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Abstract. We are interested in the use of prediction algorithms of nonlinear time
series analysis in the context of music. In particular, our target is to use prediction
algorithms to simulate a musical style, to mimic a particular musical composition or
to produce new music. Moreover, we introduce and discuss the use of some algorithms
that may improve the quality of predictions both for simulating styles and composing.
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1 Introduction

A large variety of phenomena has been studied using methods of Nonlinear
time series analysis (NTSA) (see [4]) and it seems natural to consider a musi-
cal composition as a data set and to try to reconstruct and study the underlying
dynamical systems. Moreover, it makes sense to study the degree of predictabil-
ity (or chaoticity, see [2]) of a musical compositions and this can be done with
the aid of some indicators such as Correlation Dimension and Lyapunov Expo-
nents. It is also natural to ask if these tools are useful for cataloguing musical
styles (see [2]). The most important goal of NTSA is to make predictions on
the future behavior of the system using the available data set. In section 2
below we introduce a prediction algorithm in the context of music. The use
of such algorithm was suggested in [3] with the purpose to produce original
music for both artistic and pedagogical purposes. We underline that this topic
would benefit of further research from the point of view of musical composition
and theory. The main original contribution of section 2 is the introduction of
multivariate prediction in music, that is, prediction for multidimensional time
series (pitches and durations), and a detailed analysis and study of prediction
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algorithms. The main objects of NTSA, the m-histories (m-hs), reveal to be
an important tool in developing a “nonlinear musical analysis”, since they are
capable of describing not only the geometry of patterns but also the connection
between them. Section 3 is devoted to this topic, we suggest different tools for
developing a NTSA in music and compare their efficiency. We remark that the
idea is not to substitute classical musical analysis such as Thematic, Motivic or
Shaenkerian analysis, but to support it by nonlinear methods. The interest in
making predictions is obvious in the context of natural sciences, while, in the
context of music, we propose the idea to use prediction in order to simulate a
musical style. To do that it seems not sufficient to reproduce the “qualitative
behavior of the system”: (that is the intrinsic geometric of the patterns and
their connections), we sometimes need some corrections and improvements for
the predictions. Section 4 is dedicated to the introduction of several examples
of the modified algorithm that improve the quality of the predictions, while in
the last section we consider some final remarks.

2 Prediction of musical series

An easy way to predict the future behavior of a data set is to consider the so
called Lorenz method of analogues (see [4]). Let xi with i = 1, . . . N be the
elements of the time series and suppose that there exists a continuous function
F such that xn+1 = F (xn), then it is possible to predict, within certain error,
xN+1 from the data set. The idea is to consider the point xn0

in the time series
that is the closest to xN with respect to some predefined norm. Then from the
continuity of F we have:

xn0
' xN =⇒ xn0+1 ' xN+1, (1)

in the sense that under the continuity condition, the two points should evolve
in a similar manner. If N is large enough, then usually there is a set of points
satisfying the criteria of being close to xN for a given radius of tolerance and
it is possible to consider some sort of mean value of their evolution. We will
use the following algorithm (see [1]):

ymt+1 =

N∑
k=1

[
ŷmk+1 − ŷmk + ymt

]
ωk(ymt , ŷ

m
k ), (2)

where ymt+1 is the m− hs that we want to predict, ymt is the last m− hs of our
data set. The points {ŷmk }Nk=1, are the elements of the time series that lie in
the neighborhood Bε(y

m
t ) of the vector ymt with a given radius ε. We denote

by ŷmk+1 the points in the time series that are next to the neighbors ŷmk . The
parameter ε needs to be chosen in such a way that Bε(y

m
t ) contains enough

elements. The function ωk(·) are weight functions and satisfy

ωk(a, b) =
Kh(‖a− b‖)∑N
h=1Kh(‖a− b‖)

, Kh(x) =
1

h
K
(x
h

)
, K(x) =

1√
2π
e−

x2

2 ,

(3)
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where h is a positive parameter representing the bandwidth of the kernel. No-
tice that the prediction algorithm described produces as an outcome, vectors
of m entries, then a reconstruction process is needed (see [1]).
Now let’s consider a first example of prediction. For simplicity we chose the
Prelude of the I suite for Cello by J.S. Bach, since the rhythm of the tones is
almost the same (a sixteenth note). In order to construct the time series we
associate to each pitch a natural number in a chromatic way. So we predict
only the tones and put the values of sixteenth to each tone. In figure 1 we
present bars 17-20 of the original Bach composition while in figure 2 and 3 we
show the prediction of the bars 19-20 for the selection of ε = 30 and h = 0.5
and h = 1 respectively. After an initial chromatic adjustment, we observe

Fig. 1. Original Bach Music bars 17-20.

