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Abstract: This article deals with the numerical analysis of linearly coupled oscillators, 

which are connected in the form of a ring. This system is being used as a model of 

biological system of intestine or may be the liver tissues exhibiting a tube of oscillators 

having cells both around the periphery and along the axis of the tube. The biological 

oscillators may be represented as Van der Pol oscillators, which are coupled with non-

trivial couplings, where damping parameters are also included in system. The dynamics 

is determined analytically through extended Poincaré -Cartan theorem of umbra-

Lagrangian theory, which examines the invariance of Poincare integral in m-dimensional 

phase space. The synchronization dynamics is achieved with full and cluster mode in 

terms of coupling parameters. The effects of injected signal on the stability boundaries of 

the synchronized states are analyzed using numerical simulations, which exhibit 

interesting beating phenomena. This analysis is corroborated with simulation results to 

visualize the chaotic behaviour of the coupled oscillator. 
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Notation: 

iq  Generalized displacement 

iq =
 Generalized velocity 

 t   =    Real-time 

ix  = Concentration of the oscillator, where  4,3,2,1i  

ix  
= Rate of concentration of the oscillator, where  4,3,2,1i  

jiKA = Kinematic area projection in i j th plane 

jiPA =
 

Phase area projection in i j th plane 

jiTA =
 

Trajectorial area projection i j th plane 

K =
 

Solute concentration gradients of all oscillators 
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A
cpK = 

Solute concentration gradients  of the inhibitory coupling  

B
cpK =

 
Solute concentration gradients of the excitatory coupling 

L =
 

Lagrangian of the system 

L= Umbra-Lagrangian of the system 

m= 

 

Rcp = 

Mass of the all oscillators 

Resistance to the flow of solute 

μ  = Nonlinear damping coefficient 

η = Umbra-time 

1.    Introduction 

The dynamics of non-linearly coupled oscillators has received much attention 

around the world and dynamical systems are currently the most popular and 

complex research areas. This is specifically true that non-linear dynamics of 

these systems have been widely investigated by [1-3] and now a day, attention is 

focused on dissipative dynamical systems [4-5]. Coupled non-linear oscillators 

have been source of growing interest in different research areas, ranging from 

physics, chemistry, engineering to biology and even in social sciences [6-7]. 

Non-linearity in these systems is essential to attain self-sustained characteristics. 

These systems reach as stable oscillatory dynamics as consequences of an 

internal balance between amplification and dissipation. The one of the most 

interesting features displayed by coupled oscillators is synchronization, due to 

an adjustment of rhythms due to weak interactions. This phenomenon of 

synchronization is observed in nature and offers the possible applications in 

electronics, communications engineering, information technology, biological 

and chemical structures. Wang et. al.[8] have studied the  synchronous bursts on 

scale-free neuronal networks considering an attractive and repulsive coupling. 

In another research, Want et al [9] also investigated synchronization transitions 

on scale-free neuronal networks. In this study, they considered the transitions 

due to finite information transmission delays. In similar study by Sun et. al.[10], 

the burst synchronization has been attempted in neuronal networks. In another 

study by Volman et. al.[11], the gap junctions and epileptic seizures were 

analyzed in view of synchronization of neuronal ensembles. All such studies 

have attempted the synchronization phenomena in neuronal networks of brain. 

The synchronization phenomena have been successfully applied in 

chemical cells as revealed in the study of Perc et. al. [12], where periodic 

calcium waves in coupled cells due to internal noise has been investigated. In 

another study by Gosak et. al. [13], spatial coherence resonance in excitable 

biochemical media induced by internal noise has been examined.   

Recently, research has shifted towards the study of 

dynamical behaviour of a system of coupled limit cycle oscillators 

forming a ring with main focus of synchronization criteria [14-15]. 

The behaviour of a pair of coupled limit cycle oscillators display a 
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significant wider range of phenomenon than a single limit cycle 

oscillators and may be used to model systems such as cardiac cells, 

gas flux control in plant, vibrations of heat exchangers, human 

body, biomedical engineering etc. Many researchers have 

contributed in these areas. Bi [16] studied the dynamical behaviour 

of two coupled parameter excited Vander Pol’s oscillators. Leung 

[17] investigated the dynamics process of synchronizing chaotic 

Vander Pol systems driven periodic force. Such situations are very 

prominent in biological systems such as animal and human bodies. 

