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Abstract: A new mathematical model for the transport across a meandering current like 

the Gulf Stream is suggested. This model is based on a modification of the von Kármán 

vortex street stream function. The suggested modification allows one to approximate the 

main patterns in  meandering ocean currents as observed by satellites. The inclusion of 

small perturbations in time (as periodic functions) and in space (in the form of weak 

eddies) enhance transport and mixing across the current. The mixing across the current is 

examined by following the deformation of certain well-defined (circular) areas on one 

side of the current back in time, so that we can determine from which initial part of the 

current that area is eventually composed.  

Keywords: Chaotic mixing, Meandering jet, von Kármán vortex street, Gulf Stream, 

Chaotic simulation.  

 

1 Introduction 

The transport of warm water from the meandering Gulf Stream into the cold 

water surrounding the jet has been the focus of many recent studies. The 

distribution of the averaged sea-surface temperature in the Gulf Stream area is 

visualised by the satellite image shown in Fig.1 [1], in which the variations in 

the grey tones indicate temperature gradients. Dark grey indicates higher sea-

surface temperatures, while light grey corresponds with cold surface water. The 

meandering Gulf Stream is clearly observed,
 

Mixing across the jet has been studied by a number of authors, including Bower 

[2], Bower and Rossby [3], and Samelson [4]. Bower and Rossby performed a 

field study with RAFOS floats released in the neighbourhood of the Gulf 

Stream, thus showing that the meanders of the Gulf Stream were responsible for 

much of the cross-stream motions of their floats released within the jet. 

However, meanders alone cannot lead to the motion of fluid parcels from one 

side of the jet to the other.  We expect that small temporal and spatial 

perturbations of the meandering jet could play a crucial role in that respect. 

Such small perturbations may be caused, for example, by interaction of the jet 

with neighbouring eddies, as can be observed from the satellite images [1 - 4]. 

In her study of the mixing process, Bower [2] suggested a simple two-

dimensional kinematic model. Her model is based on a simple stream function 
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that reproduces the kinematic features of an eastward propagating meandering 

jet; in this model the meander parameters determine the flow rate of the water 

propagating downstream. However, Bower’s model does not allow for any 

mixing, any movement of fluid particles across the jet. It is known that the Gulf 

Stream does not remain invariant in shape due to growth and diminishing of 

meanders. The effect of time dependence of the meander parameters on the 

mixing process was studied by Samelson [4]. Still, this model does not describe 

transport and mixing across the jet. The Gulf Stream may also change shape by 

interaction with rings in its direct vicinity. The inclusion of eddies in the simple 

meandering jet model implies additional time-dependence, which could enhance 

the mixing of fluid parcels within the jet. The Gulf Stream frequently interacts 

with many rings and it can be expected that these eddies play an essential role in 

the transport and distribution of tracer properties in the vicinity of the stream 

[5]. 

 

 
Fig.1. Satellite image of averaged sea-surface temperature in the Gulf Stream 

region [1]. 
 

In the present study we examine the enhancement of tracer transport and mixing 

caused by the interaction of a two-dimensional meandering jet, modelled by a 

von Kármán vortex street [6-8], and small time-periodic perturbations modelled 

in space as a chain of eddies [9].  To observe transport across the jet and the 

mixing that occur under interaction with perturbations we examine Lagrangian 

particle dispersion in time [10, 11]. 

 

2   Analytical Model of Gulf Stream Eddies  

In the Bower’s model the stream function has the following form [2]: 
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where 0 is the amplitude, which together with the jet width  , determines 

the maximum downstream speed. For the case of the Gulf Stream,    40 km 

seems a realistic value. Furthermore,  sin ( )c xy A k x c t   defines the 

centre streamline, A is the wave amplitude, 2k L is the wave number, and 

  1tan cos ,xAk k x c t     indicates the direction of current. The 

cos( ) term is included to ensure that the jet has a uniform width 

everywhere. It is convenient to consider the flow in a reference frame moving 

with the phase speed ,xc  (as it was done by Bower [2]). In the co-moving 

frame, the stream function has the following form: 
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with ' sin( )cy A kx  and  1' tan cos( ')Ak kx  . The stream function 

in this frame is independent of time and streamlines can be interpreted as 

trajectories of fluid parcels relative to the moving frame. 

The main coherent structure elements of the Gulf Stream in the moving frame 

are [10]: (i) an eastward-propagating meandering jet; (ii) regions of fluid 

recirculation below and above meander crests and troughs; (iii) regions of 

westward-propagating fluid below and above the jet, and recirculation regions 

on either side of the jet. We will study the transport of passive particles (tracers) 

in this co-moving frame. 