Fig. 2. In the first pentagram we represent bars 17-18 of the original composition
while in the second the predicted bars 19 and 20 (using ε = 30 and h = 1

2
). Finally,

in third pentagram we report the first bar of the original composition in order to
compare Pattern A.

the presence of the first pattern of the suite (for h = 1
2 ) and of the first pattern

(with a slight modification) of bar 18 (for h = 1). For these reasons in both
cases we decided to put a rest point after the chromatic pattern to let the
following patterns start in the right time subdivision. Actually, the original
composition contains a similar rest point in bar 22. We observe that except for
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Fig. 3. Bars 17-18 of the original composition and the predicted bars 19 and 20, using
ε = 30 and h = 1.

the initial chromatic pattern the prediction algorithm is capable of producing
the right tonality of G major.
In the case of more complex musical compositions we need to modify the
strategy and consider “multivariate” prediction. The time series will be two-
dimensional, the first component representing the pitch while the second com-
ponent represents the duration. In particular, we represent the rhythm by
considering the value of a sixteenth note as the unit value (see figure 4):

1

16
→ 1,

1

8
→ 2,

1

4
→ 4 . . . . (4)

We consider a two-dimensional time series: xt = (x1t , x
2
t ), t = 1, . . . N , where

Fig. 4. The way to associate a natural number to the rhythmic figures.

{x1t , t = 1, . . . N} and {x2t , t = 1, . . . N} are the one-dimensional time se-
ries of the pitches and of the durations respectively. For each time series we
compute the embedding dimension being m1 and m2 respectively, we predict
(m1 +m2)−dimensional vectors and again a reconstruction methods is needed
(see [1] for details).
As an example, we apply the algorithm to the Prelude of the II Suite which con-
tains many rhythmic patterns. We consider the first 47 bars which corresponds
to an homogeneous part ending at bar 48 with a rest point. Using the method
of the false neighbors (see [2]) we get the values of the embedding m1 = 7 and
m2 = 3 of the series of pitches and duration respectively. We observe that the
prediction (see fig 5) respects the tonality of the composition and the chromatic
tones of the prediction, are also present in the original composition.
In order to check wether the algorithm is capable of simulating the original
rhythmic patterns we start by representing in figure 6 the four rhythmic pat-
terns of the Prelude (until bar 47) and we denoted them by the letters A, B, C
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Fig. 5. Prediction of the Prelude of the II Suite for Cello by J.S. Bach. Parameters:
ε = 30 and h = 0.125.

Fig. 6. The four rhythmic patterns which appear in the Prelude until bar 47.

and D respectively. We observe that patterns A and B appear 6 times, pattern
C appears 115 times and pattern D appears 8 times. The prediction algorithm
is capable of producing 3 of the 4 different rhythmic patterns. We note that,
the missing pattern B can be written as the union of two patterns: a quarter
tone pattern, denoted by E, and pattern C. This suggest that the prelude is
completely unbalanced towards the pattern C and for this reason it is difficult
to predict the pattern B (that is, the half pattern E).

3 Analysis and Simulation of Musical Styles

The idea considered in this section consists in using the prediction algorithms to
simulate a musical style or to mimic a particular musical composition. Notice
that it is not our objective to ask how close is the prediction to the prosecution
of the original composition. Our objective here is to see how close are the
two compositional styles. We consider the first 18 bars of the Prelude of the I
Suite and apply the prediction multivariate algorithm discussed in the previous
section. We recall that the embedding dimension for the series of pitch is 7
while for the series of the duration is 1.

3.1 Analysis of the predictions

We start with a simple pattern analysis of the predictions obtained by setting
the parameters as in 7. All the predictions (see figure 7) share an initial 6-notes
chromatic pattern which is of the two types: C1 (for predictions 1-6) and C2
(for predictions 7-10). Most of the patterns belong to two families: A and B
(see figure 7). We indicate with apexes, stars and circles the modifications of
the basic patterns A and B. Moreover the predictions contain also patterns
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Fig. 7. Comparison of the multivariate predictions of Prelude of Suite I for ε = 30,
hk = 0.125k and k = 1, . . . , 10.

