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Abstract. In the present work, a nonlinear control method namely predictive control
is investigated. The proposed method allows stabilizing unstable period-1 rhythm.
Using mathematical analysis and computer simulations, we show that this method
can be used to control chaotic behavior or pathological rhythms. As example, the
results are illustrated in the case of the 1D-map action potential duration (APDi+1)
which modelizes the cardiac action potential duration as the function of the previous
one (APDi). .
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1 Introduction

Nonlinear dynamics and tools from chaos theory are used to understand and to
characterize some cardiac pathologies [1,2,3]. These works are focused on the
behavior of cardiac rhythm. From dynamic point of view, different states of
the cardiac rhythm are qualified by the equilibrium points, the periodicity, the
chaos [4]. Many works are dedicated to the suppression of abnormal rhythm and
spatiotemporal chaos in cardiac tissue [5,6,7]. Control methods using external
electrical stimulation are applied to alternances and irregular heart rhythms in
order to recover normal rhythm [8]. Mathematically, the control is performed
with small perturbations to system parameter in order to lead the periodic
and chaotic behavior to the equilibrium point. In cardiac dynamics, the most
accessible system parameters available for perturbation is usually the interval
between successive stimuli or the timing of the next excitation, which can
be advanced or (in some situations) delayed through low-magnitude current
stimulation [9]. It is believed that ventricular fibrillation is characterized by
chaotic dynamics of the heart [10,11]. This arrhythmia is generated by the loss
of stability of the periodic rhythm, namely alternans, because the rapid pacing
of the cardiac tissue [12, 13 ]. Chaotic attractors contain an infinite number
of unstable periodic orbits of any desired period [14]. When the chaotic orbit
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approaches to the desired unstable periodic orbit, it can be attracted to and
maintained on the orbit by applying small perturbations to the system [14,15].
The interest in the chaotic control systems has been largely initiated by the item
E.Ott, C. Grebogi and J.York published in 1990 [16]. The key idea provided by
the article, is a considerable change in the behavior of a chaotic system can be
obtained through a very small change in one or more of its parameters. This
known control method, namely OGY control method, was the first method
of chaotic control systems. The latter is based on the feedback state control
that uses the chaos in the dynamic system to stabilize an unstable periodic
orbit. Several other methods have been developed for chaotic control systems
[17, 18]. Among these methods, we can mention the predictive control method
with the feedback state proposed by Pyragas [19]. This method is based on the
feedback state control: the control law is calculated from the difference between
the current state and the state with a time delay T, where T represents a period
of the orbit to be stabilized. The state controlled by this technique converges
to the desired orbit and not to an approximation, as is the case with the OGY
method [20]. The advantage of this type of predictive control method lies in
the fact that the approximations are not used in the state feedback. However it
has been shown that when the specific number of real parts which greater than
one is odd, the fixed point cannot be stabilized by this technique for discrete
systems [21]. Ushio and Yamamoto [22] propose to stabilize the fixed points by
a method based on the prediction of the states of the uncontrolled system. The
OGY method was the first control technique applied to control cardiac rhythms.
It is investigated to stabilize the aperiodic ventricular tachycardia dynamics of
a rabbit. During chaos control a perturbation is applied to vary the interbeat
intervals but the irregular chaotic dynamics was controlled and replaced by
periodic rhythm, typically with a period-3 or period-4 rhythm. Hence, this way
of perturbation prevented from having the period-1 desired rhythm [23]. Since
the work of Garfinkel a number of theoretical and experimental studies were
performed to control irregular cardiac rhythms and through diverse methods
of nonlinear dynamics control [24]. A specific cardiac strategy called adaptive
control of diastolic intervals (DI) to control the duration of action potential
(APD) alternans is proposed by Jordan and Christini [25]. Specifically, they
use a so-called restitution in the cardiac system: (APD) current as a function
of previous (DI). This developed cardiac paradigm control is efficace to direct
the periodic and aperiodic rhythm to the equilibruim point or normal rhythm
and it can be applied to control both noisy and drifting rhythms [25]. The
nonlinear control techniques used to show how to control certain irregular heart
rhythms. However, since the only effective therapy for ventricular fibrillation
remains high energy shocks, it would be essential to develop and obtain by the
methods of nonlinear dynamics control protocols low energy to manage cardiac
arrhythmias [26]. There is a long way to go before these methods are successful
clinically. All these studies indicate that the combination of nonlinear methods
of dynamic control of chaos, and defibrillation can give rise to new therapeutic
strategies in the treatment of cardiac arrhythmias [26]. In the present paper, we
give in Section 2, the dynamical properties of the one-dimensional map (APD)
of an electric cardiac model describing the propagated cardiac action potential
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[27]. In order to prevent chaotic behavior or to direct it into steady state, we
apply in Section 3 the predictive control. Eventually, numerical results are
presented to verify the efficiency of this paradigm control. Conclusion is given
in Section 4.

