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Abstract. The new inversive congruential method for generating uniform pseudo-
random numbers is a particularly attractive alternative to linear congruential genera-
tors which have many undesirable regularities. In the present paper, a new inversive
congruential generator of the second order for the sequence of PRN’s is introduced.
Exponential sums on inversive congruential pseudorandom numbers are estimated.
The results show that these inversive congruential pseudorandom numbers pass the
s-dimensional serial tests for the statistical independency.
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1 Introduction

The uniform pseudorandom numbers (abbrev., PRN’s) in the interval [0, 1]
are basic ingredients of any stochastic simulation. Its quality is of fundamental
importance for the success of the simulation, since the typical stochastic simu-
lation essentially depends on the structural and statistical properties of the pro-
ducing pseudorandom number generators. In the cryptographical applications
of pseudorandom numbers the significant importance is of the availability of
property of the unpredictability to generated sequence of pseudorandom num-
bers. The classical and most frequently used method for generation of PRN’s
still is the linear congruential method. Unfortunately, its simple linear nature
implies several undesirable regularities. Therefore, a variety of nonlinear meth-
ods for the generation of PRN’s have been introduced as alternatives to linear
methods. It is particularly interesting the nonlinear generators for producing
the uniform PRN’s, such as the inversive generators and its generalizations.
Such generators were introduced and studied in [2], [6], [7]. These generators
have several attractive properties such as an uniformity, unpredictability (sta-
tistical independence), pretty large period and simple calculative complexity.
The most common types of the inversive generators define by the following
congruential recursions.
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Let Fq be a finite field with q elements and let y0, a, b belong Fq. Put

y−1 =

{
0 if y = 0,
multiplicative inverse to y in F ∗q if y 6= 0.

Then the recursion

yn+1 = ay−1n + b, n = 0, 1, 2, . . . . (1)

produces the inversive congruential generator over Fq.
The generator (1) was introduced in [2], [6], [7], [11].

Other inversive generators consider over the ring Zpm .
Let p be a prime number, m > 1 be a positive integer. Consider the

following recursion

yn+1 ≡ ayn + b (mod pm), (a, b ∈ Z), (2)

where yn is a multiplicative inversive modulo pm for yn if (yn, p) = 1. The pa-
rameters a, b, y0 we called the multiplier, shift and initial value, respectively.

In the works of Eichenauer, Lehn, Topuzoǧlu[3]; Niederreiter, Shparlin-
ski[10]; Eichenauer, Grothe[5] etc. were proved that the inversive congruential
generator (2) produces the sequence {xn}, xn = yn

pm , n = 0, 1, 2, . . ., which
passes s-dimensional serial tests on equidistribution and statistical indepen-
dence for s = 1, 2, 3, 4 if the defined conditions on relative parameters a, b, y0
are accomplishable.

It was proved that this generator is extremely useful for Quasi-Monte Carlo
type application (see, [9],[12]). The sequences of PRN’s can be used for the
cryptographic applications. Now the initial value y0 and the constants a and b
are assumed to be secret key, and then we use the output of the generator (2)
as a stream cipher. At the last time it has been shown that we must be careful
in the time of using the generator (2).

We call the generator (2) the inversive generator with constant shift.
In [14] we have given two generalization for the generator (2). The first

generalization connects with the recurrence relation

yn+1 ≡ ayn + b+ cF (n+ 1)y0 (mod pm) (3)

under conditions

(a, p) = (y0, p) = 1, b ≡ c ≡ 0 (mod p), F (u) is a polynomial over Z[u].

