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Abstract:  «Shnoll effect» proved to be at the histograms study of a wide variety of 

processes. This paper examines the effect mainly for the examples of radioactive decay 

and chemical reactions. S.E. Shnol supposed that the observed processes are caused by 
unknown Cosmophysical effects. In this article, we suggested not only a qualitative 

explanation of the effect, but also its mathematical model. It allows to get some 

quantitative estimation and to optimize the process of observation and data handling. To 

this end, we developed a quantitative method of estimation «similarity of histograms» 
that allows the use of standard computer programs. As far as «Shnoll effect» at present is 

not currently recognized by the scientific community, we suppose that the use of 

mathematical model and adequate methods of data handling allow synonymously solving 

that problem. 
Keywords: Shnoll effect, Radioactive decay, Histogram, Fluctuation, Random variables, 

White Noise, Deterministic effects, The Poisson distribution, The binomial distribution. 
 

1 Introduction  

 
The «Shnoll effect» is revealed in the study histograms for the various processes 

(Shnoll et al. [1, 2]). Further we will mainly focus on the researching of the 

processes of radioactive decay. Then there is S – Source of decay particles, in 

particular, α -particles; C – Particle Counter with recording equipment. A 

particle gets into C, create corresponding response, recorded as a single signal 

(pulse). Private signal of C output corresponds to the number of pulses per time 

T. Since usually only the number of pulses is counted, the signal can be 

represented as 

1

( ) ( , , )
M

i

i

X t MT x i T n


    (1) 

Here the private signal ( , , )ix i T n means that for the time interval 

( 1)iT i T T    there are in  pulses registered. The set of such signals in the 

time MT  is the experimental information about the process of radioactive 

decay. This information is presented in the form of histograms, step function 

[ ( )] ( )Hist X t H n                  (2) 

where ( )H n –  number of private signals containing n pulses. 
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To study the «Shnoll effect» (SE) it is recorded some number L of such 

sequential histograms in time LMT . Further, these histograms can be summed, 

averaged, or compared at the «similarity» of its shapes. 

 

2 Stochastic description of radioactive decay 
 

Since at this approach the arraignment of pulses in time does not value, may be 

even to assume that in the particular signal pulses are uniformly distributed. If 

(1) corresponds to the accurate recording of the particles, it is generally believed 

that for the process of radioactive decay values ( )H n  correspond to a Poisson 

distribution (Shirokov and Yudin [3]). 

 
!
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n




    (3) 

where n  – the probability of detecting n particles in a time T , N – the 

number of radioactive atoms in S,   – speed of particle radiation. In this case, 

the average value avn n determined from histograms corresponds to a 

value avn N T , and determine by period of half-decay (from reference) 

value , may be to estimate the effective value of the number of radioactive 

atoms in S. 

av
eff

n
N

T
               (4) 

It is the question of interest whether two or more atoms of S can emit particles 

at the same time, or there is a finite amount of time between these events? 

Anyway, counter C has a finite number of pulses in second which it can register 

without error. It depends on the duration of the pulse and the minimal allowable 

time between pulses, the counter dead time. Possible counters errors (Vatutin et 

al. [4]) further will be neglected. In this case for the «right» counter C there are 

some permissible values 

max, /per n r T       (5) 

Then will be assume that there are no coincidences of pulses, and any time 

interval T in relation to the particular signal at the input C may be regarded as 

consisting of r cells. 

For each such cell with a constant probability p  pulse or is in it («success»), or 

with the probability 1 p  is not («failure»). So we have corresponding with 

Bernoulli testing scheme (Feller [5]). 

The probability that there will be n successes in r testing 

 ( ; , ) 1
r nn n

rn r p C p p


   (6) 
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If r is sufficiently large and p is sufficiently small, an average value 

is
срn rp . For large r from binomial distribution (6) follow classical Poisson 

approximation 

 
!
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e

n
      (7) 

The correspondence between (3) and (7) would be in that case if equate the 

values срn . Then 

,
N T

N T rp p N
r


     (8) 

Since, by definition 1p  , then from (8) we find the necessary requirements for 

the C, i.e. for the resolution capacity of counter, corresponding to the properties 

of the applied source S  

1

N



     (9) 

That result corresponds to some condition of S, when particle radiation is 

sufficiently rare event for right Poisson probability (7), (8). We find that the 

temporal characteristics of the meter must be coordinated with the specific 

source of the particles. 