Collins and Richmond [18] have shown that quadrupedal 

mammals, the four oscillators controlling the limb of animals may 

be coupled to form a ring. Similarly McClellan [19] has also 

provided the organization of spinal locomotors networks. A lot of 

works in this field are contributed by Woafo and his team [20].  

Woafo and Enjieu Kadji [21] had investigated the synchronized 

states in a ring of mutually coupled self –sustained electrical 

oscillators and later Enjieu Kadji et al. [22] have applied the same 

theory in human intestine. But their model has several constraints, 

as they have not considered the damping coefficient of the 

coupling, which otherwise, in biological systems find wider 

applications from duodenum, liver tissues, kidney, and heartbeat, 

and also affects the synchronization dynamics of the oscillators. 

Present paper deals with the synchronization dynamics through a 

novel approach of extended Poincare-Cartan invariant, which was 

not attempted in any archival literature. 

Integral invariants of dynamical systems play an important role in 

mechanics. Primarily, the study of integral invariants is limited only to 

conservative systems. Some researchers have tried to extend the applications of 

integral invariants to non-conservative systems and non-holonomic systems 

[23]. However, they introduced integral invariants of Poincaré-Cartan’s type for 

non-holonomic constrained systems by extending the Hamilton’s stationary 

principle to nonholonomic-constrained systems. Benavent and Gomis [24] had 

extended the Poincaré-Cartan integral to constrained systems and found 

sufficient conditions for systems whose equations of motion contain arbitrary 

functions to be Hamiltonian. Liu et al. [25] reported that no basic integral 

invariants exist for non-conservative systems from traditional viewpoint and put 

forward the integral variants of the non-conservative system. 

 Some significant works in this direction were reported by Gou et al. 

[26, 27, 28] in their several papers. They have proposed the Poincaré-Cartan 

integral invariants for non-conservative dynamical systems on an extended 
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phase space, where the set of dynamical equations and their adjoint equations 

are canonical. In another work, Gou et al. [27] further constructed Poincaré and 

Poincaré-Cartan integral invariants of a generalized Hamiltonian system and 

also for non-holonomic constrained system [28], where non-holonomy of the 

constraints and non conservative forces acting on the system is derived from 

D’Alembert-Lagrange principle.  

The key to the generalization of integral invariants to other systems lies 

in the search for new Lagrangian or Hamiltonian for those systems. Apart from 

all previous extensions of classical Lagrange’s equation, Mukherjee [30] 

suggested an alternative method for finding invariants of motion or possible 

invariant trajectories for dynamical systems. Mukherjee et al. [31] proposed a 

modified Lagrange’s equation introducing an additional time like variable called 

‘umbra time’. This notion was extended to all type of energies as well as the 

Lagrangian itself, which was termed as the “umbra-Lagrangian”. The umbra-

Lagrange’s equation for general class of systems with n generalized co-

ordinates [29, 33] and [34] may be written as  

   
0
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
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
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,for ni ...1 .                                                (1) 

where L is umbra-Lagrangian, t and   are real and umbra time respectively 

and iq and iq are generalized displacements and velocities. Umbra-Lagrangian 

may be given as 

            qqqqq  ,,,,, tTtttL c
  -       qqq ,,, tttV  ,                         (2) 

where a bold face letter represents a vector quantity, with  ...T  as the umbra –

co-kinetic energy and  ...V as the umbra-potential energy. The details 

expression of umbra-co kinetic energy and umbra-potential energy has been 

outlined in ref. [33, 34] and briefly presented in Appendix ‘A’.  

 In present work, the model of Collins and Richmond [18] and Enjieu 

Kadji et al. [22] have been refined by incorporating the damping parameter in 

the system for modeling the duodenum or intestine. This ring model has been 

investigated through extended Poincare-Cartan theorem [29] of umbra-

Lagrangian theory formulated by Mukherjee [30] and Mukherjee et. al. [33, 34].  