We call the generator (3) the inversive congruential generator with a variable
shift b + cF (n + 1)y0. The computational complexity of generator (3) is the
same as for the generator (2), but the reconstruction of parameters a, b, c, y0, n
and polynomial F (n) is a tricky problem even if the several consecutive values
yn, yn+1, . . . , yn+N will be revealed (for example, even the reconstruction of
three-term polynomial F (u) of large unknown degree is a very hard problem).
Thus the generator (3) can be used in the cryptographical applications. Notice
that the conditions (a, p) = (y0, p) = 1, b ≡ c ≡ 0 (mod p) guarantee that the
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recursion (3) produces the infinite sequence {yn}.
The second congruential recursion has the form

yn+1 ≡ ayn + b+ cyn (mod pm) (4)

with (a, p) = 1, b ≡ c ≡ 0 (mod p).
We call the generator (4) the linear-inversive congruential generator.
We must notice that the conditions a ≡ b ≡ 0 (mod p), (y0, p) = (c, p) = 1

also give to generate the sequence of PRN’s with appropriate properties for
PRN’s {xn}. However, the conditions a ≡ c ≡ 0 (mod p), (y0, p) > (b, p) = 1
don’t permit to construct the required sequence of PRN’s.

For the case p = 2, Kato, Wu, Yanagihara[7] studied the generator (4).
These authors proved that the appropriate sequence of PRN’s {xn} has a period
τ = 2m−1 if and only if a+ c ≡ 1 (mod 4) and b ≡ 3 (mod 4).

The present paper deals with the congruential inversive generator of second
order determined by the recursion

yn+1 ≡ a(yn−1yn)−1 + b (mod pm), (5)

where (a, p) = 1, b ≡ 0 (mod p), (y0, p) = (y1, p) = 1.
Notice that the superimposed requirements on a, b, y0, y1 permit to define

every value yn, n = 2, 3, . . ..
Our purpose in this work is to show passing the test on equidistribution

and statistical independence for the sequence {xn}, xn = yn
pm , and hence, the

main point to be shown is the possibility for such sequences to be used in the
problem of real processes modeling and in the cryptography.

In the sequel we will use the following notation.

2 Notation and auxiliary results

Variables of summation automatically range over all integers satisfying the
condition indicated. The letter p denotes a prime number, p ≥ 3. For m ∈
N the notation Zpm (respectively, Z∗pm) denotes the complete (respectively,
reduced) system of residues modulo pm.For z ∈ Z, (z, p) = 1 let z−1 be the
multiplicative inverse of z modulo pm. We write νp(A) = α if pα|A, pα+1 6 |A.

For integer t, the abbreviation em(t) = e
2πit
pm is used.

We need the following simple statements.
Let f(x) be a periodic function with a period τ . For any N ∈ N , 1 ≤ N ≤ τ ,

we denote

SN (f) :=

N∑
x=1

e2πif(x)

Lemma 1. The following estimate

|SN (f)| ≤ max
1≤n≤τ

∣∣∣∣∣
τ∑
x=1

e2πi(f(x)+
nx
τ )

∣∣∣∣∣ log τ

holds.
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This statement is well-known lemma about an estimate of uncomplete expo-
nential sum by means of the complete exponential sum.

Lemma 2. Let h1, h2, k, ` be positive integers and let νp(h1 + h2) = α,
νp(h1k + h2`) = β, δ −min (α, β). Then for every j = 2, 3, . . . we have

νp(h1k
j−1 + h2`

j−1) ≥ δ.

Proof. By the equality

h1k
j + h2`

j = (h1k
j−1 + h2`

j−1)(k + `)− k`(hkj−2 + h2`
j−2),

applying the method of mathematical induction, we obtain at once νp(h1k
j +

h2`
j) ≥ δ, j = 2, 3, . . . ut

Lemma 3. Let p > 2 be a prime number, f(x), g(x) be polynomials over Z

f(x) = A1x+A2x
2 + · · · , g(x) = B1x+B2x

2 + · · · ,

νp(Aj) = λj , νp(Bj) = µj , j = 1, 2, 3, . . .

and, moreover, α = λ2 ≤ λ3 ≤ · · · , 0 = µ1 < µ2 ≤ µ3 ≤ · · · .
Then for m ≥ 2 the following bounds occur∣∣∣∣∣∣

∑
x∈Zpm

em(f(x))

∣∣∣∣∣∣ ≤
{

2p
m+α

2 if νp(A1) ≥ α,
0 if νp(A1) < α;∣∣∣∣∣∣

∑
x∈Z∗

pm

em(f(x) + g(x−1))

∣∣∣∣∣∣ ≤ I(pm)p
m
2

where I(pm) is a solution of the congruence

f ′(y) ≡ g(y−1) · y−1 (mod pm−m0).