D, E, F and G. All these patterns (with exception of C1, C2 and of G which
is a chromatic variation of A) appear in first 18 bars of the Prelude (see 2).
In particular: pattern A’ appears two times in bar 3 and two times in bar
18; patterns B and B’ appear in bar 4; patterns D and E appear in bar 5;
and finally pattern F appears two times in bar 6. In the following table we
consider the percentage of patterns of each prediction which belong to the
original composition (without considering the first chromatic pattern):

Prediction 1 2 3 4 5 6 7 8 9 10
Percentage 4/5 0/5 0/5 4/5 4/5 4/5 4/5 4/5 0/5 3/5

Moreover, in table 1 we give a detailed description of each prediction in terms of
patterns (see also figure 7). Prediction 1,4,9,10 are very similar: they contains
only variations of patterns A and B. They are homogeneous prediction and
contains only tones from the original tonality of G Major (except prediction
10 which contains a chromaticism and the alternation of pattern A’ and A”).
Predictions 2 and 3 present the repetitions of pattern A raised up a semitone
(in the tonality of A[). Prediction 5 and 6 are more heterogeneous with the
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first one containing an extra sound C]2 (two times). Prediction 7 and 8 contain
two chromatic patterns (C2 and G). Prediction 7 continues with the repetition
of pattern A’ (1 note of difference with A) while pattern 8 continues with
pattern A’ and the repetition of pattern B. From a musical point of view the
best predictions correspond to the values of h between h = 0.5 and h = 0.75.
The prediction obtained with h = 0.5 is more homogeneous, while the ones
corresponding to h = 0.625 and h = 0.75 present more variations. We observe
that predictions corresponding to h = 0.25 and h = 0.375 are homogeneous,
they present the pattern A raised one semitone (then the prediction appear
in the “wrong tonality” of A[). The tonality of the prelude is G Major and
the first 18 bars contain the following chromatic tones: A[, C], E[ and F\.
The only missing sound is B[ and it appears in the predictions. In table 2 we
describe which and how many chromatic tones appear in each prediction.

Prediction Patterns

1 C1 A B B B B

2 C1 A∗ Ao Ao Ao Ao

3 C1 A∗ Ao Ao Ao Ao

4 C1 A B’ B’ B’ B’

5 C1 A B D E F

6 C1 A B’ B D E

7 C2 G A’ A’ A’ A’

8 C2 G A’ B B D

9 C2 B” B” B” B” B”

10 C2 A’ A” A’ A” A’

Table 1. Patterns analysis for the 10
predictions of figure 7. In the last column
we represent a portion of the pattern.

Prediction A[ C] E[ F\ B[ Total

1 1 0 0 0 3 4

2 5 13 0 0 3 21

3 5 12 0 0 4 21

4 1 0 0 0 3 4

5 1 2 0 0 3 7

6 1 0 0 0 3 4

7 0 0 0 2 2 4

8 0 0 0 2 2 4

9 0 0 0 1 1 2

10 0 0 0 5 1 6

Table 2. Chromatic sounds in the Pre-
dictions.

3.2 Simulation of a musical style

In order to see if predictions preserve the styles of the original composition
we introduce two mathematical tools. Instead of considering 8 dimensional
vectors, as usual in patterns analysis, we consider 8 − hs. The first method
we consider is qualitative and tries to analyze if the style of the composition
is preserved by the prediction. We transform the 8 − hs of the original series
(until bar 18) into fundamental patterns (indicated by FP8). Given an m−hs,
x = (x1, . . . , x8), let α(x) denote the minimum of the values of x, then we
define its fundamental pattern as

xFP8 = (x1 − α(x) + 1, . . . , x8 − α(x) + 1). (5)

In this way at least one entry of every fundamental pattern contains the number
1. For example:

(4, 5, 9, 13, 12, 7, 11, 19)8 → (1, 2, 6, 10, 9, 4, 8, 16)FP8. (6)
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This method let us perform a pattern analysis, without considering transposi-
tion or change of tonality, by only comparing their geometry. In the following
table we report how many fundamental patterns of the prediction do not belong
to the set of fundamental patterns of the original composition. We note that
predictions 2-8 completely preserve the geometry of the original composition.

