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Abstract. We consider the problem of estimating reachable sets of nonlinear dy-
namical control systems with uncertainty in initial states when we assume that we
know only the bounding set for initial system positions and any additional statisti-
cal information is not available. We study the case when the system nonlinearity is
generated by the combination of two types of functions in related differential equa-
tions, one of which is bilinear and the other one is quadratic. The problem may be
reformulated as the problem of describing the motion of set-valued states in the state
space under nonlinear dynamics with state velocities having bilinear-quadratic kind.
Using results of the theory of trajectory tubes of control systems and techniques of
differential inclusions theory we find set-valued estimates of related reachable sets of
such nonlinear uncertain control system. The algorithms of constructing the ellip-
soidal estimates for studied nonlinear systems are given.
Keywords: Nonlinear control systems, Bilinear nonlinearity, Quadratic nonlinearity,
Set-membership uncertainty, Ellipsoidal calculus, Funnel equations, Trajectory tubes.

1 Introduction

The problem of parameter estimation for control problems and of the evalua-
tion of related estimating sets describing uncertainty is considered in the paper
in the case when a probabilistic description of noise and errors is not available,
but only a bound on them is known (Bertsekas and Rhodes[1], Kurzhanski and
Valyi[14], Milanese et al.[18], Schweppe[20], Walter and Pronzato[22]). Such
models may be found in many applied areas ranged from engineering problems
in physics to economics as well as to biological and ecological modeling when it
occurs that a stochastic nature of the errors is questionable because of limited
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data or because of nonlinearity of the model. Unlike the classical estimation
approach, set-membership estimation is not concerned with minimizing any
objective function and instead of finding a single optimal parameter vector, a
set of feasible parameters vectors, consistent with the model structure, mea-
surements and bounded uncertainty characterization, should usually be found.

The solution of many control and estimation problems under uncertainty
involves constructing reachable sets and their analogs. For models with linear
dynamics under such set-membership uncertainty there are several constructive
approaches which allow finding effective estimates of reachable sets. We note
here two of the most developed approaches to research in this area. The first
one is based on ellipsoidal calculus (Chernousko[3], Kurzhanski and Valyi[14])
and the second one uses the interval analysis (Walter and Pronzato[22]).

Many applied problems are mostly nonlinear in their parameters and the
set of feasible system states is usually non-convex or even non-connected. The
key issue in nonlinear set-membership estimation is to find suitable techniques,
which produce related bounds for the set of unknown system states without
being too computationally demanding. Some approaches to the nonlinear set-
membership estimation problems and discrete approximation techniques for dif-
ferential inclusions through a set-valued analogy of well-known Euler’s method
were developed in Kurzhanski and Varaiya[15], Kurzhanski and Filippova[13],
Dontchev and Lempio[6], Veliov[21].

In this paper the modified state estimation approaches which use the special
quadratic structure of nonlinearity of studied control system and use also the
advantages of ellipsoidal calculus (Kurzhanski and Valyi[14], Chernousko[3]) are
presented. We study here more complicated case than in Filippova and Matviy-
chuk[12] and we assume now that the system nonlinearity is generated by the
combination of two types of functions in related differential equations, one of
which is bilinear and the other one is quadratic. The problem may be reformu-
lated as the problem of describing the motion of set-valued states in the state
space under nonlinear dynamics with state velocities having bilinear-quadratic
kind. Using results of the theory of trajectory tubes of control systems and tech-
niques of differential inclusions theory we find set-valued estimates of related
reachable sets of such nonlinear uncertain control system. The algorithms of
constructing the ellipsoidal estimates for studied nonlinear systems are given.
Numerical simulation results related to the proposed techniques and to the
presented algorithms are also included.

2 Problem formulation

Let us introduce the following basic notations. Let Rn be the n–dimensional
Euclidean space, compRn is the set of all compact subsets of Rn, Rn×n stands
for the set of all n×n–matrices and x′y = (x, y) =

∑n
i=1 xiyi be the usual inner

product of x, y ∈ Rn with prime as a transpose, ‖x‖ = (x′x)1/2. We denote
as B(a, r) the ball in Rn, B(a, r) = {x ∈ Rn : ‖x − a‖ ≤ r}, I is the identity
n × n-matrix. Denote by E(a,Q) = {x ∈ Rn : (Q−1(x − a), (x − a)) ≤ 1}
the ellipsoid in Rn with a center a ∈ Rn and a symmetric positive definite
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n × n–matrix Q, Tr(Y ) denotes the trace of n × n–matrix Y (the sum of its
diagonal elements). Consider the following system