Proof. Putting x = y(1 + pm0z), y ∈ Z∗pm0 , z ∈ Zpm−m0 , we have modulo pm

xk = yk + kpm0ykz, (x−1)k = yk − kpm0ykz.

And then we obtain modulo pm

f(x) + g(x−1) = f(y) + g(y) + pm0(f ′(y)− y−1g′(y−1))z.

Hence, ∑
x∈Z∗

pm

em(f(x) + g(x−1)) =

=
∑

y∈Z∗
pm0

em(f(y) + g(y−1))
∑

z∈Z
pm−m0

em((f ′(y)− y−1g′(y−1))z) =

= pm−m0
∑

y∈Z∗
pm0

f ′(y)≡y−1g′(y−1) (mod pm−m0 )

em(f(y) + g(y−1)).



Chaotic Modeling and Simulation (CMSIM) 3: 267–279, 2016 271

Now, if m = 2m0, we obtain∣∣∣∣∣∣
∑

x∈Z∗
pm

em(f(x) + g(x−1))

∣∣∣∣∣∣ = p
m
2 I(pm).

For m = 2m0 + 1 we put y = yj + pm−m0t, t ∈ Zp, yj runs all solutions of
the congruence f ′(y) ≡ y−1g′(y−1) (mod pm−m0) over Z∗

pm−m0
. Then setting

y = yj(1 + pt), t ∈ Zp, we obtain∑
y∈Z∗

pm0

f ′(y)≡y−1g′(y−1) (mod pm−m0 )

em(f(y) + g(y−1)) =

=
I(pm)∑
j=1

em(f(yj) + g(y−1j ))
∑
t∈Zp em−2m0

(
f ′(yj)−y−1

j g′(y−1
j )

pm0
t+B1y

−2
j t2

)
.

The inner sum in right side of last equality is the Gaussian sum. Consequently,
we finally have ∣∣∣∣∣∣

∑
x∈Z∗

pm

em(f(x)g(x
−1))

∣∣∣∣∣∣ ≤ pm2 · I(pm).

ut

For N arbitrary points t0, t1, . . . , tN−1 ∈ [0, 1)d, the discrepancy is defined
by

D(t0, t1, . . . , tN−1) = sup
I

∣∣∣∣AN (I)

N
− |I|

∣∣∣∣ , (5.1)

where the supremum is extended over all subintervals I of [0, 1)d, AN (I) is
the number of points among t0, t1, . . . , tN−1 falling into I, and |I| denotes the
d-dimensional volume I.

For study the discrepancy of points usually use the following lemmas.
For integers q ≥ 2 and d ≥ 1, let Cq(d) denote the set of all nonzero lattice

points (h1, . . . , hd) ∈ Zd with − q2 < hj ≤ q
2 , 1 ≤ j ≤ d. We define

r(h, q) =

{
q sin π|h|

q if h ∈ C1(q),

1 if h = 0

and

r(h, q) =

d∏
j=1

r(hj , q) for h = (h1, . . . , hq) ∈ Cd(q).

Lemma 4 (Niederreiter,[9]). Let N ≥ 1 and q ≥ 2 be integers. For N
arbitrary points t0, t1, . . . , tN−1 ∈ [0, 1)d, the discrepancy D(t0, t1, . . . , tN−1)
satisfies

DN (t0, t1, . . . , tN−1) ≤ d

q
+

1

N

∑
h∈Cd(q)

1

r(h, q)

∣∣∣∣∣
N−1∑
n=0

e(h · tn)

∣∣∣∣∣ .
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Lemma 5. Let {yk}, yk ∈ {0, 1, . . . , q − 1}d, is a purely periodic sequence
with a period τ . Then for the discrepancy of the points tk = yk

q ∈ [0, 1)d,
k = 0, 1, . . . , N − 1; N ≤ τ , the following estimate

DN (t0, t1, . . . , tN−1) ≤ d

q
+

1

N

∑
h∈Cd(q)

∑
h0∈(− τ2 ,

τ
2 ]

r−1(h, q)r−1(h0, τ) · |S|

holds,

where S :=
τ−1∑
k=0

e(h · tk + kh0

τ ).