It is believed that for any moment of time the radioactive decay is equally 

probable (Shirokov and Yudin [3]). With reference to the counter, this means 

that all periods T are equal, and if the period divided into some number r of 

identical intervals (cells), then for sufficiently large observation time, the pulses 

that get into these cells will be in average evenly distributed. 

 

3 Microscopic and Macroscopic fluctuations 
 

There are many stochastic processes that can be described with use of a similar 

scheme. It is known that a simple random walk model, based on the binomial 

distribution, similar to (6) leads to the relations, correctly described the process 

of diffusion and Brownian motion. It turns out that a similar scheme of 

reasoning is applicable to many phenomena in physics and another field of 

science, in cases where relatively slow observed fluctuations of the system 

states are the result of a huge number of small random unobserved effects (Van 

Campen [6]). 

These effects in specific cases may be collisions of atoms and molecules, their 

thermal vibrations, noise and fluctuations of electromagnetic nature, etc. 

We come to realization that the observed fluctuations of the stochastic nature 

are a consequence of the influence of unobservable (microscopic?) fluctuations 

of different nature. 

Further assume, without proof that in nature there is a corresponding universal 

principle: Any observable stochastic physical processes occur as a result of 

microscopic unobservable stochastic fluctuations. This means that it is not for 



364        V. A. Meshkoff 

 
random process any description, except probable, because if we were able to 

control the causes of random behavior of a physical system, the process would 

cease to be accidental. 

Note that for throwing coin and observation occurring of «heads» or «tails», we 

can not control all the causes of a particular outcome, even if they are not 

microscopic for a concrete coin. Otherwise, the coin becomes «wrong», i.e. 

predictable. 

From the point of view of mathematical formalism, we have three levels of 

description of stochastic processes. Discrete Level 1 is characterized by the 

Binomial distribution, and for the continuous speed of the process it transforms 

into a discrete Level 2 – Poisson distribution, and then it is the transition from 

discrete to continuous variables – Binomial and Poisson distributions are 

transformed into Level 3 – Gaussian distribution (law of large numbers) (Feller 

[5]). 

As returning to radioactive decay then we consider it from the point of view of 

the universal principle accepted above. In nuclear physics it is believed that for 

separate atom or isotope radioactive decay happens spontaneously, «the 

phenomenon of radioactivity consists in spontaneous disintegration of atomic 

nucleus with emission of one or several particles» (Shirokov and Yudin [3]). It 

is established that radioactivity is the quantum mechanical phenomenon caused 

by electromagnetic, strong and weak interactions of particles in a nucleus. 

Atoms and their nucleus are complicate dynamic, but not static systems. 

Without going into the further details, we will notice that in such dynamic 

systems it is inevitable existence of microscopic unobservable fluctuations, in 

that case of quantum character.  

Therefore it is reasonable that we can refine the definition, – the phenomenon of 

radioactivity is the decay of nucleus under the influence of quantum fluctuations 

with the emission of one or more particles. Nothing prevents us to present that 

the decay comes at a moment when the energy of the quantum fluctuations 

reaches a certain threshold 0E  (Born [7]). 

In textbooks on nuclear physics it is also claimed that «essential property of the 

phenomenon of radioactivity is independence of a constant of disintegration 

 of time» (Shirokov and Yudin [3]). However from SE follows that it, at least, 

not always so and there are phenomena when this independence is broken. In 

this case it is necessary to consider, taking into account the universal principle 

that value 0E doesn't depend on time. 

 

4 Shnoll effect and its qualitative considerations 
 

Thus, from the point of view of orthodox nuclear physics influence on quantum 

fluctuations of atoms is impossible, but SE is affirmed the inverse. Therefore we 

will assume further that under some conditions such influences happen, and for 

that reason the observed process differs from usual «Poisson».  
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For simplification we will consider further that the source contains radioactive 

atoms only of one sort, there are removed hardware errors and the outside 

physical phenomena, for example, an influence of space radiation and so on. 

By the way noted that the physical properties of the sources may be different, – 

most obvious difference, for instance, is that they may be gaseous, amorphous 

or solid. From qualitative considerations it is believed that in the first two cases, 

the decay conditions must be similar to the decay conditions of independent 

atoms under the influence of quantum fluctuations inside the nucleus. In that 

case, the effect of external influences is believed likely minimal. 

