest is 

equal to 0.2 at 1/p=5 (the right end of the figure). At complete acquisition, PCC 

is one, PPD is zero and PWP becomes one independent of PV. This defines the 

glider’s ceiling shown in the figure along 1/p.          

When PV is the same between speech samples, it was shown in the method and 

analysis above by conditions (10) - (13) that what matters in the change of PWP 

is the change of PCC relative to the change of PPD. This is shown schematically 

in Fig. 2. Regions of positive and negative ∆(PWP) are bounded by the blue-

green and blue-red lines respectively in a ∆(PCC), ∆(PPD) plane. On the blue 

line which represents the equation in (10), PWP remains unchanged between the 

two speech samples. In the figure, the irregular hexagon bounding ∆(PCC) and 

∆(PPD) values represents the equations in (11). 

Discriminating measurements between two productions of the same targeted 

speech sample is of interest to practitioners. To this end, a comparison of the 

magnitude of ∆(PWP) to that of ∆(PCC)  was made in the method above 

andwas given by (12). In Fig. 3, the regions where (12) is satisfied are drawn in 

dashed lines in a ∆(PCC), ∆(PPD) plane. That is, the magnitude of    ∆(PWP) is 
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larger than that of ∆(PCC) in the dashed regions and smaller in the rest.  As in 

Fig. 2, changes in PCC and PPD are bounded by the irregular hexagon shown 

also in this figure.  

 
 

Fig. 2. PWP changes (>0, <0) relative to PPD, PCC changes (∆) in child speech 

development. 

 

 

 

 
Fig. 3. The shaded region of the ∆(PPD), ∆(PCC) plane where the magnitude of 

∆(PWP) is larger than that of ∆(PCC) in child speech development. 

 

4.2   The phonological data of this study’s child 

For the bilingual child’s speech sample described above, which was taken 

monthly between the ages 2;6 and 3;9, we calculate PCC, PPD and subsequently 
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PWP. Cumulatively for the 25 words in the speech sample, PCC and PPD are 

computed as two ratios, respectively. The first is the ratio of the number of 

produced correct consonants divided by 63, the total number of consonants in 

the speech sample, while the second ratio is the number of deleted consonants 

and vowels minus the added ones divided by the total number of segments in the 

speech sample, which is 109. Thus, the proportion of vowels, PV, in the targeted 

sample is 46/109 or 0.42. The developmental PCC and PPD values were 

subsequently computed monthly. In turn, PWP was computed using  

Eq. (1a, b). 

The numerical results are depicted in solid lines in Fig. 4. We see that three 

distinct stages of phonological development may be identified, associated with 

the growth patterns of the phonological parameters PCC, PPD and PWP. In each 

stage their growth pattern may be fitted by a straight line shown by the dashed 

line in Fig. 4. As a result, the overall developmental pattern is tri-linear.  

 
Fig. 4. The bilingual female child’s phonological parameters PPD, PCC and 

PWP in speech development. 

 

The first stage lasts for three months from age 2;6 to age 2;9 and is progressive 

in PWP as, according to (10), PCC increases and PPD decreases. The increase 

in PWP is from 0.32 to 0.70 and is of the double-logistic type. The second stage 

lasts for seven months and is nearly cyclic as PCC, PPD and also PWP 

fluctuate, even though non-uniformly, about the same level. In fact, at this stage, 

PCC has a strange attractor of the value 0.44 and PCC has a strange attractor of 

the value 0.16 resulting in a strange attractor for PWP of the value 0.69. The 

third stage is again progressive with PCC increasing, PPD decreasing and PWP 

increasing from 0.70 to 0.90 in a double-logistic fashion with a nearly cyclic 

regime separating the two logistic-like sub-stages within this stage.  
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The existence of a plateau stage during speech development has been reported 

in the literature on a qualitative basis (e.g. Ingram [13]). Moreover, the plateau 

is the well known middle stage of the U-shaped learning pattern in 

developmental psychology (e.g. Werker et al. [32]). Here, on a quantitative 

basis, we see that this stage exists and is, in fact, nearly  

cyclic. 

Now, in view of the analysis and discussion above, it will be interesting to 

compare the ratio ∆(PWP)/∆(PCC) in the child’s speech performance between 

different ages. Calculating this ratio between the first and last speech samples in 

stage-1 and in stage-3 we obtain 0.73 and 0.50 respectively. In both stages, the 

ratio is smaller than 1 since ∆(PCC) is 0.118 and 0.372 in the two stages 

respectively, while ∆(PPD) is negative and its magnitude is smaller at 0.068 and 

0.148 and, therefore, the first of (12) is violated in both stages. The targeted 

sample is the same all along with p=0.37. Then, according to the method and 

analysis above, the ratio will approach 0.37 when two speech productions are 

compared near this child’s or any child’s complete phonological acquisition. In 

fact, the ratio between the last two months (3;8 and 3;9) in stage-3 is 0.46, that 

is, even closer to 0.37 than the average ratio 0.50 over the whole  

stage-3. 

