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Abstract. Spurious coupling between pacemaker components may turn normal ECG
signals into chaotic ones. Present study introduces a new chaos control approach
known as dynamical control to retain normal signals. To this end, phase space dia-
gram method is used for comparing between before and after of control. The obtained
results confirm that the proposed method is effective in enforcing the heart to reas-
sume a limit cycle.
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1 Introduction

The study of cardiac system dynamics within the framework of Chaos Theory
has found significant progress in developing new methods to overcome the real-
world challenges of heart failure [1–5]. The interest of the approach lies in the
fact that the electrical behavior of the heart may be chaotic duo to the abnor-
mal functioning of cardiac pacemakers [3,6]. On the other hand, the regularity
of cardiac signals as a result of normal functioning of the cardiac pacemakers
[3,7] demands new approaches to enforce the heart to reassume a stable limit
cycle.
The stabilization of unstable desired orbits can be performed by various meth-
ods such as discrete OGY method [8], time-delayed feedback approach (TDF)
[9] and extended time-delayed feedback (ETDF) control technique [10]. How-
ever, observer dependence is one of the main challenges of methods mentioned
in feasible implementations. So, present study introduces dynamical control as
a new control scheme for stabilization of cardiac signals [11].
Here, a system of three coupled modified delayed van der Pol oscillators [14]
is used as a mathematical model to describe heart rhythms dynamics. The
dynamical structure of the model is investigated through phase space diagrams
and then based on dynamical control approach a controller is proposed for con-
trolling chaos in the system.
The rest of the paper was organized as follows. In Sect. 2 the mathemat-
ical model used in this study is described. The proposed dynamical control
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approach and one-parameter families of chaotic maps which are cornerstone
of the proposed dynamical control method are explained in Sect. 3. Results
are discussed in Sect. 4. Finally, summary and outline are presented in Sect.
5. Furthermore, Sect. A includes a brief introduction on the heart and its
electrical activity.

2 Model Description

The model used here for simulating ECG signals is an extending of the model
proposed in Ref. [13]. First, each of the natural pacemakers of the cardiac
system (AV node, His-Purkinje fibers and SA node) is modeled by a unique
modified delayed van der Pol oscillator. Then, by suitable coupling of them,
dynamical behavior of an electrocardiogram signal is simulated. Electrocardio-
gram is a procedure for quantifying the electrical potential and so the electrical
activity of the heart and ECG recording is one of the simple clinical approaches
for investigation of the heart health and its proper functioning [15].
The proposed model is as follow [14]

ẋ1 = x2,
ẋ2 = −aSAx2(x1 − wSA1

)(x1 − wSA2
)− x1(x1 + dSA)(x1 + eSA)

+ kSA−AV (x1 − xτSA−AV

3 ) + kSA−HP (x1 − xτSA−HP

5 ),
ẋ3 = x4,
ẋ4 = −aAV x4(x3 − wAV1)(x3 − wAV2)− x3(x3 + dAV )(x3 + eAV )

+ kAV−SA(x3 − xτAV −SA

1 ) + kAV−HP (x3 − xτAV −HP

5 ),
ẋ5 = x6,
ẋ6 = −aHPx6(x5 − wHP1

)(x5 − wHP2
)− x5(x5 + dHP )(x5 + eHP )

+ kHP−SA(x5 − xτHP−SA

1 ) + kHP−AV (x5 − xτHP−AV

3 ).

(1)

where xτi = xi(t − τ), i = 1, ..., 6, τ represents time delay and k◦ symbolizes
coupling terms. Then, the ECG signal is built from the composition of these
signals as follows:

ECG = α0 + α1x1 + α3x3 + α5x5. (2)

In present study, kSA−AV was taken as a control parameter. The remaining
parameters were fixed at the values suggested by the original paper [14] as
aSA = 3, aAV = 3, aHP = 5, wSA1

= 0.2, wSA2
= −1.9, wAV1

= 0.1, wAV2
=

−0.1, wHP1 = 1, wHP2 = −1, dSA = 3, dAV = 3, dHP = 3, eSA = 4.9, eAV = 3,
eHP = 7, kSA−AV = 5, kAV−HP = 20, α0 = 1, α1 = 0.1, α3 = 0.05, α5 = 0.4,
τSA−AV = 0.8, τAV−HP = 0.1 and all other parameters vanish.