This assertion follows from Lemma 4 and from an estimate of uncomplete
exponential sum through complete exponential sum (see, Lemma 1).

3 Preparations

We will obtain the representation of yn in the form of rational function on y0.
Denote νp(b) = ν0. A straightforward computation by recursion (5) shows

that modulo p3ν0 we have

y2 =
a+ by0y1
y0y1

, y3 =
ay0 + ab+ b2y0y1
ay0y1 + aby0 + ab2

, y4 =
ay0y1 + aby0 + ab2

ay0 + ab+ b2y0y1
,

y5 =
2a2b+ a2y0 + 3ab2y0y1
a2 + 2aby0y1 + ab2y0

, y6 =
2a2b+ a2y0 + 3ab2y0y1
a2 + 2aby0y1 + ab2y0

.

These relations give rise to proposal that representation of yn will be found
in the form of

yn =
A

(n)
0 +A

(n)
1 y0 +A

(n)
2 y0y1

B
(n)
0 +B

(n)
1 y0 +B

(n)
2 y0y1

, (6)

where A
(n)
j , B

(n)
j are the polynomials from Z[n]. From the above, for yn we

involve

yn+2 =
(aB

(n)
0 + bA

(n+1)
0 ) + (aB

(n)
1 + bA

(n+1)
1 )y0 + (aB

(n)
2 + bA

(n+1)
2 )y0y0

A
(n+1)
0 +A

(n+1)
1 y0 +A

(n+1)
2 y0y1

(7)
Now, a straightforward computation suggest that modulo p3ν0 we have

A
(3k−1)
0 ≡ ak, A(3k−1)

1 ≡ (k2 − 3k + 3)ak−1b2,

A
(3k−1)
2 ≡ kak−1b+ 6(k − 3)ak−2b2;

B
(3k−1)
0 =

k(k − 1)

2
ak−1b2, B

(3k−1)
1 = (3k − 1)− 2(k − 2)ak−1b,

B
(3k−1)
2 = ak−1 + 6ak−2b;

(8)


A

(3k)
0 ≡ kakb, A(3k)

1 ≡ 2ak;A
(3k)
2 ≡ k(k + 1)

2
ak−1b2;

B
(3k)
0 ≡ ak, B(3k)

1 ≡ (k2 − 3k + 3)ak−1b2;

B
(3k)
2 ≡ kak−1b+ 6(k − 3)ak−1b2;

(9)
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A

(3k+1)
0 = ak+1 + kakb2, A

(3k+1)
1 = (k2 − 3k + 3)akb2 + 2akb;

A
(3k+1)
2 = kakb+ 6(k − 3)ak−1b2;

B
(3k+1)
0 = ka2b, B

(3k+1)
1 = 2ak; B

(3k+1)
2 = ak−1b2.

(10)

The validity of the formulas (8), (9) is not difficult establishes by the method
of mathematical induction. The formula (10) follows by recursion (5). Other
summands of Anj , j = 0, 1, 2; n = {3k − 1 or 3k or 3k + 1}, which modulo p3ν0

are equal to 0, be represented the polynomials from Z[n] (it comes from formula
(7)). So, we may write

A
(3k−1)
0 = ak + p3ν0F0(k), . . . , B3k−1

2 = ak−1 + 6(k − 3)ak−2b2 + p3ν0G2(k).