In the case of solid-state sources the radioactive atoms are no longer 

independent, and quantum fluctuations are distributed throughout the volume of 

the source. Thus sizably increasing the amount of space, in which external 

influences can contribute. In the present case, we will not put forward 

suppositions about their nature. Just out of qualitative considerations it is follow 

that may be the physical conditions when into the source is interaction of 

quantum fluctuations and external, for example, «cosmos-physical factors». 

Further naturally to assume that the external influences and internal fluctuations 

can either are in phase or in anti-phase, and on that dependence the rate of decay 

will either increase or decrease. That allows giving a reasonable explanation of 

the experimentally observed in SE oscillating «fine» effects, revealed in the 

histograms (Snoll et al. [1, 2]). 

It is easy to show that in the same way, i.e. by interaction «external signal» with 

internal fluctuations of radioactive sources, explains all the observed effects in 

experiments of Shnoll and collaborators. 

Non-randomness of the «fine» structure of histograms shape in 

measurements of different nature (Shnoll et al. [1]): observed histograms 

«poly-extremality» do not disappear with the growth of the number of 

measurements, i.e. there are additional peaks and gaps that are not in the 

Poisson distribution. 

This is explained by the interaction of internal fluctuations with «external 

signal», having in general case the random and deterministic (systematic) 

components. In result there may be observed not only the «fine structure», but 

significant deviations from the Poisson distribution. The critics of Shnoll 

(Derbin et al. [8]) at this correctly pay attention: dispersions and distribution 

shape, obtained experimentally in (Shnoll et al. [1]), are significantly different. 

In one instance, the dispersion decreases, the distribution peak increased 

compared to Poisson distribution (Figures 1 and 2 in (Derbin et al. [8])), but in 

another case there is the reverse – the dispersion increases, the peak decreases 

(Figure 5 in (Derbin et al. [8])). 

However, within the limits of our model, this means in first case there are 

internal fluctuations in phase with the «external signal», and in second case – in 

anti-phase. 

Note that without a concrete model for the observed effects, there are confused 

explanations in (Shnoll et al. [2]). On the one side, they state that «there is no 

doubt in the submission of the radioactive decay to Poisson statistics», but 
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further they state, that «regardless of the reasons of some deviations <...> from 

the Poisson distribution it is not due to the histograms fine structure». 

In the proposed model, by contrast, the deviations from «Poisson» and «fine 

structure» in general are interconnected and have the «external signal» as the 

cause.  

Uncasual repetition of histograms shape in time (Shnoll et al. [1]): it is found 

out that the repetitions of the same shape in a series of successive histograms are 

most likely in the nearest neighbor time interval. Furthermore, the similarity of 

histograms shape is detected with periods 24 hours, 27 and 365 days. From all 

the totality of the data concludes about the impact of cosmos-physical factors. 

In our model, this property is easily explained by the deterministic nature of the 

«external signal», interacting with internal fluctuations of the particle source. It 

is likely that the source of this «external signal» is the Sun, with the Earth's 

rotation and the positions of the Moon. 

At the same time, critics (Derbin et al. [8]) note that Shnoll and collaborators do 

not have a quantitative method of comparing the «similarity» of histograms, 

using based on visual analysis method that contain a significant subjective 

moment. 

Synchronization of realization of histograms shapes in the processes of 

different nature (Shnoll et al. [1]): it is detected by simultaneous independent 

measurements conducted at a distance, and even in the far-located geographical 

points. 

Again, this is easily explained in limits of our model:  it means that the 

deterministic component of the «external signal» render a similar synchronizing 

effect on the stochastic processes of different nature in different geographical 

locations, interacting in each case with internal fluctuations. 

The insufficiency of the work of experimenters, according to critics (Derbin et 

al. [8]) again is a visual method for determining the «similarity» of histograms. 

The randomization of the initial time series according to standard criteria 

(Shnoll et al. [1]): Shnoll and collaborators manifest that the connection 

between the histograms and the «conformity with a laws of the motion of the 

studied processes in time <...> traditional methods <...> failed to expose». They 

assert that «the process of radioactive decay is completely random – it is „white 

noise“». 

In terms of our model, this means that by using the counter C, with period of 

countsT , in the distinguishable r  time cells will be on the average registered 

almost the same number of pulses. The distribution all over the cells averaged 

over a large period of time would be equally probable, which corresponds to the 

binomial distribution, transitional to Poisson, and then to Gaussian. 