h 0,125 0,25 0,375 0,5 0,625 0,75 0,875 1 1.125 1,25
FP 5 0 0 0 0 0 0 1 8 8

A more “accurate” method consists in considering 8 − hs h = (h1, . . . , h8)
instead of fundamental patterns. Then we compute the following distance

d(h, V ) := min
v∈V

d(h, v), (7)

where V is the set of all 8 − hs of Prelude of Suite I (until bar 18) and the
distance d(h, v) between two m− hs, h and v is defined as:

d(h, v) = |h1 − v1|+ |h2 − v2|+ . . .+ |h8 − v8|. (8)

Denote by D, the sum all the distances for any predicted 8− hs h:

D =
∑
h∈H

d(h, V ), (9)

where H is the set of 8 − hs of the prediction. We will compare the values
of the parameter D in terms of different values of h. We already know how
many patterns in the predictions belong to the original composition but this
calculation can also evaluate how patterns are connected between them (since
we are considering 8 − hs instead of just 8−note patterns). In the following
table we present the computation of the distance D between the prediction and
the original series till bar 18.

h 0,125 0,25 0,375 0,5 0,625 0,75 0,875 1 1.125 1,25
D 759 780 780 761 710 710 778 766 752 785

This method allows us to evaluate the prediction globally and as a consequence
the best results are obtained by prediction 5 and 6 that, after the chromatic
pattern, present 5 different patterns. The heterogeneity makes the prediction
closer to a standard musical composition which, in general, does not consists
in the repetition of one or two patterns. For this reason higher values of D are
attained by the more homogeneous prediction (compare the above table with
1). This is in full accordance to what is suggested by musical analysis and we
consider that this is the proper way to evaluate the “quality” of a prediction.
In fact, if we want to analyze in a “non-reductionistic way” the character of
a classical musical composition, we need not only a pattern (or sub pattern)
analysis but we also need to know how patterns are connected.
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4 Improvement of predictions algorithms

In this section we propose some algorithms and basic ideas in order to improve
the quality of predictions for simulating musical styles. Suppose we have a mul-
tivariate prediction of two variables (pitch and duration) of the following form
(p1, d1), (p2, d2), . . . , (pN , dN ), where {pi : i = 1, . . . , N} is the 1-dimensional
series of the pitches while {di : i = 1, . . . , N} denotes the series of the du-
rations, with embedding dimensions m1 and m2 respectively. Having in mind
the Preludes of Suite I and II as main examples, we present two different algo-
rithms.
Simple Case: Prelude of Suite I
We start by considering only the time series of the pitches. We compare the
predicted m1 − hs with the m1 − hs contained in the original composition
(until bar 18). The algorithm looks for similarities between the m1 − hs be-
longing to the two sets and, when a match has been found then, it looks at
the series of the durations. The algorithm modifies the predicted durations
{di : i = 1, . . . , N} if they differ “too much” from the original ones. In de-
tails : consider a m1 − h of the prediction p = (pk+1, . . . , pk+m1), and look for
the nearest m1 − h of the original composition with respect to the following
distance:

d(u, v) = |u1 − v1|+ . . .+ |um1
− vm1

|. (10)

Suppose that the nearest m1 − h is h = (hl+1, . . . , hl+m1
). Then, for a fixed

radius of tolerance R previously chosen, we have:
CASE 1: d(p, h) > R. The two m1 − hs are too far and we cannot conclude
that they correspond to the same pattern. The algorithm passes to analyze the
next m1 − h.
CASE 2: d(p, h) ≤ R. The two m1−hs correspond to the same pattern. Then,
the algorithm checks if the two m1 − hs start at the same subdivision. If not,
we add a proper value to dk in order to let p start at the same subdivision of
h. Then the algorithm starts to analyze the next m1 − h. In the examples
that we consider, that is, the Preludes of Suite I and II, the bars contains 4
and 3 movements respectively. Each movement is made up of 4 subdivisions of
1
16 notes. Each bar of the preludes has 16 and 12 subdivisions respectively, in
figure 8 below we represent the case of the Prelude of Suite I.

Fig. 8. The 16 Subdivisions of the 4 movements of the bars of the Prelude of Suite I.