The number summands in any Fj(k) or Gj(k), j = 0, 1, 2 be less than 4m0,

where m0 =
[
m+1
ν0

]
by virtue when passing from k to k + 2 ”old” coefficients

gets multiplier divisible to a ·b.Therefore, appearance of the polynomials Fj(k),
Gj(k) rallies, moreover, all summands in the polynomials Fj(k), Gj(k) contains
factor a`, k −m0 ≤ ` ≤ k.

The relation (6) shows that for every k = 0, 1, 2, . . . the numerator and de-
nominator contain a summand that is coprime to p, and every such summand
contains the factor ak. Multiply out numerator and denominator on multiplica-
tive inverse modpm to the respective summand of denominator and applying
the expanding (1 + pu)−1 = 1− pu+ p2u2− · · ·+ (−1)m−1(pu)m−1 (mod pm),
we obtain the representation of yk power expansion of k with coefficients which
depend only on y0, y1 and (a−1)j , 0 ≤ j ≤ m, where a · a−1 ≡ 1 (mod pm).

So, after simple calculations we deduce modulo pm

y3k−1 = y−10 y−11 · S1 · S2

where

S1 =

[
a+ (k2 − 3k + 3)b2y0+

+ (b+ 6(k − 3)a−1b2)y0y1 + p3ν0G(k, y0, y1)

]

S2 =

[
1− 6a−1by0y1 −

k(k − 1)

2
b2 − (2k − 4)b2−

− (2k − 4)by0 + 36a−2b2(y0y1)2 + (2k − 4)2b2y20+

+ 12(2k − 4)a−1b2y20y1 + p3ν0F (k, y0, y1)

]
From where we have

y3k−1 = y−10 y−11

{
(a+ bc0) + kb(1− 2ay−11 )+

+ k2b2(y0 −
1

2
ay−11 + 4ay−11 ) + b3H(k, y0, y1)

} (11)
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where c0 = −6a−1by0y1 +b2(3y0 +8a+36a−1(y0y1)2 +16ay20−48y20y1)+4by0a.

Next, by analogy, we infer

y3k = [2y0 − 3a−1b2y0(1− ba−1y1)] + kb(1 + bh(k))+

+ k2b2(−1

2
a−1y0y1 − 2a−1y20) + p3ν0L(k, y0, y1),

(12)

where h(k) = 6a−1by20 − 12a−1by20y1,

y3k+1 = 2−1y−10 [a+ 2by0 + 3b2y0(1− 6a−1y1)]+

+ kb(y0y1 − 2−1ay−10 + p3ν0b(−3y0))+

+ k2b2(y0 + 2−1ay−20 − 2−2y−10 − 2−1y−11 ) + p3ν0M(k, y0, y1)y−10 .

(13)

From (11)-(13) we infer the following statement.

Proposition 1. Let the sequence {yn} be produced by the recursion (5) with
(a, p) = (y0, p) = (y1, p) = 1, νp(b) = ν0 > 0. There exist the polynomials
F−1(x), F0(x), F1(x) ∈ Z[x] with the coefficient depending on y0, y1, such that

y3k−1 = y−10 y−11 ((a+ b(−6a−1y0y1) + b2B0(y0, y1))+

+ kb(1− 2ay−11 + bB1(y0, y1))+

+ k2b2(y0 −
7

2
ay−11 + bB2(y0, y1))) + p3ν0F−1(k)

(14)

y3k = (2y0 + b2C0(y0, y1)) + kb(1 + bC1(y0, y1))+

+ k2b2(−1

2
a−1y0y1 − 2a−1y20) + p3ν0F0(k)

(15)

y3k+1 = 2−1y−10 (a+ 2by0 + 3b2y0(1− ba−1y1)) + kb(y0y1 − 2−1ay−10 )+

+ k2b2(y0 + 2−1ay−20 − (2−1)2y−10 − 2−1y−11 ) + p3ν0F1(k).
(16)

In process of proof the Proposition 1 we obtain also the following corollaries.