A candid commentary on this umbra-Lagrangian theory has been given by 

Brown [31]. The intestine model comprises a tube of oscillators having cells 

both around the periphery and along the axis of the tube. In this physiological 

model, the enzyme does not migrated in the product, so that it may be separated 

easily. In this model, the ring connections of these four oscillators have been 

considered with four protomers of the oligomer of an allosteric enzyme. The 

coupling parameters have been considered non-identical between the oscillators 

enrolled in the process. Moreover, earlier model of promoters [22] is also 

refined by incorporating damping coefficient of the coupling, which also 

contributes some interesting results as a promoter may also bind a single 

molecule of an effector ligand present in the surrounding solution and molecule 

may also exert some resistance to the flow of solute.  
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In this paper, different aspects of the dynamical behaviour of coupled 

oscillators are discussed. In section two, Poincaré-Cartan theorem of umbra-

Lagrangian theory is presented and mathematical analysis of coupled biological 

oscillators is obtained. Section three presents the dynamical behaviour of the 

coupled biological oscillators. This behaviour is quite obvious through 

simulation results with changing the value of coupling parameters. One may 

also obtain the chaos conditions and beating phenomena, when local injected 

signals in forms of irregularity are incorporated in the model and analyzed using 

numerical simulations.  

2.  Poincaré -Cartan Theorem for umbra-Lagrangian theory 

To enlarge the scope of Lagrangian-Hamiltonian mechanics, a new proposal of 

additional time like variable ‘umbra-time’ was made by Mukherjee [30] and this 

new concept of umbra-time leads to a peculiar form of equation, which is 

termed as umbra-Lagrange’s equation [31]. The details of this theory are 

reported in reference [33-34]; however some specific proof may be reproduced 

here. This theorem is an extension of Poincare-Cartan theorem, which has an 

action integral, where initial and terminal terms are varied as functions of a 

parameter  [35]. The modulatory and the trajectories displacements are also 

varied through the variation of the indices, which select the members of the 

homotopic family of these functions. The homotopy may now be extended up to 

the varied initial and terminal instants of time. 

The integral may be written as  

        
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The index a corresponds to modulatory and b corresponds to trajectorial 

member. The parameter =0 corresponds to unvaried function with initial and 

terminal time. Assuming t as a small variation in the parameter  from the 

zero value, one may write 
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After following the procedure as in reference [35], one obtains integral invariant 

as 
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Applying Green’s theorem, Eq. (5) may be rewritten by taking iq  and iq  in 

cyclic order as 
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                                                                                                                           (6)  

gives the rate of change of a Poincaré integral and contains three area 

projections in i- j
th

 plane, which are, the velocity-velocity area projection 

jiKA termed as the kinematic projection, velocity-displacement area 

projection
jiPA

,
 termed as the phase projection, and displacement-displacement 

area projection 
jiTA

,
termed as the trajectorial or orbital projection. For purely 

Hamiltonian systems with no dissipative, gyroscopic or regenerative forces and 

fields, the right hand side terms vanish, and lead to the classical result as

   

 
0

dt

tId
.                                                                                                         (7) 

2.1 Physical Model and Problem Statement 

Any biological system can be easily model with Ferro-electricity 

behaviour in brain waves [36-37] and may be represented by 

classical Vander Pol equation as 

  012  Kxxxxm   .                                                                                  (8) 

 In this paper, a general approach for analyzing ring structure of 

coupled biological oscillators is presented. The study may be applied to 

mammalian intestinal activity and how the enzymes flow from one cell to other 

cells. However, four coupled oscillators are presented in context of animal 

locomotion [43]. Quadruped gaits closely resemble the natural patterns of four 

oscillators systems. As example of rabbit bounds its move its front leg together 

then its back legs. There is a phase difference of zero between the two front legs 

and one half between the front and back legs. Four oscillators may be coupled in 
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seven ways such as (a) Synchrony each one fourth of a cycle out of phase with 

the others (b) Three synchronous and one with unrelated phase (c) Peculiar 

rhythm of two oscillators, anti-synchronous with each other.     