In details: let {ti : i = 1, . . . , Ñ} be the original series of durations, then

Sub(h) :=

(
l∑

i=1

ti

)
+ 1 (Mod 4), (11)
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represents the Starting Subdivision of the m1 − h, h = (hl+1, . . . , hl+m1
). We

make the same computation for the predicted m1 − h, p = (pk+1, . . . , pk+m1
)

with the corresponding predicted series of durations {di : i = 1, . . . , N}:

Sub(p) :=

(
k∑

i=1

di

)
+ 1 (Mod 4), (12)

and compare the two results. If the starting subdivision of p is not the same
as that of h then we change dk in order to obtain the same subdivision. That
is, we modify the kth element of {di : i = 1, . . . , N} in the following way:

d̃k = dk + |Sub(h)− Sub(p)|. (13)

In the following examples, we decided to consider 8−hs of the tones due to the
shape of the patterns which are mainly made up of 8 sixteenth tones. In figures
9 and 10 we represent some examples, corresponding to h = 0.625 and h = 1
respectively, with values of R as indicated. We observe that for h = 0.625

Fig. 9. Modification of prediction with h = 0.625 and R as indicated.

Fig. 10. Modification of prediction with h = 0.625 and R as indicated.

the choice R = 3, 4 let all patterns start in the right subdivision (see figure 1).
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This is obtained by the modification of pattern C1 . The difference between
R = 3 and R = 4 is that in the latter case the pattern C1 is modified in a
way that his second half is made similar to the pattern of the A family, while
for R = 3 the algorithm does not recognize this similarity. In the case h = 1
and R = 4 the algorithm modifies the pattern G (see figure 7) . For R = 5
the pattern C2 is modified by putting a rest before it, as a consequence all the
patterns start in the right subdivision and this results to be the best choice. In
both cases h = 0.625 and h = 1 the highest value of R corresponds to the best
modification of the prediction.
Prelude of Suite II and more general cases
For the Prelude of Suite II (and for more general situations) we will use a
slightly different procedure since we need to consider also the durations in
the computation. We consider again subdivision made up of sixteenth tones,
each one of the three movements is made up of 4 subdivisions. Suppose that
the two dimensional time series has e embedding dimensions m1 (pitches) and
m2 (durations) respectively and consider a multivariate prediction {(pk, dk) :
k = 1, . . . N}, where {pk}k and {dk}k are the series of predicted pitches and
durations respectively. To each m1 − h of {pk}k we associate a m1 − h from
{dk}k obtaining a set of 2m1 − hs:

qk+1 = (pk+1, . . . , pk+m1
, dk+1, . . . , dk+m1

) := (Pk+1, Dk+1). (14)

We consider an analogous arrangement for the two dimensional series of the
original composition:

ws+1 = (ns+1, . . . , ns+m1
, os+1, . . . , os+m1

) := (Ns+1, Os+1), (15)

where {ns}s and {os}s are the original series of pitches and durations respec-
tively. We note that we are not using the embedding dimension m2. Then we
have constructed two sets of 2m1-dimensional vectors:

Q := {(Pk, Dk) : k = 1, . . . N}, W := {(Nk, Ok) : k = 1, . . . Ñ}. (16)

We start the procedure with the first element q1 = (P1, D1) ∈ Q and we look
for the nearest w = (N,O) ∈W according to the following procedure.

1. We compute the distance between D1 and all O with (N,O) ∈ W and
consider the elements that minimizes the following distance:

dd2(D1, O) = |d1 − o1|+ . . .+ |dm1 − om1 |. (17)

2. Among the minimizers w ∈W , we select the one that minimizes:

dd1(P1, N) = |p1 − n1|+ . . .+ |pm1
− nm1

|. (18)

If there is more than one minimizer, then we choose the first in the order.

Then we have associated to q1 = (P1, D1) ∈ Q the nearest element w =
(N,O) ∈W . We fix the value of two positive parameters R1 and R2. Then, if

dd1(P1, N) < R1, and dd2(D1, O) < R2, (19)
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we conclude that q1 and w represent the same patterns. Now we pass to
compare their starting subdivision and possibly change that of q1 as we have
explained in the previous subsection. If the above conditions are not verified,
the algorithm passes to analyze the next element q2.
We tested this algorithm for the prediction with h = 0.25 (see figure 11).
This prediction presents a prevalence of pattern C and only one pattern D.

Fig. 11. The prediction of the Prelude of Suite II for h = 0.25.