Again, our model can give a qualitative explanation of this effect. Assume that 

«external signal» has a noise component and deterministic oscillating 

component, for example, some superposition of sinusoidal oscillations. In a 

result of the interaction this signal with internal fluctuations of source S will 

occurred some change in the intensity of «white noise» that correspond to 

acceleration of the process of radioactive decay or its deceleration.  
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Periods of sinusoidal oscillations of «external signal» may not coincide with the 

period of countsT , then at the time averaging none deviations to be detected 

from equally probable distribution of pulses at cells. Thus, we find the 

explanation for the seemingly strange assertion (Shnoll et al. [2]) that the «fine 

structure» of histograms does not depend from the reasons of deviation from 

Poisson distribution. 

Indeed, as we have seen above, for an explanation of the results (Shnoll et al. 

[1,2]) it is appropriate to assume that the «external signal» can increase or 

decrease dispersion of the radioactive decay process in comparison with the 

dispersion of corresponding Poisson process. But the «fine structure» due to the 

presence deterministic oscillatory component in «external signal», and it can 

occur in principle even at a constant average dispersion of radioactive decay! 

The negative correlation «the results scatter» with solar activity (Shnoll et 

al. [1]): it is indirect evidence of «external signal» effects. Rather, it means that 

the result of the interaction of internal fluctuations with a deterministic 

component of the «external signal» in most cases is not symmetrical. This effect 

is known in statistical radio-physics (Tikhonov [10], Baskakov [11]). 

Thus, we conclude that in the framework of the proposed stochastic model 

naturally receive explanation of all the main experimental results Shnoll and 

collaborators set out in (Shnoll et al. [1,2]). This model is, for this reason, 

should be applicable not only to radioactivity but also to all processes 

mentioned in (Shnoll et al. [1]). «External signal/effect», characteristics and 

nature of which we will not discuss here, must in all cases originate from the 

same source with the identical timing characteristics on a large geographical 

area. 

Accordingly, we can determine the Shnoll effect: The changeability and 

synchronization of probabilistic characteristics of stochastic processes as a 

result of «external influences», presumably of cosmos-physical origin. 

 

5 Additional considerations and conclusion 
 

Adduce some additional considerations that external impact SE has 

deterministic and periodical character. In general case  is not constant, but can 

not be monotonically increasing (otherwise срn increases with time), and then 

instead of (3) we have 

 

0

, ( )
!

n T

N

n

N
e t dt

n




      (10) 

Deviations from the Poisson process can be explained if for each particular 

signal ( , , )ix i T n  there will be its parameters  

( 1)

( )

iT

i

i T

t dt 


   (11) 
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According to (11) we can have a few discrete values k , and a histogram (2) 

will be determined as the superposition (mixture) of several Poisson processes, 

which, in principle, and can give the «fine structure» of the experimental 

histograms. 

For establishing the adequacy of the proposed model, it is easy to suggest an 

appropriate physical model for reproduction of our SE model properties. For 

example, it may be a pulse generator in the standby mode (waiting regime), 

generating the pulse under the influence of fluctuations in a trigger circuit, and 

then returning to the initial state. «External effects» can be simulated by 

supplying additional noise or periodic signal in the trigger circuit. 

Also, as simple physical model can serve electronic devices with the shot noise, 

that obeys Poisson distribution. It is sufficient to consider the vacuum triode in 

regime of small shot currents. Suppose that during the time T it is possible to 

detect the arrival on the anode each of the electrons like at the experiment with 

alpha particles discussed above. If now give periodic potential on the triode 

grid, it will modulate the shot current, simulating a real stochastic model SE. Its 

properties are possible to study experimentally by varying the «external 

influence». 

However, there are publications (Derbin et al. [8]), stated that the effects which 

existence claim Shnoll and collaborators, are not observed. But, the analysis of 

such publications shows that usually they refer to experiments with significant 

differences from those criticized. 

Restricted only radioactive decay processes, for example, we see that the 

experiment with the preparation 
55Fe  (Shnoll et al. [1]) is opposed to the 

experiment with the same preparation  (Derbin et al. [8]), but deviations from 

Poisson distribution and «fine structure» of histograms are not observed. 

However, about coincidence of all experimental conditions in both cases 

according to the publications it is problematic to judge.  