Corollary 1. For k = 2, 3, . . ., we have

y3k−1 = (a+ kb+ 8ab2)y−10 y−11 + (−2akb+
7

2
ak2b2)y−10 y−21 +

+ (4ab+ 3b2 + k2b2)y−11 + 16ab2y0y
−1
1 +

+ 48b2y0 − 6a−1b+ p3ν0f−1(y0, y1)

(17)

y3k = kb+ (2− 3a−1b2)y0 + (18a−2b2)y0y1 + (6a−1b2k − 2a−1b2k2)y20−
− 12a−1kb2y0y1 + p3ν0f0(y0, y1)

(18)

y3k+1 = 2−1ay−10 + (b+ 2−1k2b+ 3b2) + (−3a−1b2 + kb)y1+

+ (−2−2abk − 2−2k2b2)y−20 + (−2−3k2b2)y−30 − 2−2y−10 y−11 +

+ p3ν0f1(y0, y1),

(19)

where f−1, f0, f1 are homographic (rational) functions at y0, y1.
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This Corollary at once follows from (11)-(13).

Corollary 2. Let τ be a period length of the sequence {yn} generated by re-
cursion (5); y0, y1 be initial values, and let νp(b) = ν0 > 0. Then we have

(A) τ = 3pm−ν0 if only one congruence 4y20 ≡ a (mod p)
or y1 ≡ 2 (mod p) violates;

(B) τ = 3pm−ν0−δ if min (νp(4y
2
0 − a), νp(y1 − 2)) = δ < m− ν0;

(C) τ ≤ 3pm−ν0−δ otherwise.

Proof. Let 4y20 ≡ a (mod p). Then, assuming y3k ≡ y3`+1 (mod pm), we ob-
tain 2y0 ≡ 2−1ay−10 (mod p). This gives a contradiction.

Similarly, from y3k−1 ≡ y3`+1 (mod pm) and y3k ≡ y3`+1 (mod pm) we
infer y−10 y−11 a ≡ 2−1ay−10 (mod p) and 2y0 ≡ 2−1ay−10 (mod p), i.e. y1 ≡ 2
(mod p) and 4y20 ≡ a (mod p).

Let n1 ≡ n2 (mod 3). Then from Corollary 1 we deduce that yn1 ≡ yn2

(mod pm) if and only if n1 ≡ n2 (mod pm−ν0). Hence, τ = 3pm−ν0 . the second
and third parts of Corollary 3 are also clear. ut

4 Exponential sums over the sequence of PRN’s

In this section we prove the theorems 1-3 on the estimates of exponential
sums on the sequence of pseudorandom numbers {yn} which are generated by
recursion (5).

Let

σk,`(h1, h2; pm) :=
∑

y0∈Z∗pm

e

(
h1yk + h2y`

pm

)
, (h1, h2 ∈ Z).

Here we consider yk, y` as a functions of initial values y0, y1 generated by (5).

Theorem 1. Let (h1, h2, p) = 1, νp(h1 + h2) = µ1, νp(h1k + h2`) = µ2, k, ` ∈
Z≥0 and let {yn} produced by (5). The following estimates

|σk,`(h1, h2; pm)| ≤


0 if k 6≡ ` (mod 3), νp(h2) > 0,
4pm+ν0 if νp(h2) = 0, k 6≡ ` (mod 3),
0 if µ1 = 0, k ≡ ` (mod 3),
4pm+ν0 if min (µ1, µ2) ≥ ν0, k ≡ ` (mod 3).

hold.

Proof. Without restricting the generality it may be assumed that (h1, h2, p) =
1, (h1, p) = 1. We considerate two cases:

(I) Let k and ` be nonnegative integers with k 6≡ ` (mod 3), i.e. k = 3k1 ± 1,
` = 3`1 or k = 3k1 − 1, ` = 3`1 + 1.
For k = 3k1, ` = 3`1 + 1, by Corollary 1 we have

h1y3k1+h2y3`1+1 = A0+A1y0+A2y
−1
0 +bg1(y−10 )+bB1y

−1
1 +B2y

−1
1 +bg2(y−11 ),
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where modulo pν0

A1 = 2h1, A2 = 2−1h2, B1 = h2k, B2 = −2−2y−10 .