Moreover, in bar 6 there is the beginning of a sequence of pattern A starting
at the wrong subdivision. Then, to summarize, the quality of the prediction
is affected by two main problems: lack of Pattern B, misplacement of pattern
A (in several bars). We tested the utility of the algorithm for R1 = 0, 1, 2,
and R2 = 0, 1, 2, 3, 4, 5. We first observe that for the following values of the
parameters, the algorithm does not change anything:

(R1,R2) = (a, b), a ∈ {0, 1}, b ∈ {0, 1, 2, 3, 4, 5},
(R1,R2) = (a, b), a ∈ {3, 4}, b ∈ {0, 1, 2, 3, 4},
(R1,R2) = (5, b), b ∈ {0, 1, 2, 3, 4}.

For the remaining values we obtain only three different modifications:
Modification 1 R1 = 2 and R2 ∈ {0, 1, 2, 3, 4, 5}. The algorithm modifies
the fifth tone of the fifth bar by adding a value of 7

16 . This gives rise to a
rhythmic configuration, that is a 2/4 tone, which is not present in the original
composition. However this change makes the patterns of bar 6-8 starting at the
right subdivision. We remark that this change create a “connection pattern”
that we regard as CA, made up of half pattern C and half pattern A, which
starts the sequence of A patterns at bar 6. Moreover, a value of 1/16 is added
to the last tone of the last bar giving rise to a rhythmic configuration, that we
called E, that is present in the original composition since it is the first half of
pattern B. We remark that neither pattern B nor pattern E are present in
the original prediction. Finally, the algorithm improved the prediction, all the
patterns A,C,D (and also E) start at the right subdivision.
Modification 2 R1 = 3, 4, R2 = 5. The algorithm modifies the first bar by
adding a value of 1/4 to the fifth tone. This gives rise to the pattern B which is
in the original composition and it is not in the original prediction. Also in this
case, the fifth tone of the fifth bar is modified by adding the value of 3/16, the
produced pattern (E) belongs to the original composition. This change makes
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all patterns of bars 6-8 start at the right subdivision. Pattern CA is created
as a connection for the sequence of patterns A. Finally, the value of 1/16 is
added to the last tone of the last bar producing pattern E.To sum up, in this
case the algorithm not only made the patterns start at the right subdivision
but was able to produce the missing pattern B.
Modification 3 R1 = R2 = 5. The algorithm produces a lot of changes and
introduce patterns that are not present in the original composition.
In figure 12 we present the three modified predictions. As we have observed

Fig. 12. The three modified predictions of the Prelude of Suite II for h = 0.25
and(R1,R2) = (2, 0), (3, 5), (5, 5) respectively.

above, the second modification is the best choice. This conclusion is supported
by the following table (second column), where we compare the distance of the
original duration series with that of original and modified predictions. If we
consider the normalized value, (by subtracting the values added by the algo-
rithm from the distance) we obtain a better understanding of how the algorithm
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works (third column).

dd2 Normalized dd2

Original prediction 31
Modification 1 38 38-7-1=30
Modification 2 38 38-4-3-1=30
Modification 3 68 68-43=25

We observe that the first way of computing is useful if we want to obtain an
improvement with as few changes as possible: if the values of dd2 have a small
increase we obtain a better prediction. If we look at the third column of the
previous table, we obtain that we can minimize the normalized distance but
paying a lot in terms of number of changes. This could lead to the introduc-
tion of many patterns not present in the original composition (as for the 3rd
improvement in 12).

5 Conclusion

All the results presented here must be considered as a first step of a more
complete work. We are aware that it is not easy to develop a theory of nonlinear
studies in music by using NTSA tools. The results presented here in [2] and [3]
suggest a possible strategy. Further work is needed for cataloguing purposes
and also in musical analysis, here we have just used basic techniques that
can be implemented or supported by more sophisticated ones. In particular
m − hs have revealed to be more suitable objects for analysis purposes than
simple patterns. The use of prediction algorithms to simulate musical styles has
been presented by introducing some corrections algorithm, of course another
approach would be possible, for example by modifying directly the prediction
algorithms by introducing some other constraints or rules to be satisfied. We
remark that prediction algorithms could have a very profitable use in composing
new music (see [3]). Further investigations of this topic could be of interest for
musical theoreticians, musicians and artists.
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