For another experiment with the preparation 
239Pu  (Shnoll et al. [1]) it is 

opposed similar experiment with the preparation 
241Am  (Derbin et al. [8]), 

where again did not find signs of SE. There are other such publications, where 

the SE is denied on the basis of private experiments and different assumptions 

about the fallibility of Shnoll with collaborators observations. On the other hand 

decennials of observations and of huge accumulated experimental material 

allows experienced scientists claim about proof «theorem of the existence» for 

effect that many opponents or may be most of the scientific world, is still, at 

best, considered hypothetical. 

One of the reasons for this contradiction is that the conditions for SE observing 

are not defined in (Shnoll et al. [1, 2]) with exhaustive plentitude. The authors 

do not give the «recipe», the maintenance of which will allow others 

experimenters with the confidence to reproduce this effect. Moreover, judging 

by some of the private statements and publications, the authors believe that the 

effect should be observed almost «always and everywhere» for «good» 

experimenter. With above accounted, it is difficult to accept. 



Chaotic Modeling and Simulation (CMSIM)  2017:  361-389, 2017        369 

 
Therefore, the «existence theorem» should be supplemented with «necessary 

and sufficient conditions», ensuring the reproduction of the effect. 

From this viewpoint, the most perspective are experiments with radioactive 

solid preparations under condition with direct registration of positive charged α-

particles counter. In this case at the output of the counter should be impulse of 

definite shape, which allows not only fixing the α-particles, but also reliably 

distinguishing these pulses against background of various disturbances, 

including other pulses with other forms. In this case, it will be possible to 

completely eliminate the assumption of critics about possible mistakes and 

errors of experiments. 

It is concerned the cases when α-decay fix in indirect way by registration 

concomitant X-ray radiation or γ-quanta. There need thorough analysis of all 

registration process and its trustworthiness, that from publications (Shnoll et al. 

[1, 2],  Shnoll [9]) not displayed. 

Another possibility for removal of contradictions consist in complete using of 

information, that may be get in experiments on radioactive decay with α-

particles registration. In present it is possibilities for recording complete signal 

( )X t at output C on electronic storage device. This signal in ideal has 

presentation as secession of identical pulses and its timing arrangement, i.e. has 

view ( ) ( )X t F t t


  , where ( )F t characterizes form of pulses with 

small duration доп   . Practically it is sufficiently to register and record all 

values t , connected with any characteristic point of pulses.      

From publications (Shnoll et al. [1,2]) and analogical it is vague if that 

information records and use in full measure. With aid of computer methods and 

program processing the recorded signal may be repeatedly to use for receiving 

knowledge about concrete realization of radioactive decay process and its 

difference from Poisson process.  

«Shnoll» effect proved to be at the histograms study of a wide variety of 

processes. This paper examines the effect mainly for the examples of 

radioactive decay and chemical reactions. S.E. Shnol supposed that the observed 

processes are caused by unknown «Cosmophysical effects». In this article, we 

suggested not only a qualitative explanation of the effect, but also down apply 

its mathematical model and some mathematical applications. It allows to get 

some quantitative estimation and to optimize the process of observation and data 

handling. To this end, we developed a quantitative method of estimation 

«similarity of histograms» that allows the use of standard computer programs. 

As far as «Shnoll effect» at present is not currently recognized by the scientific 

community, we suppose that the use of mathematical model and adequate 

methods of data handling allow synonymously solving that problem. 
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6 Appendix 

 

6.1 Simplest physical model for Shnoll effect 
 

Look at some system (source), where under influence of internal fluctuations 

(noises) occurs observed macroscopic events, for example, radioactive decay 

and flying out α-particle, pulse generation of flip-flop scheme, and so on. 

Assume, that such event occur every time when energy of fluctuations exceed 

some threshold value 0E .  

Similar problem examine in statistical radio-technique (Tikhonov [10], 

Baskakov [11]). In our case will suppose that fluctuations describe by 

realizations ( )y t  of stochastic process ( )Y t . Observed event occur when  

( )y t  crosses threshold value 0E  «from down upwards». It named as positive 

overshoot ( )Y t  on level 0E .  

Suppose that ( )Y t  is stationary and continuous, then possible to select such 

interval t , that in limits of this interval it will be not any positive overshoot, or 

it will be only one. 

Sole positive overshoot occur if: 1) 0( )y t E , 2) 0( )y t t E  . 

