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Abstract. We present hydrodynamic models of pulsating BL Her-type stars that
show a wealth of dynamical behaviours characteristic for deterministic chaos. Inter-
esting phenomena detected in our models include period doubling and intermittent
routes to chaos, periodic windows within chaotic domain, type I and type III intermit-
tency, interior crisis bifurcation and others. Before we describe the models, we briefly
review the current knowledge about type II Cepheids, a group of radially pulsating
stars to which BL Her class belongs, and the methods used to model such stars.
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1 Introduction

2 Type II Cepheids

Type II Cepheids are low-mass (M ≈ 0.5 − 0.7M�), giant stars pulsating
radially with periods from one to several tenths of days (see e.g. Wallerstein[1]
or Soszynski et al.[2]). In the H-R diagram, a plot of absolute luminosity
(L) vs. the effective temperature (Teff), these stars are located in the cool
and luminous part, within the instability strip (IS), in which pulsations are
driven with the opacity (kappa) mechanism (e.g. Cox[3]). Type II Cepheids
are divided into three classes: BL Her stars, with periods between 1 and 4
days, W Vir stars with periods between 4 and 20 days and RV Tau stars with
periods above 20 days. The borderline between BL Her and W Vir stars is
somewhat arbitrary (see Soszynski et al.[2]). RV Tau stars, on the other hand,
are distinguished by period-doubled pulsation which starts to appear at periods
above 20 days. Recent studies show however, that effect can appear also at
shorter periods, in particular the W Vir star, a prototype of the W Vir class,
shows the effect (Templeton & Henden[4]). In addition, the period doubling
effect was discovered in one BL Her star with period ≈ 2.4 days (Smolec et
al[5]). The possible existence of period doubled BL Her stars was predicted by
Buchler & Moskalik[6] 20 years earlier, based on hydrodynamic models.
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Type II Cepheids are at advanced evolutionary stages (see Wallerstein[1],
Gingold[7]). The division into three classes is believed to reflect different evo-
lutionary stages of the stars. After hydrogen is depleted in the core, the star
climbs up the Red Giant Branch (RGB) increasing its luminosity at nearly
constant effective temperature. After the helium is ignited in the degenerate
core, the progenitors of type II Cepheids arrive at the blue side of the Zero-
Age Horizontal Branch (ZAHB), steadily burning helium in the center. They
evolve redward, towards the Asymptotic Giant Branch (AGB) and, as they
cross the instability strip, they pulsate as BL Her variables. As helium is de-
pleted in the core, its burning continues, along with the hydrogen burning,
in the shells surrounding the carbon/oxygen core. The star, now climbing up
the AGB, may loop back into the IS due to instabilities in the shell burning,
becoming a W Vir-type variable. Finally, as the star leaves the AGB on the
way to the white dwarf sequence, it crosses the IS for the last time, pulsating
as RV Tau-type variable.

In majority of cases, the least luminous, shortest period BL Her stars are
very regular pulsators, with repeatedly stable cycle-to-cycle variation. As lu-
minosity increases the light variation becomes less regular. Irregular amplitude
and period variation is frequently observed in W Vir stars. Strong irregular-
ities on top of period-doubled pulsations are common in RV Tau stars. The
behaviour is more pronounced in longer period stars. Closely related to RV Tau
stars, even more luminous and longer period semi-regular and Mira-type pul-
sators, show very strong irregular cycle-to-cycle variation, without evident pe-
riod doubling. Deterministic chaos was detected in two RV Tau-type stars and
in a few semi-regular and one Mira-type variable, for which long (at least 30
years) and good quality observations allowed a rigorous analysis (Buchler et
al.,[8], Kolláth et al.,[9], Buchler, Kolláth & Cadmus,[10], Kiss & Szatmáry[11]).
Hydrodynamic models of type II Cepheids indicate that indeed, as pulsation
period increases a period-doubling route leads to deterministic chaos (Buchler
& Kovács[12], Kovács & Buchler[13]). We note however, that no period-4 (or
other than period-2) pulsating star is known to date.