To study the transport properties of the meandering jet we suggest to use a new 

mathematical model for the stream function of the Gulf Stream, as introduced in 

[7].  This new stream function is a modification of the stream function 

modelling a von Kármán vortex street as encountered in the form of a system of 

vortices behind a cylinder moving with a constant speed. In the moving 

coordinate frame, which moves with a constant speed together with vortices, the 

stream function has the following form [7, 8]: 
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Fig. 2. Coherent structure elements in the von Kármán vortex street (left panel) 

and in the Samelson model [4] (right panel). 
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where c is the vortex speed in the x -direction, and P(x,y) and Q(x,y) are 

defined as 
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For the dimensionless variables ;x x l y y l  the stream function can 

be written as 

1 ( , )
( , ) ln
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P x y
x y cy

k Q x y
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(5)  

where  ( , ) cosh sin ;P x y k y b kx  

 ( , ) cosh sinQ x y k y b kx    

; ; 2 ; 2c cl b h l k         

Ihe streamlines according to (5) are shown in Fig. 2. In this graph, the 

meandering jet is marked as M, the recirculation regions of cyclonic and  
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anticyclonic rotation by  C and U, and the regions of westward propagating fluid 

are marked by B. The right panel of Fig. 2 shows the streamlines pattern 

according to Samelson’s model [4]. It can be easily observed that the 

topological structure of the model flows is the same, containing recirculation 

cells on either side of the jet, including hyperbolic points (indicated by K).  

The advection equations for passive tracers in the x,y-plane can be written as  

;x u
y


  


y v

x


 


 .                                                                (6)  

For the stream function (5) these equations become: 
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In the hyperbolic points 0; 0x y   , yielding for the coordinates: 

1 2 1,2

1 3 1 1
; and      arcsinh cosh sinh

4 4
x x y kb kb

k c

 
    

 
 

As mentioned before, Bower’s model [2] and the von Kármán vortex street 

model do not allow for tracer transport from one side of the jet to other. 

Particles (passive tracers) can exhibit periodic or chaotic trajectories in the 

recirculation zones or along the meandering jet if we assume that the amplitude 

of the stream function (5) has a small periodical variation in time proportional to 

some small parameter ε, for example in the form: 

 

(1 cos ) ( , )
( , ) ln

2 ( , )

t P x y
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 
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
                                   (8) 

(here and in what follows we omit the tilde over dimensionless variables). It 

may be expected that the perturbations will destroy the transport barriers 

(separatrices) [1, 10] between the recirculation zones and the westward ambient 

motion, thus allowing transport of fluid across the jet. However, numerous 

simulations [8, 10] have shown that transport and extensive mixing may occur 

only between recirculation zones and that no transport across the jet occurs. 

Such dynamics remains unchanged even when we add additional perturbations 

in the form of superimposed velocities. We now assume a time-periodic 

perturbation velocity field (in some way mimicking a tidal flow) with a velocity 
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component cosx xv A t  in the x- direction and cosy yv A t in the y-

direction.    

Figs. 3 and 4 illustrate the chaotic advection in the von Kármán model with a 

tidal flow velocity in the y -direction  (Fig. 3) and in the x -direction  (Fig. 4), 

both for the case ε = 0.1.  The simulations show how an initial circular tracer 

blob (the shaded circle) is deformed and spread over a larger region, with long 

filamentary structures. The simulations have shown, however, that the marked 

fluid parcels will not leave the streamlines of the jet area, in spite of the 

perturbation of stream function and the additional ‘tidal’ velocity components. 

 

Fig. 3. Chaotic advection pattern in   the von Kármán model (8) after 18 periods 

of the time-periodic (tidal) flow perturbation with 0.1cos .yv t  

 

 

In order to possibly acquire mixing and transport across the boundaries of the 

jet, we now apply a small perturbation to the stream function, in such a way that 

y-component of the velocity is not only periodic in time but also has a more 

complex spatial structure. We introduce the perturbation in the form of a field of 

eddies, with locations that are stationary in time. This means that they move 

westward with a constant speed c in the moving frame. For such an eddy 

pattern we use the stream function introduced by Zimmerman [9] in his study of 
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tidal stirring, which in the non-moving Cartesian ( ', ')x y  coordinate system   is 

given  

1
sin ' sin '

2
z x y  




                                                          

(9)  

It consists of a square cellular pattern with counter-rotating vortices inside the 

cells and hyperbolic points in the corner points.  The origin of the ( ', ')x y  

coordinate system (which is a hyperbolic point in the streamline pattern given 

by (9)) is now put in the point (1, 0) of the co-moving frame and the axes are 

rotated counter-clockwise over an angle 4 . In the co-moving frame the 

stream function (9) then has the following form: 

 
Fig. 4.  Mixing pattern of circular blob in the von Kármán model (8) after 18 

periods with 5cosxv t . 
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where we applied the coordinate transformation 

' ( ) / 2; ' ( ) / 2.x x y y y x     
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The equations for fluid trajectories in this flow field, which is described by the 

superposition of the two stream functions (7) and (10), have the following form: 
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Here 1 1 cos t     is the time-dependent amplitude of the von Kármán 

vortex street function, containing a small disturbance cos t  , with 

0  and   the  frequency of ‘tidal’ perturbation. In order to enhance 

influence only  rings  located in the area of the von Kármán street and suppress 

an influence of other rings in the y-direction we suppose that  the amplitude of 

the stream function (10) is exponentially decaying in y-direction. Consider, for 

example, 
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where ;     
2

2( ) expB y C y , and   is the 

new positive small parameter,  are constants. In this case the 

streamlines correspond to those shown in Fig. 5, and the equations for fluid 

trajectories have the following form: 
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Fig.5. Streamline pattern of the flow according with stream function (5) with 

perturbations (12). 