 As already stated that this system is already interacting with their 

surroundings and neighboring enzymes, so there will be cooperating interactions 

between them. In this problem, coupled enzymes with ring connection 

consisting of four mutually coupled Vander Pol oscillators can be shown in 

Fig.1, which may be expressed by following equations: 
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2
11 1 xxRxxRxxKxxKKxxxxm cpcp
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cp
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                                                                                                                            (9) 

In this set of equation, the over dot denotes the time derivative,  , the 

parameter of non-linearity and  4,3,2,1ix
 
the concentration of i

th
 biological 

system. It is a fact when two or more oscillators are coupled, the equation 

governing the behaviour tends to become intractable and possible behaviour 

becomes much more complex. In this formation of a ring, each oscillator may be 

coupled only to a few immediate neighbours. This ring may be the same as the 

neuro-muscular oscillators in the small intestine. The force of coupling between 

the oscillators is significant parameter to decide the synchronization behaviour. 

In this system, there is one positive and one negative direction of the solute 

flow, which represents the inhibitory and excitatory couplings. In this way, the 

directions of the solute flow may be represented as 
A
cpK  and 

B
cpK , which may 

be positive or negative. cpR  in the model represents the resistance to solute 

flow due to any irregularity and may be expressed as damping coefficient of 

couplings. Now, from these equations, one may easily obtain Umbra-

Lagrangian Equation [33-34], which may be written as 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.1: Four Biological oscillators connected in a ring with non-trivial coupling 
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Now through Eq. (6), one may finally obtains 
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Equation (11) gives the oscillations of coupled Vander Pol’s oscillators in a 12 

dimensional phase space. When the coupling terms cpR  and cpK  are equal to 

zero, the system consist of four independent oscillators each evolving on a limit 

cycle that is orbitally stable. In this way, Equation (11) just reduces to 
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It is assumed that the coupled oscillators are identical and let any stage of 

time t , the system be initiated on a circle of radius r  as trtytx cos)(),(   and 

trtytx sin)(),(  , after simplification, it yields 
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It is clear that 0
dt

Id
 if r=2, 0

dt

Id
 if r>2 and 0

dt

Id
 if r<2. Therefore, 

r=2 leaves the Poincare-Cartan integral I  invariant and hence is the radius of 

the limit cycle as shown in Fig. 2 a-2d.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

When non-trivial couplings exists due to some internal parameters of the 

system, it is possible that the nearest neighbouring oscillator are coupled to a 

considered oscillator through the same or different energy activation due to a 

conformational spread. In this way, coupled oscillators interact altogether 
resulting in trajectories embedded in 12 dimension phase space, which may be 

obtained as Eq. 11. 

3. Dynamics of Coupled Oscillators 

First of all, it is considered that the coupled oscillators are identical i.e. 

),()()()( 4321 txtxtxtx  and there is no coupling between the oscillators, 

then one may easily obtain in phase mode to be exist in the system by simple 

inspection of Eq. (12) 

  

  

Fig.2 (a-d): Limit cycle of first, second, third and fourth biological oscillator at 05.0  
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,       (14) 

which reduces into four uncoupled Vander Pol equations. In this way, the in 

phase mode gives an exact solution to the coupled equations.The dynamic 

behaviour of coupled oscillators include in phase/full synchronization and 

cluster synchronization. This synchronization phenomenon is of great interest in 

neural systems and related with several important issues in neurology and 

science. Moreover, these results are well proven by experiments and analysis in 

several neurological and heart disease [38-39]. The other significant 

characteristics of these oscillators lie in the fact that they are highly sensitive to 

their initial conditions. If these four oscillators are excited at different initial 

conditions, their trajectory finally circulates on the same limit cycle but with 

different phase, which is termed as phase synchronization. Simulation results 

also reveal that there exits a very small region in the coupling parameter space, 

where the synchronization dynamics are found to be chaotic. The next 

subsection provides the detailed analysis of in phase or full synchronization. 

3.1. In-Phase synchronization / Full Synchronization 

In-phase mode is a periodic motion and satisfies the condition 

).()()()( 4321 txtxtxtx   Substituting )()()()( 4321 txtxtxtx  into Eq. 