Thus, by Lemma 3, we easily infer

|σ3k1−1,3`(h1, h2)| ≤
{

0 if νp(h2) > 0,
4pm+1 if νp(h2) = 0.

Such result gives the case k = 3k1, ` = 3`1 + 1 or k = 3k1 − 1, ` = 3`1 + 1.
(II) Let k ≡ ` (mod 3). For definiteness we will consider only the case k ≡ ` ≡ 0

(mod 3). Then we have from Corollary 1

h1y3k + h2y3` = (h1k + h2`)b+ (h1 + h2)(2− 3a−1b2)y0+

+ (h1 + h2)18a−2b2y0y1 + 6a−1b2(h1k + h2`)−
− 2a−1b2(h1k

2 + e2`
2)y20 − 12a−1b2(h1k + h2`)y0y1+

+ p3ν0
m0∑
j=0

aj(h1k
j + h2`

j)fj(y0, y1).

Again, by Lemmas 2 and 3, we obtain

|σ3k,3`(h1, h2)| ≤
{

0 if µ1 = 0, k ≡ ` (mod 3),
4pm+1 if min (µ1, µ2) ≥ ν0, k ≡ ` (mod 3).

In the cases (I) and (II) we take into account that I(pm) (see, the notation in
Lemma 3) are zero or 2. ut

Let the least length of period for {yn} is equal to τ .

Theorem 2. Let the linear-inversive congruential sequence generated by the
recursion (5) has the period τ , and let νp(b) = ν0 and 4y20 6≡ a (mod p) or
y1 6≡ 2 (mod p). Then the following bounds

|Sτ (h, y0)| ≤


O(m) if δ > ν0, np(h) < m− 2ν0 − δ,
4p

m+νp(h)

2 if δ ≥ ν0, νp(h) < m− 2ν0,
τ otherwise.

hold,
with the constant implied by the O-symbol is absolute.

Proof. Let we have the sequence produced by recursion (5). Without lose the
generality, we cas assume that the sequence {yn} has a period τ = 3pm−ν0 . By
Corollary 2 we have

|Sτ (h, y0, y1)| =

∣∣∣∣∣
τ−1∑
n=0

em(hyn)

∣∣∣∣∣ =

∣∣∣∣∣∣
3pm−ν−1∑
n=0

em(hyn)

∣∣∣∣∣∣ ≤
≤

∣∣∣∣∣
pm1∑
k=1

em(hy3k−1)

∣∣∣∣∣ =

∣∣∣∣∣
pm1∑
k=1

em(hy3k+1)

∣∣∣∣∣+O(m),

(20)



Chaotic Modeling and Simulation (CMSIM) 3: 267–279, 2016 277

where m1 = m− ν0, and

y3k−1 = F−1(k) := A0 +A1k +A2k
2 + · · ·

y3k = F0(k) := B0 +B1k +B2k
2 + · · ·

y3k+1 = F1(k) := C0 + C1k + C2k
2 + · · ·

with Ai, Bi, Ci defined by Proposition 1.
The summand O(m) in (20) appears in virtue of the fact that the represen-

tation yn as a polynomial on k holds only k ≥ 2m0 + 1.
Thus, by Lemma 3 we easily obtain

|Sτ ()| ≤


O(m) if δ < ν0, νp(h) < m− ν0 − δ,
4p

m+νp(h)

2 if δ ≥ ν0, νp(h) < m− 2ν0,
τ otherwise.

with the constant implied by the O-symbol is absolute. ut

Theorem 3. Let the sequence {yn} be produced by (5) with parameters a, b,
y0, y1, (a, p) = (y0y1, p) = 1, νp(b) = pν0 , ν0 ≥ 1. Then for every h ∈ Z,
(h, pm) = µ ≤ m, we have

SN (h) =
1

(ϕ(pm))2

∑
y0,y1∈Z∗pm

|SN (h, y0, y1)| ≤ 12N
1
2 + 12Np−

m−ν0
2 .