3 Control Scheme

Our idea for control is based on the fact that the control parameter can be a
variable in time through a chaotic map. In this section, first we try to explain
mathematical description of the chaotic map which we used in this paper.
Then, we expand our idea of control.
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Fig. 1. Invariant measure of Logistic map.

3.1 One-parameter families of chaotic maps

The Logistic map is one of the most familiar maps in unit interval which serves
as a prototype of chaos in classical nonlinear maps. One of the exciting features
of the Logistic map is that it has an invariant measure which provides frequency
of visits to any given interval in [0, 1].

µ(x) =
1

π
√
x(1− x)

. (3)

This density function is graphed in Fig. 1 and ensures the ergodicity of the
Logistic map.
In previous work [16] we generalized the Logistic map to a Hierarchy of one
parameter families of maps with some special properties in unit interval [0, 1]:

• They map the interval [0, 1] into itself,
• They have (N − 1) critical points,
• They have (N − 1) real roots,
• They have at most (N + 1) attracting periodic orbits [18].

The mathematical form of the proposed Hierarchy one parameter families of
maps is as follows

ΦN (k, α) =
α2(TN (

√
k ))2

1 + (α2 − 1)(TN (
√
k )2)

. (4)

where N > 1 is an integer and TN s are Chebyshev polynomials of type 1 [17].
Invariant measure of the ΦN (k, α) is defined as follows

µ(k, β) =
1

π

√
β√

k(1− k)(β + (1− β)k)
. (5)

provided that β > 0 and
α =

∑ [
(N−1)

2
]

k=0 CN
2k+1β

−k∑ [N
2

]

k=0C
N
2kβ

−k

N: odd,

α =
β
∑ [

(N)
2

]

k=0 CN
2kβ

−k

∑ [
(N−1)

2
]

k=0 CN
2k+1β

−k

N: even.

(6)
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Fig. 2. Illustration of the effect of the α variation on the Lyapunov exponent of the
Eq. 10. The positive value of the Lyapunov exponent proves the chaotic nature
of the generalized Logistic map (Eq. 10). Furthermore, the maximum value of the
Lyapunov exponent is occurred at α = 1 which was used to generate dynamical map
(Eq. 11) for control of chaos.

As an example

Φ2(k, α) =
α2(2k − 1)2

4k(1− k) + α2(2k − 1)2
, α =

2β

(1 + β)
. (7)

By the aid of the invertible map h(k) = 1−k
k which maps [0, 1] into [0,∞) one

can transform ΦN (k, α) into ΨN (k, α) as

ΨN (k, α) = h ◦ ΦN (k, α) ◦ h(−1) =
1

α2
tan2 (N arctan

√
km) (8)

which in terms of km+1 can be written as

km+1 ≡ Ψ2(k, α) =
1

α2
tan2 (2 arctan

√
km) =

4

α2

tan2 (arctan
√
km)

(1− tan2 (arctan
√
km))2

.

(9)
Finally, it can be simplified as

km+1 =
4km

α2(1− km)2
. (10)

The Lyapunov exponent diagram for this map is shown in Fig. 2. Obviously,
maximum value has been reached at α = 1. So, in the following we set α = 1.
Φ2(k) and Ψ2(k) for α = 1 are shown in Fig. 3 and Fig. 4, respectively.