(11), one may find the integral invariant as 
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dt
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  .   (15) 

In phase mode, if it exists, resides in the 2-dimensional space 11 xx  , which is 

itself as invariant manifold in 12-dimensional 

space 44332211 xxxxxxxx   . This mode gives four similar limit 

cycles oscillating in two dimensional phase space. Thus in-phase mode can 

further be visualized for any value of cpR  and any of the coupling parameter 

A
cpK or 0B

cpK . Numerical simulation may be advantageous to visualize the 

phase synchronization as shown in Fig.3, where time history of biological 

oscillators is shown at value 
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( 294.0,294.0,06.0,03.2  B
cp

A
cpcp KKR ). The initial conditions for 

all such oscillator are assumed to the same or 0.004030201  xxxx .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Fig. 4 and Fig. 5 reveal that all oscillators cross zero (with a positive slope 

or negative slope) at the same time, which indicates that all oscillators are in–

phase synchronization. The full synchronization is also apparent either in 

positive or negative direction, which means that the full synchronization is 

having full phase identical whenever the solute flow in positive direction or vice 

versa. The four biological oscillators display same dynamics at this instant. In 

the process of phase synchronization, the oscillators oscillate with a repeating 

sequence of relative phase angles. It may be concluded that the all four 

oscillators are synchronized having the identical phase. 

3.2 Cluster Synchronization 

The out of phase is a periodic motion, which satisfy 

).()()()( 4321 txtxandtxtx   Putting this condition into Eq. (11), one 

obtains 

 
Fig. 3: Time history of oscillators at 

294.0,294.0,06.0,03.2  B
cp

A
cpcp KKR  
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                                                                                                              (16) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.4: Full synchronization in negative direction at 

316.0,064.1,954.0,84.0  B
cp

A
cpcp KKR  

 

 
Fig.5: Full synchronization in positive direction at 

316.0,064.1,06.0,03.2  B
cp

A
cpcp KKR  
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Here the two oscillators in group are shifted with the zero crossings at 

a constant time. This phase lag φ may be defined as  

 2.
T

t
  

where Δ t is the time difference between the zero crossings. The two 

oscillators are out of phase, when φ =180°. The equation (16) 

determines that two oscillators ),(1 tx  )(2 tx  
and ),(3 tx )(4 tx  will 

synchronize together and this group of two oscillators will oscillate in 

out of phase synchronization with phase lag of 180°. This phenomenon 

is termed as cluster synchronization, where oscillators cleave such that 

all oscillators within one cluster move in perfect synchrony but the 

motion of two clusters is not synchronized at all. This phenomenon of 

cluster may also be achieved with )()()()( 3241 txtxandtxtx  .   

 The reason is quite oblivious for oscillator with neighboring 

interactions. However, it will not be achieved with the configuration 

)()()()( 4231 txtxandtxtx  due to non interacting coupling between 

them. It may be shown in Figure 6 the time history of out of phase 

motion corresponding to the value 

( 4.1,28.0,30.0,03.2  B
cp

A
cpcp KKR ). The two oscillators are 

shifted with the zero crossings at a constant time. This phase lag   may 

be 180 during out of phase synchronization. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.6: Cluster synchronization of oscillators at 

4.1,28.0,30.0,03.2  B
cp

A
cpcp KKR  
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The ranges of coupling parameter including damping coefficient leading to full 

synchronization and lack of synchronization can be shown in the Fig.7, where 

the regions of in-phase and out of phase are clearly marked to obtain the 

optimal output of synchronization phenomena. 

 
Fig.7:  Reigns of in phase and out of phase synchronization of oscillators 

 

4. Influence of Locally Injected Signal on Synchronization 

Phenomena 

As mentioned in previous subsections that different dynamical states are 

observed in several identical coupled biological oscillators like 

clustering synchronization (synchronization in sub groups) or complete 

synchronization (in phase synchronization). But there are some situations 

in nature in which the complete system may be coupled with an external 

independent oscillator or excitation. This is a matter of fact that all real 

system contains impurity, irregularity in the form of natural fluctuations, 
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which is associated with dissipation as well as random external 

environment. 

 In self-sustained oscillators are always prone to different causes 

of irregularity in a form of some external strength like K  (sometime 

termed as detuned parameter).  This example may be further ascertained 

by considering the example of cardio-vascular system of humans, 

displaying self-sustained vibration. When there is any impact of any 

irregularity, the cardiac vibrations [40-41] are not perfectly periodic. 