ẋ = A(t)x+ f(x)d+ u(t), x0 ∈ X0, t0 ≤ t ≤ T, (1)

where x, d ∈ Rn, ‖x‖ ≤ K (K > 0), f(x) is the nonlinear function, which is
quadratic in x,

f(x) = x′Bx,

with a given symmetric and positive definite n × n-matrix B. Control func-
tions u(t) in (1) are assumed Lebesgue measurable on [t0, T ] and satisfying the
constraint

u(t) ∈ U, for a.e. t ∈ [t0, T ],

(here U is a given set, U ∈ compRm). The n × n–matrix function A(t) in (1)
has the form

A(t) = A0 +A1(t), (2)

where the n × n–matrix A0 is given and the measurable n × n–matrix A1(t)

with elements {a(1)ij (t)} (i, j = 1, . . . , n) is unknown but bounded

A1(t) ∈ A =
{
A = {aij} ∈ Rn×n : |aij | ≤ cij , i, j = 1, . . . n

}
, t ∈ [t0, T ], (3)

where cij ≥ 0 (i, j = 1, . . . n) are given.

We will assume that X0 in (1) is an ellipsoid, X0 = E(a0, Q0), with a
symmetric and positive definite matrix Q0 and with a center a0.

Let the absolutely continuous function x(t) = x(t; u(·), A1(·), x0) be a so-
lution to dynamical system (1)–(3) with initial state x0 ∈ X0, with admissible
control u(·) and with a matrix A1(·) satisfying (2)–(3). The reachable set X(t)
at time t (t0 < t ≤ T ) of system (1)–(3) is defined as the following set

X(t) = { x ∈ Rn : ∃ x0 ∈ X0, ∃ u(·) ∈ U, ∃ A1(·) ∈ A such that

x = x(t) = x(t; u(·), A1(·), x0) }, t0 < t ≤ T.

The main problem of the paper is to find the external ellipsoidal estimate
E(a+(t), Q+(t)) (with respect to the inclusion of sets) of the reachable set X(t)
(t0 < t ≤ T ) by using the analysis of a special type of nonlinear control systems
with uncertain initial data.

3 Preliminaries

In this section we present some auxiliary results on the properties of reachable
sets for different types of dynamical systems which we will need in the sequel.
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3.1 Bilinear system

Bilinear dynamic systems are a special kind of nonlinear systems representing
a variety of important physical processes. A great number of results related
to control problems for such systems has been developed over past decades,
among them we mention here Brockett[2], Chernousko[4,5], Polyak et al.[19],
Kurzhanski and Varaiya[15], Kurzhanski and Filippova[13], Mazurenko[17], Fil-
ippova[7,11]. Reachable sets of bilinear systems in general are not convex, but
have special properties (for example, are star-shaped). We, however, consider
here the guaranteed state estimation problem and use ellipsoidal calculus for
the construction of external estimates of reachable sets of such systems.

Consider the bilinear system

ẋ = A(t)x, t0 ≤ t ≤ T, (4)

x0 ∈ X0 = E(a0, Q0), (5)

where x, a0 ∈ Rn, Q0 is symmetric and positive definite. The unknown matrix
function A(t) ∈ Rn×n is assumed to be of the form (2) with the assumption
(3).

The external ellipsoidal estimate of reachable set X(T ) of the system (4)-(5)
can be found by applying the following theorem.

Theorem 1 (Chernousko[4]). Let a+(t) and Q+(t) be the solutions of the
following system of nonlinear differential equations

ȧ+ = A0a+, a+(t0) = a0, t0 ≤ t ≤ T, (6)

Q̇+ = A0Q+ +Q+A0′ + qQ+ + q−1G, Q+(t0) = Q0, t0 ≤ t ≤ T, (7)

where
q =

(
n−1 Tr ((Q+)−1G)

)1/2
, (8)

G = diag
{

(n− v)
[ n∑
i=1

cji|a+i |+
(

max
σ={σij}

n∑
p,q=1

Q+
pqcjpcjqσjpσjq

)1/2]2}
, (9)

the maximum in (9) is taken over all σij = ±1, i, j = 1, . . . , n, such that
cij 6= 0 and v is a number of such indices i for which we have: cij = 0 for all
j = 1, . . . , n. Then the following external estimate for the reachable set X(t)
of the system (4)-(5) is true

X(t) ⊆ E(a+(t), Q+(t)), t0 ≤ t ≤ T. (10)

Corollary 1. Under conditions of the Theorem 1 the following inclusion holds

X(t0 + σ) ⊆ (I + σA)X0 + o1(σ)B(0, 1) ⊆

E(a+(t0 + σ), Q+(t0 + σ)) + o2(σ)B(0, 1),
(11)

where σ−1oi(σ)→ 0 for σ → +0 (i = 1, 2) and

(I + σA)X0 =
⋃
x∈X0

⋃
A∈A
{x+ σAx}.
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Proof. The inclusion (11) follows directly from (10) and presents a special case
of the inclusion related to the discrete version of the integral funnel equation for
the system (4)-(5) (Kurzhanski and Varaiya[15], Kurzhanski and Filippova[13]).