2 The 1D-Map (APD)

The effects of a periodic stimulation on a strand of ventricular muscle have
been investigated by Lewis and Guevara [27]. Electrical stimulations applied
at a regular time intervals (ts) generated an action potential. At arbitrary
(ts), the duration of any given action potential is controlled by its immediately
preceding diastolic interval (DI) and this dependence is given by the APD
restitution curve [ 27]:

APDi+1 = g(DIi+1) = A−B1 exp

(
−DIi+1

τ1

)
−B2 exp

(
−DIi+1

τ2

)
(1)

Where APDi+1 is the APD of (i+1)st action potential, DIi+1 is its associated
diastolic interval ( DIi+1 � DImin) and g is a double-exponential function
describing the restitution curve. The constants A, B1, B2, τ1, τ2 are related
to the heart electrophysiological constraints defined in [27]: A = 270 ms, B1 =
2441 ms, B2 = 90.02 ms, τ1 = 19.60 ms, τ2 = 200.5 ms, and DImin = 53.5
ms. Should one or more stimuli be blocked, then the relationship between the
APD of the subsequent action potential and its diastolic interval is not affected
by the presence of the subthreshold response(s) [27]. Then, the APD can be
obtained as a function of the previous duration potential action

APDi+1 ' g(nts −APDi) = f(APDi) (2)

The eq (2) is obtained if (n− 1) blocked stimuli occur in the diastolic interval
DI(i+1) (i.e., n is the smallest integer such that nts − APDi ≥ DImin) [27].
One obtains:

APDi+1 = A−B1 exp

(
APDi − nts

τ1

)
−B2 exp

(
APDi − nts

τ2

)
(3)

The dynamics of the eq (3) is graphically studied in [27]. When the stimulation
frequency ts decreases from the value 400 ms to the value of 25.1 ms, with
increment which equal to 0.1 and iteration starting from initial condition APD1

which equal to 240 ms, one obtains the following sequence rhytms: [1 : 1 →
2 : 2(alternans)→ 2 : 1 → 4 : 2 →chaos→ 3 : 1 → 6 : 2 →chaos→ 4 : 1 →
8 : 2 →chaos→ 5 : 1 → 10 : 2 →chaos→ 6 : 1 → 12 : 2 →total chaos]. The
bifurcation diagram (see Fig. 1) shows the different dynamics of the system.

An N : M rhythm (N ≥ 1, M ≥ 0) is periodic with Nts period [27], which
contain the repeating N : M cycles, each exhibiting N stimulus pulses and
M action potential or M beat. Under low amplitude the response of cardiac
tissu is similar with each stimulus [27]. This rhythm is noted 1 : 1, it is the
equilibruim point ( or period-1orbit), where the first 1 indicates one stimulus
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Fig. 1. Bifurcation diagram from [27].

and the second 1 indicates one beat or response. If the stimulation frequency is
increased more than some critical value, the cardiac dynamic evolved into cycle
(or period-2 orbit) noted that 2 : 2. It is mentioned to as the alternans, which
mean that the APD oscillates between tow values. In particular, beat-by-beat
the long interval of APD is still followed by the short one. The rhythm 1 : 1
became unstable via double period bifurcation. Still increasing the frequency,
the 2 : 2 rhythm loss it’s stability, generating the 2 : 1 rhythm.There are another
periodic-2 orbit, noted as 2N : 2 rhythms (N � 1). One will see two different
actions potentials that alternate. But the size of the range of ts over wich one
sees any two different 2N : 2 rhythms (N � 1) will be different. And the range
of APD that one will encounter over these two ranges of ts will be different.
More than the value of ts decreases more than the range of the 2N : 2 rhythms
stability decreases. These cycles rapidly loses its stability since the dynamics
will become very complexe [12]. It has been proved that [27]. The 1D-map APD
is fundamental model to understand the evolution of regular cardiac rhythm
into irregular one, mainly FV-type which lead to sudden cardiac arrest [27]. In
the following sections, we studied the predictive control using 1D-map model
APD to stabilize irregular rhythm into equilibrium points or (period-1 orbit),
such as N : 1 rhythm (N � 1) indicating healthy heart.

2.1 Determination of unstable fixed point

Our objective is to stabilize the periodic rhythms (or period-2 orbit) and irreg-
ular heart rhythm to the N : 1 rhythm, N ≥ 1 (or period-1 orbit). To apply
the predictive control, it is necessary to know the unstable fixed point value
when we have chaotic behavior.