That is why some locally injected signal in the form of K  may be added 

in the systems in first biological oscillator. Present case of biological system 

deals with an impulse transmission in neurons and their synchronization 

dynamics is analyzed further. Including the locally injected parameter K , one 

may obtain the equations as 
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                                                                                                                          (17) 

In Eq. (17), cx represents the dynamic parameter of the external oscillator and 

also defined as controlling signal.  
The umbra-Lagrangian equation for Eq.(17) may be written as 
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(18) 

Now through Eq. (6), one may finally obtains Poincaré-Cartan integral invariant 

similar to Eq. (11) as coupling parameter does not appear in the mathematical 

expression of the integral invariant. One may visualize the parametric variation 

of coupling and injecting signal parameter to obtain the significant dynamics, 

which may be explained in next subsections. 
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4.1 Beating Phenomena 

When the value of injecting signal K is very small, K 0.1, the four 

oscillators are in phase to some extent as observed in Fig. 8. 

 
Fig.8: In phase synchronization with local injected signal at  

08.0,208.1,16.3,0,426.0  KKKR B
cp

A
cpcp  

However, at the larger value of K , K 0.1, in phase mode of 

vibration vanishes and amplitude of each oscillators beats while the general 

motion of the response remains similar to in-phase mode. This phenomena is 

beating phenomena as shown in Fig.9 at 396.0K . This beating phenomenon 

may be observed for a bigger time window also.  

 

 
Fig.9: Beating Phenomenon with local injected signal at  

396.0,208.1,16.3,0,426.0  KKKR B
cp

A
cpcp  
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4.2 Chaotic behaviour 

Chaotic behaviour is also obtained in the system of coupled oscillators, when 

the strength of local injection signal is enhanced. In this case, damping effect is 

not taken into consideration because it has a very limited role in determining the 

chaotic behaviour. As shown in Fig. 10, the phase plot of first oscillator is 

showing the chaotic behaviour for the value of 

.761.,1728.0,172.,0,6.1  KKKR B
cp

A
cp

.
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The chaotic behaviour may also be determined by showing the Poincaré maps of 

the all oscillators as shown in Fig.11, which shows that the chaos is dependent 

on initial conditions of the oscillators and this sensitive dependency on initial 

conditions has been verified by computational methods. 

 
 

Fig.10: Phase plot of first biological oscillators with 761.0K  
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Fig. 11: Projections of second Poincaré map for the section x1=0, and x2=0 for 

the first oscillators with 761.0K  

The chaotic behaviour may also be shown, when the time step used is 

reduced at the order of 10
-1

 to 10
-2

. The Poincaré session contains a 

series of points by which the periodicity is entrained. But as soon as the 

pattern vanishes and leads to a structure, which is known as torus.  In 

this case, the overall periodicity of the oscillator is totally disappeared 

and a torus is achieved as shown in Fig.12.   

 

Fig. 12: Torus structure for one oscillators, when simulation time t>10
5
 with 

761.0K  

The chaotic behaviour may also be visualized by Lorenz maps, which are drawn 

for all the oscillators as shown in Fig. 13.  The trajectory leaves one spiral only 
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after exceeding some critical distance from the centre point. In this case, the 

intensity of injecting signal is kept at 0.761. 

 

Fig. 13: Phase plot for all the oscillators, when simulation time t>10
5
 with 

761.0K  

5. Conclusions  

In this paper, the analysis of mutually coupled oscillators has been obtained 

theoretically and numerically. The extended Poincaré-Cartan theorem has been 

applied in theoretical analysis. It has been shown that in absence of any kind of 

non-trivial coupling, oscillators oscillate in stable and independent limit cycle. 

However, presence of this coupling, the oscillators interact resulting in 

trajectories in 12-dimensional phase spaces, which has been supported by the 

mathematical formulation of integral invariant. Beside this theoretical analysis, 

full and cluster synchronization of biological oscillator are also discussed, which 

has been supported by simulation study of the system. These results relate to 

phenomena occurring in physiological experiments, such as the periodic 

stimulation of neural and cardiac cells and in the non-regular function of organs 

and organism. The effect of local injected signal has been presented, which 

shows the beating phenomena and chaotic behaviour of the oscillators. The 

phenomena of stability and bifurcation may also be deal in near future as a 

separate case to show the chaos control of oscillators.   
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