3 Hydrodynamic models of BL Her stars

For more than 50 years now, large amplitude radially pulsating stars are in-
vestigated with the help of one dimension pulsation hydrocodes. The first
calculations were purely radiative, neglecting the energy transfer by convec-
tion. Nowadays, simple 1D recipes for time-dependent turbulent convection
are used. In our study of BL Her models we used our nonlinear code (Smolec
& Moskalik[14]) implementing the Kuhfuß[15] one-equation, turbulent convec-
tion recipe. Equations we solve are momentum, internal and turbulent energy
equations:
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Above, u is fluid velocity, Mr is mass enclosed in radius r, V is specific volume
(inverse of specific density, V = 1/ρ), p and E are pressure and energy of the
gas. Fr, Fc and Ft are radiative, convective and turbulent fluxes, respectively.
Radiative flux is computed assuming diffusion approximation and radiation
pressure and radiation energy are included in p and E. Turbulent energy, et,
is computed according to model of Kuhfuß. pt is turbulent pressure and Uq

and Eq are viscous momentum and energy transfer rates. The internal and
turbulent energy equations are coupled through the term C:

C = S −D −Dr, (5)

with source (or driving) function, S, describing the rate of turbulent energy
generation/damping through the buoyant forces, D modelling the decay of tur-
bulent energy through the turbulent cascade and Dr describing the rate at
which turbulent energy is transformed to the internal energy, through the ra-
diative cooling of the convective eddies. The model contains eight parameters,
values of which are calibrated using observational constraints. The reader is
referred to Smolec & Moskalik[14] for further details.

To construct a model of pulsating star we first solve the static version of
equations (1)–(3). The model is divided typically into 150–200 lagrangian mass
shells extending down to a fixed temperature of a few million Kelvin. It is not
necessary to model the deeper stellar interior as pulsation amplitudes are negli-
gibly small there. The equilibrium model is subject to linear stability analysis,
which yields periods and linear eigenvectors of the pulsation modes. All known
type II Cepheids pulsate in the lowest frequency fundamental mode. The static
model is perturbed with the scaled velocity eigenvector and equations (1)–(4)
are integrated in time till steady pulsation state is reached. In majority of the
studies focused on classical pulsators, RR Lyrae stars or classical Cepheids, the
model converges to a limit cycle – full amplitude, single-periodic pulsation. In
our recent studies of type-II Cepheids of BL Her type a much more interesting
solutions were found, including period doubled pulsation, nicely reproducing
the observations of the only BL Her star showing the effect (Smolec et al.[5]) and
periodic and quasiperiodic modulation of pulsation (Smolec & Moskalik[16]).
In this contribution we discuss an even more complex behaviour we found in
BL Her type models with decreased eddy-viscous dissipation – deterministic
chaos.

We discuss a single sequence of BL Her-type models, with the same mass
(M = 0.55M�), the same luminosity (L = 136L�), the same chemical com-
position and varying effective temperature, which is a control parameter in
the following. The models cover a 170 K stripe in the H-R diagram and were
computed with the maximum step in effective temperature of 1 K, decreased
to 0.1 K in the most interesting domains. The models were integrated typically
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for 10 000 pulsation cycles (up to 50 000 for few cases) and radius variation, in
particular the values of maximum radius, were analysed in detail. Smolec &
Moskalik[17] present a detailed description and analysis of these models.