Suppose that for realizations ( )y t  of stochastic process may be to determinate 

the derivative, then ( ) ( )y t t y t y t    and get conditions for realization 

of positive overshoot 

0 00, ( )y E y t y t E       

For further decision assume that it is known joint distribution ( , )p y y  and 

then for overshoot probability get  

0

0

0

0 0

( , ) ( , )

E

E y t

P p y y dydy t p E y y dy

 

 

          (A.1) 

Average value of overshoot by time unit determinate as 

0 0

0

( ) ( , )
P

E p E y y dy
t





   

   (A.2) 

In simplest case ( )y t and ( )y t  are statistically independent (as example, for 

Gaussian processes (Tikhonov [10], Baskakov [11])), and 

then 1 2( , ) ( ) ( )p y y p y p y  , so from (A.2) follow   

0 1 0 2

0

( ) ( ) ( )E p E p y y dy


      (A.3) 
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Suppose that there is deterministic «external effect», which leads to some 

periodic change in the process ( )Y t . Assume that these changes can be 

described by corresponding change of the threshold value, which will now of 

the time depend, i.e. 
0( ) tE t E f  . We will confine to the case of a 

continuous function ( )tf f t  whose variations in time t are negligibly 

small. Then the previous presentation (A.3) remains valid for 

replacing 0 ( )E E t . As a result, we have 

1 0 2 1

0

( ) ( ) ( ) ( )t ft p E f p y y dy F t  


      (A.4),        

where 1 – the constant component of the periodic function ( )t , and f – the 

scale factor of the normalized periodic function ( )F t  with period , which 

does not have a constant component. In general case it is convenient to 

normalize an area under the curve ( )F t during the half-period 

/ 2 / 2

0 0

( ) ( ) , ( ) ( ) 0, ( ) ( ) 0F t dt F t dt F t F t F t F t

 

            

Returning to relations (10), (11) and to the conditions of Shnoll experiment, we 

have with account of (A.4) 

1 1

0 0 0

( ) ( ( ) ( )

T T T

f ft dt F t dt T F t dt            (A.5) 

If periods coincide, i.e. T  , then from (A.5) for this case 1T  . The 

process will be perceived as a stationary Poisson process with the distribution 

(3), where the standard value 1  . No «fine structure» will be registered. 

Let us consider the cases when , 0T K K   . Then for case of an arbitrary 

value we have 

         , ,K K K k k K K K K         , where the 

fractional part of the number K is positive, i.e. 0 1  . So 

0 0 0

( ) ( ) ( )

kT

F t dt F t dt F t dt

   

     

For an arbitrary value K , we calculate the partial values 

 

( )

( 1) ( 1) ( 1) 0

( ) ( ) ( ) ( ( 1) )

i k iiT

i T i k i

F t dt F t dt F t dt F t i dt

  

 


   

     

          (A.6) 

It is obvious that the extremely values for the right-hand side of (A.6) are 

possible only when 1
2  , as a result, we get 
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/ 2

0

,
( ( 1) / 2)

,

i odd
F t i dt

i even

  
    

 
  (A.7) 

Although this integral is independent of 1
2K к  , it follows from (A.5) that 

the constant component 
1T  practically will dominate at sufficiently large K : 

1
2

1 1( )f

f k
T T


   


      

The greatest contribution of «external influence» will be at 1
20,k T   . 

Taking into account the relations (A.5), (A.6) and (A.7) we obtain in this case 

1

1

1( 1)

( 2 ),
( )

( 2 ),

iT
f

i f

fi T

T i odd
T F t dt

T i even

 
  

 


 
   

 


  (A.8) 

With respect to the Shnoll experiment with the realizations (1), this means that 

half of the realizations correspond to the Poisson process (3) c 1 2 f     , 

and the other half to the Poisson process c 1 2 f     . As a result, the 

experimenter will receive a histogram approaching a mixture of two Poisson 

distributions. 

It is known, the sum of two or more random variables with Poisson distributions 

again gives the Poisson distribution. A mixture of two or more such random 

variables, under certain proportions, is fully capable of forming poly-extremely 

distributions. In the simplest case considered above 

   1 1

2 ! 2 !

n n

N T N T

n

N T N T
e e

n n

  
    

    (A.9) 

The corresponding distributions for different 1 1n N T  and ratios 1f   

are shown at Fig. A1. We get that in this variant Shnoll experiment is quite 

effective for detecting weak «external influences», or, equivalently, for weak 

external signals against a background of noises. Usually in radio-technique and 

radio-physics such a problem is posed for a signal-to-noise ratio of 1/1, and here 

we see that a «signal» can be detected at a ratio 1 0,05 0,075f    . 