For example, when ts attained the value 146 ms the rhythm 2 : 2 (or cycle)
loss it’s stability obtaining aperiodic orbit . The determination of the unstable
fixed point value of 1 : 1 rhythm noted x∗ at ts equal to 146 ms, is based on a
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numerical method. The fixed point of the system (3) satisfies the equation:

F (x∗) = f(x∗)− x∗ = 0 (4)

We search the root α using dichotomie method which represents a fixed point
for the iteration interval I. The goal is to try to isolate the root α on the
iteration interval I = [0, 270](a0 = 0, b0 = 270). α ∈ [ak, bk] ⊂ [a0, b0] , α ' xk,
the middle of the interval [ak, bk] ,such that

|α− xk| ≤
∣∣∣∣bk − ak2k+1

∣∣∣∣ < 10−5

For ts = 146 ms, we found two unstable fixed points values corresponding
to 1 : 1 and 2 : 1 rhythms:

The 1 : 1 rhythm unstable (or period-1 orbit) value is α ' x12 = 86.42 ms.

The 2 : 1 rhythm unstable (or period-1 orbit) value is α ' x12 = 196.00125
ms

Fig. 2. Aperiodic rhythm at ts = 146 ms.

3 The predictive control

The predictive control based on feedback control strategy introduced for the
control of chaotic systems [21]. This type of control system led to a regular
attractor as a fixed point (or period-1 orbit) [19]. The predictive control pro-
vides a universally applicable, easy to implement the method that requires little
knowledge of the system and has been successfully applied [28].
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3.1 The mathematical approach

Let the nonlinear one-dimensional map defined by the flow f of class C1. Con-
sidering I an invariant part of R with f , such as:

xi+1 = f(xi) + u(i) (5)

With xi is a state of the phase space I. Let u(i) is a real number applied
to control the map (3). The control value equal to zero when the map gener-
ates chaos [29]. For any point xi of the chaotic orbit which is far from fixed
point neighborhood. The control u(i) is activated when the controlled state xn
asymptotically converges to the target fixed point x∗.
In the predictive control method, the control u(n) will be determined by the
difference between the present state xn and the uncontrolled predicted state
(xn)p [21].
To stabilize an unstable fixed point of the chaotic one-dimensional map , it
is necessary to determine a gain K belongs an open real interval from the
study of the asymptotic stability of the chaotic one-dimensional map (5) in the
vicinity of the unstable fixed point x∗ . The formula control u(n) is given by
[22]:

u(n) = K
[
(xn)p − xn

]
(6)

Using f(xn) as a prediction of the fixed point to be stabilized. The predicted
state uncontrolled (xn)p is given by:

(xn)p = f(xn) = xn+1 (7)

This control law is valid only when the system state is neigborhood of the
desired unstable fixed point. The control zone is determined by the following
relationship:

|xn+1 − xn| ≺ ε (8)

Let ∆x(n) = |xn+1 − xn| and assuming that ε is a small positive value (ε ≺≺
1). Hence, to acheive the control it is necessary that the required maximum
perturbation parameter γ is proportional to ε.

u(n) = K∆x(n) (9)

The controlled chaotic one-dimensional map model will be given by:

xn+1 = f(xn) +K (xn+1 − xn) (10)

3.2 Numerical results

In this part, we consider predictive control pradigm in 1D- map (APD). To
determine the correction to the current state xi of the chaotic system, the
control law, which is defined from the equation (10) is calculated, we obtain:

u(i) = K

(
A−B1 exp

(
xi − nts

τ1

)
−B2 exp

(
xi − nts

τ2

)
− xi

)
(11)
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Knowing that: xi = APDi

xi+1 = A−B1 exp

(
xi − nts

τ1

)
−B2 exp

(
xi − nts

τ2

)
+K

(
A−B1 exp

(
xi − nts

τ1

)
−B2 exp

(
xi − nts

τ2

)
− xi

) (12)

The linearization of the equation (12) around the fixed point x∗ is given by:

δxi+1 = Jδxi (13)

J =

[
δxi+1

δxi

]
x∗

(14)

Assuming that Ax∗ is the Jacobien of the uncontrolled map (3) in the un-
stable fixed point x∗, then

J = K (Ax∗ − 1) +Ax∗ (15)

The system stabilizes around a fixed point by the predictive control if the
gain K value satisfies the following inequality control:

|K (Ax∗ − 1) +Ax∗ | ≺ 1 (16)

The predictive control of the map model into a fixed point x∗ is defined as
follows:

u(i) =

{
K
(
A−B1 exp

(
xi−nts
τ1

)
−B2 exp

(
xi−nts
τ2

)
− xi

)
if |u(i)| ≺ γ

0 if |u(i)| � γ
(17)

