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Abstract: Cross-waves occurs as the realization of parametric resonances, as was written 

long time ago by M.Faraday. However, derivation the correct equations for the 

amplitudes of these waves in finite containers for a long time had mathematical 

problems. All the theoretical works implemented solutions either for an infinitely long or 

for infinitely deep containers. Appling the method of superposition correct equations are 

constructed. These equations are such that the nonlinear terms contain the second 

derivative. For the first time in the case of one cross-wave chaotic regimes were found 

and their properties were investigated for a rectangular tank when one wall is a flap 

wavemaker.  
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1    Introduction 

Generation of cross-waves in free-surface of a fluid in various tanks is very well 

known [4-6, 8]. The waves may be excited by harmonic oscillations of 

wavemaker and depending on the vibration frequency both longitudinal and 

transverse patterns may arise. Experimental observations have revealed that 

waves are excited in two different resonance regimes. The first type of waves 

corresponds to forced resonance, in which  patterns in the direction of 

wavemaker vibrations are realized with eigenfrequencies equal to the frequency 

of this excitation. The second kind of waves is parametric resonance waves and 

in this case the waves are "transverse", with their crests and troughs aligned 
perpendicular to the vibrating wall of wavemaker. These so-called cross-waves 

have frequencies equal to half of that of the wavemaker, Faraday, 1831, [2]. To 

obtain a lucid picture of energy transmission from the wavemaker motion to the 

fluid free-surface motion the method of superposition, Lamé, 1852, [7], has 

been used. This method allows to construct a simple mathematical model, which 

shows how the cross-waves can be generated directly by the oscillations of the 

wavemaker. All previous theories have considered cross-waves problem 

applying the Havelock’s solution [1] of the problem for a semi-infinite tank with 

an infinite depth and a radiation condition instead of a zero velocity condition at 

the finite depth of the bottom [8].   
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2    Cross-waves in Rectangular Container 

Let us now consider the nonlinear problems of fluid free-surface waves, which 

are excited by a flap wavemaker at one wall of rectangular tank of a finite length 

and depth (Fig. 1).  

 

Fig. 1. Schematic of the experimental set-up. 

The experiments were performed in a rectangular tank with a length L=50 m, a 

width b=6.8 m and a depth h=2.5 m. It is convenient to relate the fluid motion to 

the rectangular coordinate system (Oxyz) with the origin O at the fluid free sur-

face. Motion of the wavemaker in the direction of x can be presented as 

( , ) ( )sin( ) sin( ),
a

u z t F z t a z t
h

 
 

   
 

                                                 (1) 

Where a is the amplitude and ω is the frequency of the wavemaker oscillations. 

From the experimental observations, Krasnopolskaya, 2013, [5], we may 

conclude that the pattern formation has a resonance character, every pattern 

having its "own" frequency. Assuming that the fluid is inviscid and 

incompressible, and that the induced motion is irrational, the velocity field can 

be written as v . Let us consider that patterns can be described in terms of 

normal modes with own eigenfrequencies. Then we may approximate free 

surface displacement waves during parametric resonance, when the excitation 

frequency   is twice as large as one of the eigenfrequencies nm , i.e. 

2 nm      as  a function written in the form [4]: 

00( ) cos cos .nm

n x m y
t

L b
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                                                                   (2)  



Chaotic Modeling and Simulation (CMSIM)  3: 377-385,  2016         379 
 

When
1/2

1( ) ( )nm t O  , 1( )oo O   and
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g


   is a small 

parameter. Then a potential of fluid velocity 1 2 0       as the 

solution of the harmonic equation and according to [4] has following 

components 
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Where 
1/2

1( ) ( )nm t O  . 

Using kinematical free-surface boundary conditions, Krasnopolskaya, 2012, [4],  
2

0 1 0 1 1 2( ) ( ) ( ) ( ) ( ) ( )z z zz zz zzz zz                  
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1 1( ) ( )xz x yz y     ,  

we may find that the amplitude of the potential ( )nm t  is 

1( ) cos ;
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The term 1 cosnm D t    expresses the influence of the potentials 

, 2o   on the value of the potential 1 . 