3.2 Controlling Procedure

The observer dependence of previous methods [8–10] for control of chaos is
a high risk for heart health. Our previous work [11] allows one to overcome
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Fig. 3. Illustration of the Φ2(k) for α = 1.
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Fig. 4. Illustration of the Ψ2(k) for α = 1.

the risk. Flexibility and observer independence are the main features of the
method. The proposed method is based on the fact that the control parame-
ter as a variable in time is changeable by another chaotic map. We improve
the method by considering the hierarchy of one parameter families of ergodic
solvable chaotic maps with invariant measure [16]. So, the behavior of original
system may be replaced by 

ẋ = F(x, km),

km+1 = 4km
(1−km)2 .

(11)

where x ∈ Rn, k ∈ R1 denotes kHP−SA and F is the dynamical model (Eq. 1).

4 Results and Discussion

4.1 Introducing the dynamics of the master ECG

Fig. 5 depicts the phase space of the system under different situations. kSA−AV =
6.42, kSA−AV = 7.57, kSA−AV = 7.64 and kSA−AV = 10 have been chosen as
samples to reveal diverse configurations. As is evident, the system includes
a wide range of behaviors. Due to the variation of kSA−AV its response may
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Fig. 5. Phase space of ECG without applying the control process. (a) kSA−AV =
6.42, (b) kSA−AV = 7.57, (c) kSA−AV = 7.64, (d) kSA−AV = 10. (a), (b) and (d)
demonstrate non-periodic and unstable responses, and (c) represents periodic and
stable response.

be periodic and stable (see Fig. 5(c)) or non-periodic and unstable (see Fig.
5(a)-(b)-(d)).
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Fig. 6. Phase space of ECG after applying the control process. (a) kSA−AV = 6.42,
(b) kSA−AV = 7.57, (c) kSA−AV = 7.64, (d) kSA−AV = 10. In comparison with Fig.
5 it is seen that all of the responses have suppressed to 2-period orbits.

4.2 Applying the chaos control method

The results of control method have been shown in Fig. 6. In order to reveal the
control method efficiency, kSA−AV = 6.42, kSA−AV = 7.57, kSA−AV = 7.64 and
kSA−AV = 10 were chosen as samples to be subjected to the control method.
Pertinent phase spaces have been plotted in Fig. 6. Obviously, the chaotic
motion has suppressed to a 2-period orbit. The results have confirmed the
efficiency of proposed control method.
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5 Summary

The development of control methods that accurately modulate the undesirable
behavior of cardiac system is a fast growing research in interdisciplinary sci-
ences. In present study based on phase space diagrams, nonlinear behavior and
the unstable signals suppression problem were studied in an electrocardiogram
model. Here, based on one-parameter families of chaotic maps a new controller
was introduced for controlling chaos. Moreover, it was shown that the proposed
technique can modulate underlying dynamics.

A Heart and Electrical Activity

The heart is a four-chambered organ which pumping blood for circulation is its
basic function. The heart is divided into right and left parts, each part with its
own atrium and ventricle. Receiving deoxygenated blood from the rest of the
body and propelling oxygenated received blood from lungs to other organs of
the body are fulfilled through the coordinate contractions of the heart organs.
For contractions to be occurred, the conducting cells of heart must be excited
by impulses initiated at a network of pacemaker cells. There are three types of
pacemaking cells.

• The sinoatrial (SA) node which contains main pacemaking cells.
• The atrioventricular (AV) node which serves as a pacemaker should the SA

node fail.
• The bundle of His-Purkinje (HP) fibers, responsible for contracting the

ventricles, which may initiate impulses at low rates compared to the SA
and AV nodes [15].

In resting state cardiac cells are polarized electrically, i.e., the outside of the cell
membrane has a positive charge and the inside of the cell has a negative charge
instead. Depolarization is the fundamental electrical event of the heart within
it positive ions flow across the cell membrane into the cell and negative ions
to the outside of the cell membrane. Through a process namely repolarization,
polarity returns and the relaxation or resting state occurs. The waves of depo-
larization and repolarization represent electrical activity of the heart known as
ECG [15]. A schematic illustration of the heart organ has been shown in Fig.
7.
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