 

 

3   Numerical Experiment 

In order to gain insight in the transport and mixing across the jet based on 

tracing the paths of individual particles (initially in a blob of marked tracers), 

we will use a Lagrangian description. We will investigate the motion of 

mathematical points that move at each instant with the velocity corresponding to 

their instant positions. Thus, the dyed particles are supposed to be inertialess, 

and not subjected to diffusion. We will examine the deformation of some 

circular area back in time, in order to determine from which part of the flow 

domain that area originates.  For this purpose we use a contour tracking method 

conserving all topological properties in 2D flows [8, 11]. Any algorithm of 

contour tracking is based on the tracking of points distributed along the 

boundary of the initial blob and after each time step connecting them with 

neighbouring points. Because of non-uniform stretching and folding of the 

contour, after some time two neighbouring points may drift far apart, thus 

making the contour tracking less accurate and hence unreliable. The obvious 

way to overcome this problem is to increase the number of points on the 

contour. It not required to do this uniformly,but only in those parts of the initial 

contour where considerable stretching or folding will occur at later times.  The 

essence of our algorithm is clear: (i) if it appears that some distance 

kl between two neighbouring points becomes larger than some initially 

prescribed value disl , an additional point is inserted on the initial contour in the 

middle between points k and k+1; the equations (13) are then again numerically 
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integrated for that newly added point, after which the points are renumbered. (ii) 

At each time step  all sets of three neigbouring points are checked to see if they 

are still reasonablye well aligned: if the angle 
m  between three points  m-1, m 

and m+1 appears to be smaller than some prescribed value    (usually 

120  ), additional points are inserted on the initial contour line between 

points  m-1, m and m+1 in such a way that, finally, the distances between all old 

and new neighbouring points do not exceed the value curl  and all vertices of the 

polygon approximating the contour are larger than  .   An   additional and 

important check of the proposed algorithm is the accuracy of fulfilling the area 

conservation condition.  

The results presented have been obtained by numerical integration of the 

advection equations (13) with the following parameter values: 

In these simulations, a circular marker blob (dark grey; radius 0.4) was centred 

in the point (0.45, 0.95). Fig. 6 shows the satellite image of averaged sea-surface 

temperature in the Gulf Stream region (also shown in Fig. 1), with the 

streamline pattern of the von Kármán vortex stress (see Fig. 5) superimposed. 
 

One clearly observes (both in Fig. 1 and Fig. 6) a large area of relatively warm 

fluid (visible as a darker shade of grey) north of the crest of the fourth meander 

in the Gulf Stream. Obvious questions are: how was created, from which part of 

the jet does it originate?  To answer   these questions we examine the 

deformation of a circular area in our model flow (13) located in that area 

(indicated by the broken contour), by integrating backwards in time.   The result 

of these numerical integrations is shown in Fig. 7, with the initial position of the 

marker circle indicated by the dashed contour. The first panel in Fig. 7 shows 

the location of the deformed blob of fluid parcels (shown in black) at 

approximately 15 days backwards in time. The following panels in Fig. 7 show 

the marker blob at three-days intervals, namely at 12, 9, 6, 3, and 0 days 

backwards in time. Obviously, in the last panel the marker blob occupies the 

initial circular area. In order to estimate the cross-jet transport of fluid parcels 

we may compare the area of the cold fluid parcel (represented by the dark spot 

above the streamlines in the first panel in Fig. 7 and the area of the initial 

circular blob. The dark-grey patch is approximately a factor of two smaller, 

which indicates that in this specific case after 15 days half of the area of the 

circular blob is occupied by warm fluid, and half of it by cold fluid. 
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Fig.6. Satellite image of the averaged sea-surface temperature in the Gulf 

Stream region (see Fig. 1) with the streamlines of the von Kármán vortex street 

model superimposed. 
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Fig.7. Deformation of a circular marker area obtained by integrating the model 

flow given by (13) backwards in time. 

 

 

 

4   Conclusions 

As a model for cross-current transport in the meandering Gulf Stream we have 

considered the von Kármán vortex street model of a meandering jet when 

interacting with a stationary pattern of eddies [5]. The numerical simulations 

have shown that such a model is able to show cross-jet transport of fluid parcels 

and intensive chaotic mixing.  
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