The following example illustrates the result of Theorem 1.
Example 1. Consider the following system{

ẋ1 = x2,
ẋ2 = (c(t)− 1)x1,

0 ≤ t ≤ 1, x0 ∈ X0 = B(0, 1) (12)

where c(t) is an unknown but bounded measurable function with |c(t)| ≤ 0.8
(0 ≤ t ≤ 1). The trajectory tube X(t) and its external ellipsoidal estimate
E(a+(t), Q+(t)) found by Theorem 1 are shown in Figure 1.

Fig. 1. Trajectory tube X(t) and its ellipsoidal estimating tube E(a+(t), Q+(t)) for
the bilinear control system with uncertain initial states.

We see here that the trajectory tube X(t) of bilinear system (12), issued
from the convex set X0 = B(0, 1), loses the convexity over time. External
ellipsoidal tube E(a+(t), Q+(t)) contains the reachable set X(t) and in some
points is enough accurate (it touches the boundary of X(t)).

3.2 Systems with quadratic nonlinearity

Consider the control system of type (1) but with a known matrix A = A0

ẋ = A0x+ f(x)d+ u(t), x0 ∈ X0 = E(a0, Q0), t0 ≤ t ≤ T. (13)
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We assume here that u(t) ∈ U = E(â, Q̂), vectors d, a0, â are given, a scalar
function f(x) has a form f(x) = x′Bx, matrices B, Q0, Q̂ are symmetric and
positive definite.

Denote the maximal eigenvalue of the matrix B1/2Q0B
1/2 by k2, it is easy

to see this k2 is the smallest number for which the inclusion X0 ⊆ E(a0, k
2B−1)

is true. The following result describes the external ellipsoidal estimate of the
reachable set X(t) = X(t; t0, X0) (t0 ≤ t ≤ T ).

Theorem 2 (Filippova[10]). The inclusion is true for any t ∈ [t0, T ]

X(t; t0, X0) ⊆ E(a+(t), r+(t)B−1), (14)

where functions a+(t), r+(t) are the solutions of the following system of ordi-
nary differential equations

ȧ+(t) = A0a+(t) + ((a+(t))′Ba+(t) + r+(t))d+ â, t0 ≤ t ≤ T, (15)

ṙ+(t) = max
‖l‖=1

{
l′
(
2r+(t)B1/2(A0 + 2d · (a+(t))′B)B−1/2+

q−1(r+(t))B1/2Q̂B1/2)
)
l
}

+ q(r+(t))r+(t),

q(r) = ((nr)−1Tr(BQ̂))1/2,

(16)

with initial state
a+(t0) = a0, r+(t0) = k2.

Corollary 2 (Filippova[8]). The following upper estimate for X(t0 + σ) =
X(t0 + σ; t0, X0) (σ > 0) holds

X(t0 + σ) ⊆ E(a+(σ), Q+(σ)) + o(σ)B(0, 1), (17)

where σ−1o(σ)→ 0 when σ → +0 and

a+(σ) = a(σ) + σâ, a(σ) = a0 + σ(A0a0 + a′0Ba0d+ k2d), (18)

Q+(σ) = (p−1 + 1)Q(σ) + (p+ 1)σ2Q̂,

Q(σ) = k2(I + σR)B−1(I + σR)′, R = A0 + 2d · a′0B
(19)

and p is the unique positive root of the equation

n∑
i=1

1

p+ αi
=

n

p(p+ 1)

with αi ≥ 0 (i = 1, ..., n) being the roots of the following equation |Q(σ) −
ασ2Q̂| = 0.