 Applying the dynamical boundary condition  
2
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we can get for the resonant amplitude an equation of parametric oscillations 

2 2 22 29 3

16 4
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1 2 1 5sin cos 0.nm nmD t D t                            (5) 
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We can rewrite it for the rectangular tank with 50L   m, h= 2,5m , 

6,8b  m  and for the wave numbers 40n  , 10m   as the following 

equation [4,5]: 

2 2 22 29 3

16 4
nm nm nm nm nm nm nm nm nmk k          

24.78 sin 2.99 cos 0.nm nm nm nmt t                                        (6) 
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 the frequency is 2 1.143nm  Hz. We 

may use the transformation to the dimensionless variables   /nml   , p , 

,nmt   and finally get a dynamical system of the third order (when 

2 2.27  Hz and 0.26  m) in the following form 

2
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This system (at 2
nm




  =0.014 and without damping forces 

when 0.0  ) has for the initial conditions l(0)=0.3456, p(0)=1.104 very 

rich dynamics with regular and chaotic solutions. As an example of regular 

solutions in the Fig.2 a) and b) the projections on the plane l,p of phase 

portraits for 0.859A  (the value of A is proportional to the amplitude of 

wavemaker oscillations) are shown in different scales. The cross-sections in the 

phase portrait are due to the projection on the plane [3]. The system of equations 

under consideration has the unique solutions. Power spectral densities of the 

solution are presented in Fig.3 a) and b). They have discrete peaks and are 
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equidistant in frequency. The main frequency of regular cross-wave amplitude 

oscillations is around 0,2 Hz which is close to a half of the frequency of the  

wavemaker oscillations f=1/π Hz. Firstly, for one mode approximation of the 

cross-waves on fluid free surface chaotic oscillation regimes were found [6] in 

the system under consideration without damping forces when 

0.0  ; 1.759A  at 2
nm




  =0.014 as could be seen in Fig.2 c) 

and d).  

 

 

  
a) 0.0  ; 0.859A  

 
b) 0.0  ; 0.859A  

 
c) 0.0  ; 1.759A  

 
d) 0.0  ; 1.759A  

Fig. 2. Phase portraits for regular (cases a, b) and chaotic regimes (cases c, d). 
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a) 0.0  ; 0.859A  

 
b) 0.0  ; 0.859A  

 
c) 0.0  ; 1.759A  

 
d) 0.0  ; 1.759A  

 

Fig. 3. Power spectral density computed for p  data.  

This dynamical system with additional damping forces, when 0.01  and 
for the same initial conditions has also both  regular solutions and  chaotic ones 

as shown in Fig.4 Comparing the graphs of phase portraits we may conclude 

that the dynamical systems have similar behaviors.  For the dynamical system 

with a damping force the power spectral density  for the regular regimes (Fig.5 

c) and d)) has more peaks then for dynamical system without damping (Fig.3 a) 

and b)) because of more turns in the limit cycle. The power spectral densities for 

chaotic regimes are continuous.   

 

3    Conclusions 

A new model for the cross-waves of fluid free surface oscillations is worked out 

for a rectangular tank of finite sizes.  This mathematical model shows how the 

cross-waves are generated directly by the oscillations of the wavemaker. 

Existence of chaotic attractors was established for the dynamical system which, 
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a) 0.01,  1.07A  

 
b) 0.01,  1.07A  

 
c) 0.01,  1.91A  

 
d) 0.01,  1.91A  

Fig.4. Phase portrait projections for chaotic (a, b) and regular (c, d) regimes. 

 

 
a) 0.01,  1.07A  

 
b) 0.01,  1.07A  
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c) 0.01,  1.91A  

 
d) 0.01,  1.91A  

Fig. 5. Power spectral densities computed for p data. 

 

describes one resonant cross-wave at fluid free-surface. For this system chaotic 

regimes were found for the first time and investigated. 
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