The bilingual child’s developmental PWP and PCC values are placed in 

perspective in general child speech development by comparing them to the 

upper and lower bounds on phonological word proximity (PWP) given by Eqs. 

(5) and (6), respectively. This comparison is depicted graphically in Fig. 5 

where PWP is plotted versus PCC. 

The upper bound on PWP given by Eq. (5) for all children is represented by the 

black dashed line in Fig. 5, while the lower bound given by Eq. (6) is the red 

dashed line. These two lines meet at the point PCC=1, PWP =1 forming a 

triangular bounding region in which all children’s values lie during speech 

development. The vertices of the triangle’s base are given by the points (0,1-

p=0.63) and (0, 1-2p=0.26). This triangular region is the section of the PWP 

glider of Fig. 1 at 1/p=2.7. However in practice, as it is also the case here, a 

child’s speech samples are taken following increased production of intelligible 

words. Thus, it is expected that the smallest computed PCC will be larger than 

zero and the largest computed PPD will be smaller than all children’s maximum 

value which is given by (1-PV)(1-PCC), resulting in a smaller bounding region 

for PWP. In Fig. 5, this region for the bilingual child is defined inside the black 

solid lines because the child’s minimum PCC is 0.33 and maximum PPD is 0.23 

at this PCC. Inside this trapezoid, the child’s actual developmental (PCC, PWP) 

values are shown by dots. Their correlation is rather chaotic in the nearly cyclic 

regime of their developmental paths where PCC has a strange attractor of the 

value 0.44 and PPD has a strange attractor of the value  

0.16.         
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Fig. 5. The bilingual female child’s developmental PWP (dots) and its bounds 

(solid lines) within the bounds of general child speech development (dashed 

lines). 

 

Now, it will be of interest to compare the bilingual child’s PWP, PCC and PPD 

values between productions of the targeted sample considered above and the 

larger targeted sample at age 3;0 described in the methodology. The 158 words 

in the larger sample have PV= 0.37 (p=0.39). The child’s production resulted in 

PCC equal to 0.53 and PPD equal to 0.127. Then, on use of Eq. (1), we get 0.74 

for PWP. The corresponding values for the smaller targeted sample at age 3;0 

are PWP=0.713, PCC=0.47 and PPD=0.145. This shows that the smaller 

targeted sample traced along development is more difficult for the bilingual 

child to produce correctly than the larger sample. Therefore, the PCC and PWP 

growth patterns of Fig. 1 are conservative. Even though the two targeted 

samples differ significantly in size, we see that the disparity in their PWP, PCC 

and PPD values is relatively small with the largest disparity being that of PCC. 

Calling sample-2 the larger targeted sample, we have ∆(PCC)=0.06, ∆(PPD)=-

0.018 and ∆(PWP)=0.027. The ratio ∆(PWP)/∆(PCC) is 0.45 smaller than 1 

since ∆(PPD) is negative and ∆(PCC), ∆(PPD) are such that (14) is  

violated.  

It is also of interest to compare the child’s performance between words that 

contain singleton consonants and words that contain consonant clusters (at least 

two consonants next to each other). We call here sample-1 the 89 cluster words 

included in the 158 words sample whose weighted proportion of vowels is 

PV1=0.43. We call sample-2 the 69 singleton words with PV2=0.34. The child’s 

corresponding productions give (PCC1, PPD1, PWP1) and (PCC2, PPD2, PWP2), 

respectively, as: (0.52, 0.18, 0.70) and (0.66, 0.03, 0.86). We see that the child 
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produces singleton words better than cluster words. The disparity in the values 

of PCC, PPD and PWP is expressed in terms of the ratio ∆(PWP)/∆(PCC) 

which becomes 1.14. It is larger than 1 since ∆(PPD) is negative and its 

magnitude is larger than ∆(PCC), so that (14) is automatically satisfied. As 

discussed in the methodology following Eq (7), the ratio will overall decrease 

with age and it will approach p1=0.36 near complete phonological acquisition, 

where PCC2 is nearly 1 and PPD is negligible for both singleton and cluster 

words.  

 

5    Conclusions 

Measurements of phonological word proximity (PWP) and proportion of 

consonants correct (PCC) in child speech development are placed in perspective 

having obtained analytically their relationship as well as upper and lower 

bounds in terms of the proportion of phonemes deleted minus added (PPD) and 

the proportion of vowels (PV). Child data reveal the existence of a nearly cyclic 

stage with strange attractors for PCC and PPD and, consequently for PWP, 

before the final progressive double-logistic stage in phonological development, 

and the relative advantages of using PWP instead of PCC in discriminating 

performance between speech samples within a child and between children, of 

the same or different age. 
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