4 Chaotic phenomena in BL Her models – a showcase

Figure 1 presents a bifurcation diagram for the computed BL Her models. It is
a stack a grey-scaled histograms. For each effective temperature we computed
the probability with which the maximum radii fall into 120 bins into which the
range of maximum radius variation in the models was divided. In the bottom
part of Fig. 1 values of the largest Lyapunov exponents, computed using the
algorithm of Rosenstein, Collins & De Luca[18], are plotted. They are positive,
with typical values between 0.15 d−1 and 0.20 d−1, dropping significantly at
the edges of the chaotic bands. Period doubling route to chaos is evident both
from the cool and the hot side of the computation domain. Period doubling
cascade up to period-16 (on the hot side) is detected in our model grid. The
length of period-2k domain, d2k, decreases as k increases. The ratios dk/d2k are
estimated to d2/d4 = (3.6 ± 0.4) K and d4/d8 = (5 ± 2.5) K (on the hot side),
and d2/d4 = (3.5 ± 0.9) K (on the cool side), and do not differ significantly
from the Feigenbaum constant. The chaotic band is split into parts by several
windows with periodic variation. The largest, period-3 window, is the most
interesting. At its cool side, as effective temperature decreases, an intermittent
route to chaos is detected (Pomeau and Mannevile[19]). On its hot side, the
period doubling route leads to three chaotic bands which merge into one in
an interior crisis bifurcation (Grebogi, Ott and Yorke[20]). Below we highlight
these and other interesting phenomena we detect in our models.
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Fig. 1. Bifurcation diagram for the computed hydrodynamic models (top) and vari-
ation of the largest Lyapunov exponent (bottom).
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• Chaotic models. In Fig. 2 we display first return maps for two hydro-
dynamic models followed for 50 000 pulsation cycles. Complex and likely
fractal structure of the attractor is well visible.

• Periodic windows. We detect seven windows with periodic behaviour.
Three of the windows, with period-6 (at Teff = 6371 K), period-5 (at Teff =
6383 K) and period-6 (at Teff = 6479 K) behaviour, are less than 2 K wide.
Return map for the model located in first of these windows is displayed in
Fig. 3 (left). In a window extending between 6397 K and 6400 K period-7
and, after a period doubling bifurcation, period-14 behaviours are detected.
In a window extending between 6363 K and 6366 K complex scenario is
observed – see return map in Fig. 3 (right), including type-III intermittency
discussed below. The two largest windows, period-3 (6421 K–6438 K) and
period-6 (6459 K–6468 K) windows, show a rich internal structure, with
period-doubling and intermittent routes to chaos. These are also discussed
in more detail below.

Fig. 2. First return maps for two models showing chaotic variability.

• Type III intermittency. The effect is clearly observed in one model
from period-9 window (Teff = 6365 K) In a return map (Fig. 3, right) 9
bands are clearly visible, while inspection of maximum radii (Fig. 4) clearly
reveals type-III intermittency: switching between period-9 and period-18
behaviour (see Pomeau and Mannevile[19]).

• Type I intermittency. The effect is best visible at the cool edge of the
largest, period-3 window, at which, as effective temperature of the models
is decreased, the intermittent route to chaos is evident. In Fig. 5 the
maximum radii are plotted vs. the pulsation cycle number for two models
with 6420.9 K and 6420.7 K. We note that a slightly hotter model (6421 K)
displays a strictly periodic, period-3 behaviour. As effective temperature is
decreased, period-3 cycle losses its stability (tangent bifurcation) and type
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Fig. 3. First return map for a period-6 model (left) and four models from period-9
window. In both cases first return maps for directly neighbouring, slightly cooler,
chaotic models are plotted with grey dots, for a reference.
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Fig. 4. Type III intermittency in a model with Teff = 6365.0 K.

I intermittency is observed with the stages of almost periodic behaviour
rapidly shrinking with the growing distance from the bifurcation point.

• Interior crisis and crisis induced intermittency. These phenomena
are present on the hot side of the period-3 window. There, at Teff ≈ 6435 K,
a period doubling cascade forms three separated chaotic bands. As effective
temperature is increased, these three bands hit the unstable period-3 cycle
created in the tangent bifurcation at the cool edge of the period-3 window,
expand, and merge into one chaotic band (Teff ≈ 6438 K). A crisis induced
intermittency is well visible in slightly hotter models and is illustrated in
Fig. 6.

• Remerging Feigenbaum tree. The period-3 and period-6 windows are
tightly connected, as is well visible in the bifurcation diagram (Fig. 1), and
form a period-3 bubble or remerging Feigenbaum tree (Bier & Bountis[21]).
The scenarios at the cool and at the hot side of the chaotic band separating
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Fig. 5. Type I intermittency in a model with Teff = 6420.9 K (top) and in a model
0.2 K cooler (bottom).
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Fig. 6. Crisis induced intermittency in a model with Teff = 6438.4 K.

these two windows are mutual mirror images. In addition the three chaotic
bands that are formed in the two windows (as temperature is increased
within period-3 window, and as temperature is decreased in period-6 win-
dow) do not disappear as they merge into one band in the crisis bifurcation.
They sustain their identity and smoothly merge within the chaotic domain
(between 6438 K and 6459 K) as dark grey bands in Fig. 1 indicate.