Numerical algorithms basing on Theorem 2 and producing the discrete-time
external ellipsoidal tube estimating the reachable set of the system (13) (to-
gether with related examples) are given in Filippova[10], Filippova and Matviy-
chuk[12].
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4 Main results

Consider the general case

ẋ = A(t)x+ x′Bx · d+ u(t), t0 ≤ t ≤ T, (20)

with initial state

x0 ∈ X0 = E(a0, Q0) (21)

and control constraints

u(t) ∈ U = E(â, Q̂), (22)

and with the uncertain matrix

A(t) = A0 +A1(t), A1(t) ∈ A, (23)

where the set A is defined in (3). As before we assume that matrices B, Q̂ and
Q0 are symmetric and positive definite.

The next theorem describes discrete external ellipsoidal estimates of reach-
able sets X(t) of the uncertain control system (20)–(23), containing both bi-
linear and quadratic nonlinearities.

Theorem 3. The following external ellipsoidal estimate holds

X(t0 + σ) ⊆ E(a∗(t0 + σ), Q∗(t0 + σ)) + o(σ)B(0, 1) (24)

where σ−1o(σ)→ 0 for σ → +0 and where

a∗(t0 + σ) = ã(t0 + σ) + σ(â+ a′0Ba0 · d+ k2d), (25)

Q∗(t0 + σ) = (p−1 + 1)Q̃(t0 + σ) + (p+ 1)σ2Q̂, (26)

with functions ã(t), Q̃(t) calculated as a+(t), Q+(t) in Theorem 1 but when we
replace matrices Q0 and A0 in (6)-(9) by

Q̃0 = k2B−1, Ã0 = A0 + 2d · a′0B (27)

respectively, and p is the unique positive root of the equation

n∑
i=1

1

p+ αi
=

n

p(p+ 1)
(28)

with αi ≥ 0 (i = 1, ..., n) being the roots of the following equation |Q(t0 + σ)−
ασ2Q̂| = 0.

Proof. Analyzing both results of Theorem 1 and Theorem 2 and of their corol-
laries and using the general scheme of the proof of Theorem 2 in Filippova[8]
(see also techniques in Filippova[9]) we obtain the formulas (24)-(28) of the
Theorem.
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The following iterative algorithm basing on Theorem 3 may be used to
produce the external ellipsoidal tube estimating the reachable set X(t) on the
whole time interval t ∈ [t0, T ].

Algorithm. Subdivide the time segment [t0, T ] into subsegments [ti, ti+1]
where ti = t0 + ih (i = 1, . . . ,m), h = (T − t0)/m, tm = T .

• Given X0 = E(a0, Q0), find the smallest k = k0 > 0 such that

E(a0, Q0) ⊆ E(a0, k
2B−1)

(k2 is the maximal eigenvalue of the matrix B1/2Q0B
1/2).

• Take σ = h and define by Theorem 3 the external ellipsoid E(a1, Q1) such
that

X(t1) ⊆ E(a1, Q1) = E(a∗(t0 + σ), Q∗(t0 + σ)).

• Consider the system on the next subsegment [t1, t2] with E(a1, Q1) as the
initial ellipsoid at instant t1.
• Next steps continue iterations 1-3. At the end of the process we will get

the external estimate E(a(t), Q(t)) of the tube X(t) with accuracy tending
to zero when m→∞.

Example 2. Consider the following control system{
ẋ1 = x2 + u1,
ẋ2 = −x1 + c(t)x1 + x21 + x22 + u2,

x0 ∈ X0, t0 ≤ t ≤ T. (29)

Here we take t0 = 0, T = 0.35, X0 = B(0, 1) and U = B(0, 0.1), the uncer-
tain but bounded measurable function c(t) satisfies the inequality |c(t)| ≤ 0.8
(t0 ≤ t ≤ T ). The trajectory tube X(t) and its external ellipsoidal estimating
tube E(a∗(t), Q∗(t)) calculated by the Algorithm are given in Figure 2.

5 Conclusions

The paper deals with the problems of state estimation for uncertain dynam-
ical control systems for which we assume that the initial state is unknown
but bounded with given constraints and the matrix in the linear part of state
velocities is also unknown but bounded.

We study here the case when the system nonlinearity is generated by the
combination of two types of functions in related differential equations, one
of which is bilinear and the other one is quadratic. The problem may be
reformulated as the problem of describing the motion of set-valued states in
the state space under nonlinear dynamics with state velocities having bilinear-
quadratic type.

Basing on results of ellipsoidal calculus developed earlier for some classes
of uncertain systems we present the modified state estimation approach which
uses the special structure of nonlinearity and uncertainty in the control system
and allows constructing the external ellipsoidal estimates of reachable sets.
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Fig. 2. Trajectory tube X(t) and its ellipsoidal estimating tube E(a∗(t), Q∗(t)) for
the system with bilinear and quadratic nonlinearities.
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