To stabilize the system on the fixed point value x∗ = 86.42 ms (or 1 : 1
rhythm) at ts = 146 ms. The condition on K becomes:

∃ K ∈ ]−1,−0.725[

To stabilize the system on the fixed point value x∗ = 196.00125 ms (or 2 : 1
rhythm) at ts = 146 ms. The condition on K becomes:

∃ K ∈ ]−1,−0.094[

The result of control is shown in Fig.3 for stabilizing the rhythm 1 : 1, using
20000 times of iterations, for the following suitable conditions: K = −0.9

APD1 = 240 ms
ε = 0.1

In Fig.3, when attained n = 11540, the state x(11540), is in the vicinity
of the the fixed point x∗(or 1 : 1 rhythm), the control takes the value u(n) =
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Fig. 3. Direct chaotic dynamics to the 1 : 1 rhythm or steady state under predictive
control.

0.08655 ms, and to stabilize the system on the desired fixed point value x∗ =
86.41 ms. And in Fig.4, we provide the cobweb plot for the same conditions to
exhibit the evolution of iteration converges to 1 : 1 rhythm after activating of
control.

Fig. 4. Cobweb plot of the map (APD) under predictive contol at ts = 146 ms.

The result of control is showing in Fig.5 for directing chaotic behavior to
the 2 : 1 rhythm or steady state, we give the following suitable conditions: K = −0.3

APD1 = 240 ms
ε = 0.2
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Fig. 5. Direct the chaotic dynamics to the 2 : 1 rhythm or syeady state under pre-
dictive control.

In Fig.5, when attained n = 11840, the state x(11840) , is in the vicinity
of the fixed point x∗ , the control takes the value u(n) = −0.02653 ms, and
stabilizes the system on the fixed point value (or 2 : 1 rhythm) x∗ = 196.0073
ms. And in Fig.6, we provide the cobweb plot for the same conditions to exhibit
the evolution of iteration converges to 2 : 1 rhythm after activating of control

Fig. 6. Cobweb plot of 1D-map (APD) under predictive control at ts = 146 ms,
K = −0.4.

A majoration in the values of K is provided with 0.01 increment. As ex-
ample, The range (−1 ≤ K ≤ −0.73) is sufficient to direct chaotic dynamics
to the fixed point for the first branch (or 1 : 1 rhythm) on the value 86.41
ms. Thus for example, using these following intervalls (−0.72 ≤ K ≤ −0.56),
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Fig. 7. Bifurcation diagram (APDi vs. K) for K between -1 et 0.

Fig. 8. Prevention of Chaotic behavior of the APD map (3) with predictive control
for ts = 146 ms, APD1 = APD∗ = 86.42 ms. K = −0.9, ε = 0.8. The dynamique
stabilize from the next iteration at the fixed point with approximative value 86.41
ms. The map was iterated 20000 times.

(−0.49 ≤ K ≤ −0.4) and (−0.34 ≤ K ≤ −0.1), we obtain the stabilization to
another fixed point value (or 2 : 1 rhythm) which equal to 196.0073 ms. After
applying the control, only the near iterates x(n) to the fixed point which will
converge to this stable state (See Fig.7).
Suitable values for the control of chaotic behavior when ts = 146 ms of one-
dimensional map (APD) model are presented on the bifurcation diagram, at
each K the equation (10) was iterated 20000 times and the first 19800 iterates
discarded to suppress transients due to initial conditions [27]. Increment in K
was 0.01 (see Fig.7). To prevent the chaotic behavior with predictive methode,
it is necessary may to take the fixed point value as an initial condition x1 = x∗.
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Hence, the predictive contol triggers in the next iteration and we direct the
chaotic dynamics to the steady state since the first itration (See Fig.8).

4 Conclusion

It is regarded that ventricular fibrillation (VF) is chaotic rhythm. It is then
obvious that it would be very valuable to be able to control the chaos once
it has started up; thus is then reverting the heart back to its period-1 orbit
”normal sinus rhythm”. There have been many papers publised on ”chaos con-
trol”. Some of these are experimental, While others involve modelling (both
differential equations and maps). In the purpose of reduction of irregular be-
haviors in cardiac dynamics. The predictive control is applied to stabilize the
1D-map (APD) modelizing stimulated strand of ventricular muscle . We have
obtained very satisfactory numerical results to direct the chaotic behavior to
a stable equilibrium points from the state equation. This proves the effective-
ness of this proposed method to stabilize the irregular heart rhythm in the
physiological normal sinus rhythm.
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