5 Discussion

Most of the chaotic phenomena detected in the models were not yet detected
in pulsating stars. In BL Her stars only period doubling effect was found in
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one star. Nevertheless chaotic dynamics is present in more luminous type II
Cepheids of RV Tau type and in semi-regular and Mira-type variables. Based on
our models we expect, that the wealth of dynamical behaviours well known in
classical dynamic systems, like Lorenz or Rössler systems, may also be present
in pulsating stars. Detection of these effects is difficult however, as long, regu-
lar and precise monitoring of stellar variability is necessary. With the growing
amount of high quality data from massive sky surveys, like Optical Gravita-
tional Lensing Experiment (Udalski et al.[22]), we hope that discovery of the
reported effects, like intermittency or period-k pulsation (with k other than 2),
is only a matter of time.

Acknowledgements. This research is supported by the Polish Ministry
of Science and Higher Education through Iuventus+ grant (IP2012 036572)
awarded to RS.

References

1. G. Wallerstein. The Cepheids of Population II and Related Stars. PASP, 114,
689–699, 2002.

2. I. Soszynski et al. The Optical Gravitational Lensing Experiment. The OGLE-III
Catalog of Variable Stars. XIV. Classical and Type II Cepheids in the Galactic
Bulge. Acta Astronomica, 61, 285–301, 2011.

3. J.P. Cox. Theory of stellar pulsation. 1980, Princeton University Press.
4. M.R. Templeton, A.A. Henden. Multicolor Photometry of the Type II Cepheid

Prototype W Virginis. AJ, 134, 1999–2005, 2007.
5. R. Smolec et al. Discovery of period doubling in BL Herculis stars of the OGLE

survey. Observations and theoretical models. MNRAS, 419, 2407–2423, 2012.
6. J.R. Buchler and P. Moskalik. Pulsational Study of BL Her Models. I. Radial

Velocities. ApJ, 391, 736–749, 1992.
7. R.A. Gingold. The evolutionary status of Type II Cepheids. Mem. Soc. Ast. It.,

56, 169–191, 1985.
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13. G. Kovács and J.R. Buchler. Regular and irregular nonlinear pulsations in popu-

lation II Cepheid models. ApJ, 334, 971–994, 1988.
14. R. Smolec and P. Moskalik. Convective Hydrocodes for Radial Stellar Pulsation.

Physical and Numerical Formulation. Acta Astronomica, 58, 193–232, 2008
15. R. Kuhfuß. A model for time-dependent turbulent convection. A&A, 160, 116–

120, 1986.
16. R. Smolec and P. Moskalik. Period doubling and Blazhko modulation in BL Her-

culis hydrodynamic models. MNRAS, 426, 108–119, 2012
17. R. Smolec and P. Moskalik. Chaos in hydrodynamic BL Herculis models. MNRAS,

441, 101–115, 2014



Chaotic Modeling and Simulation (CMSIM) 3: 225–233, 2015 233

18. M.T. Rosenstein, J.J. Collins, C.J. De Luca 1993, A practical method for calcu-
lating largest Lyapunov exponents from small data sets, Physica D, 65, 117–134,
1993.

19. Y. Pomeau and P. Mannevile. Intermittent Transition to Turbulence in Dissipative
Dynamical Systems. Comm. Math. Phys., 74, 189–197, 1980.

20. C. Grebogi, E. Ott and J.A. Yorke. Chaotic Attractors in Crisis, Phys. Rev. Lett.,
48, 1507–1510, 1982.

21. M. Bier and T.C. Bountis. Remerging Feigenbaum Trees in Dynamical Systems.
Phys. Lett. A, 104, 239–244, 1984.

22. A. Udalski, M.K. Szymanski, I. Soszynski and R. Poleski. The Optical Grav-
itational Lensing Experiment. Final Reductions of the OGLE-III Data. Acta
Astronomica, 58, 69–87, 2008.