Proof. Let νp(h) = 0, i.e. (h, p) = 1. By the Cauchy-Schwarz inequality we get

∣∣SN (h)
∣∣2 =

1

(ϕ(pm))2

∣∣∣∣∣∣
∑

y0,y1∈Z∗pm

N−1∑
n=0

em(hyn)

∣∣∣∣∣∣
2

=

=
1

(ϕ(pm))2

∑
y0,y1∈Z∗pm

N−1∑
k,`=0

em(h(yk − y`)) ≤

≤ 1

(ϕ(pm))2

N−1∑
k,`=0

|σk,`(h,−h)| = 1

(ϕ(pm))2

∞∑
r=0

N−1∑
k,`=0

νp(k−`)=r

|σk,`(h,−h)| =

=
1

(ϕ(pm))2

m−1∑
t=0

N−1∑
k,`=0

νp(k−`)=t

|σk,`(h,−h)|+ 1

(ϕ(pm))2

N−1∑
k=0

|σk,k(h,−h)| =

= N +
1

(ϕ(pm))2

m−1∑
t=0

N−1∑
k,`=0

νp(k−`)=t

|σk,`(h,−h)|.

Using Theorem 1, we obtain∣∣SN (h)
∣∣2 ≤ N +

1

(ϕ(pm))2
×
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×
m−1∑
r=0


N−1∑
k,`=0

k 6≡` (mod 3)
νp(k−`)=r

|σk,`(h,−h)|+
N−1∑
k,`=0

k≡` (mod 3)
νp(k−`)=r

|σk,k(h,−h)|

 ≤

≤ N +
1

(ϕ(pm))2
×

×

4pm
m−1∑
r=0

N2

pr
+

 ∑
r<m−ν0

+
∑

m−ν0≤r≤m−1

 N−1∑
k,`=0

k≡` (mod 3)

|σk,`(h,−h)|

 ≤
≤ N +

N

(ϕ(p(m))2
×

×

4Npm +
∑

r<m−ν0

N

pr
pm+ν0+r + pm

∑
r≥m−ν0

N

pr

 ≤
≤ N +N2p−m · 11pν0(m− ν0).

Hence, for (h, p) = 1 we obtain∣∣SN (h)
∣∣ ≤ N 1

2 + 12Np−
m−ν0

2 .
ut

Theorems 1-3 and Lemmas 4-5 permit to obtain the following bound for

discrepancy pf the sequence of point { ynpm } ∈ [0, 1) and points X
(s)
n ∈ [0, 1)s,

X
(s)
n =

(
yn
pm ,

yn+1

pm , . . . , yn+s−1

pm

)
, where {yn} is generated by the recursion (5).

Theorem 4. Let p > 2 be a prime number, y0, y1, a, b,m ∈ N , m ≥ 3,
(ay0y1, p) = 1, νp(b) = ν0 ≥ 1. Then for the sequence {xn}, xn = yn

pm ,

n = 0, 1, . . ., with the period τ , generated by recursion (5), we have for any
1 ≤ N ≤ τ ,

DN (x0, x1, . . . , xN−1) ≤ 1

pm
+ 3N−1p

m−ν0
2

(
1

p

(
2

π
log pm +

7

5

)2

+ 1

)
.

Theorem 5. Let the sequence {X(s)
n } with the period τ = 3pm−ν0 be produced

by recursion (5). Then its discrepancy

D
(s)
N (X

(s)
0 , . . . , X

(s)
τ−s) ≤ 2p−

m
2 +ν0

(
1

π
log pm−ν0 +

3

5

)s
+ 2p−m+ν0

for every s = 1, 2, 3, 4.

The assertions of Theorems 4 and 5 are the simple conclusions of Theorems 2
and 3 and Lemmas 4 and 5.

From Theorems 4 and 5 we conclude that the sequence of PRN’s {yn}
produced by generater (5) passes the s-dimensional serial test on the equidis-
tribution and statistical independency.
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