                                  ωn 
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Fig. A1. The mixtures of two Poisson distributions: a) 
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For example, if 3
4

   we obtain from the formulas (A.5), (A.6) and (A.10) the 

distribution with three vertices and two dips, etc. 

It remains to consider the cases when 0,K T    , but 1
2

0   . In this 

case, the period of «external impact» exceeds or significantly exceeds the 

sampling periodT , for example, becomes comparable with the time 

MT corresponding to obtaining of samples necessary for constructing the 

histogram. According to the formula (A.5), in this case for different samples we 

will have different values i , and as a result, the histogram will again reflect 

the mixture of Poisson processes. 

Thus, it is shown that we have the physical model reproducing the basic 

properties of the histograms obtained in Shnoll experiments. 

If we now take into account that the actual «external effect» can have a 

complicated shape with many periodic components, noise components, quasi-

periodic components of finite duration etc., then one can understand why in SE 

are observed histograms that deviate significantly from the classical Poisson 

process. Nevertheless, SE is based on the existence of deterministic external 

periodic effects, for which should exist an optimal method of observation. 

 

6.2 Optimization of Shnoll experiments 

 
Considering the histograms given in (Shnoll et al. [1, 2]), one can see that they 

have a number of vertices and gaps exceeding the number of those at Fig.A1. 

This means that the experimental conditions are not chosen in optimal way. In 

addition, «external influences» may have a more complex character, compared 

with the deterministic periodic effects discussed above. It can relevant to quasi-

deterministic signals (Tikhonov [10], Baskakov [11]), i.e. has a random phase or 

amplitude, fluctuating waveform of signal. From our point of view, the Shnoll 

results indicate that there is an essential deterministic component, which within 

limits of the proposed model has a periodic character. Therefore, the optimal 

experiment should lead to histograms of distributions similar at Fig.A1, in 

which it will be possible to estimate the repetition period of the signal and the 

ratio 1f  . And since there are Shnoll reports on the direction of the effect 

(Shnoll [9]), then it will be possible to obtain more detailed information about 

the «external effects». 

Obviously, beforehand it is not possible to choose ratio 2T  , and then, at 

first glance, it is necessary to repeat the experiment at different T , approaching 

the optimal ratio. However, at present, this need can be avoided if, as mentioned 

above, the entire video signal at the output of the counter C is registered, 

digitized and recorded on electronic devices. 

For example, in the case of experiments with radioactive alpha-decay, it is 

sufficient to record the time of appearance at the output C for each pulse, or the 

time interval between subsequent pulses. At the availability of such an array of 
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data, there is no need to conduct multiple experiments to determine the optimal 

conditions and thus the parameters of the «external impact». It can be found 

using digital computer data processing techniques. 

A computer program, using the same array of experimental data to construct 

histograms at different valuesT , will find the optimal ratio and will get 

estimation the signal parameters. 

It is easy to see that with such an organization of experiments, there is no need 

for labor-intensive, with subjective features, methods of visual determination of 

«similarity» or «likeness» of histograms. At the present moment this is used in 

order to find similar features in different experiments. But this similarity should 

be caused by the same «external influences», which should clearly appear on the 

optimal histograms. In addition, it is sufficient definite and efficient to register 

the «cosmos-physical factor» even if in experiments on radioactive decay, and 

the need for proofs of the «similarity» of the histograms of various processes 

will fall away, just as indirect evidence loses its significance in the presence of 

direct proof. 

Another question of interest is the applicability in this case of existing methods 

for recognizing deterministic signals against a background of random noise. 

Judging by the statements of Shnoll, in this case these methods do not work. 

Indeed, if we turn to the methods of detecting and receiving signals against a 

noise background (Tikhonov [10], Baskakov [11]), then an analogy with the 

Shnoll experiment is not found. In this case, the signal as if is built into the 

noise, it is «inside» the noise, so select one or the other known method of 

optimal signal reception does not work. Correlation analysis for the noise signal 

is also ineffective. The author did not analyze the possibility of applying a new 

«standard» approach – wavelet-analysis conformably to the entire time series of 

data. But, judging by Shnoll's remark, this method is known to him, and 

apparently did not give anything. 

Nevertheless, in addition to the discussed above, another method of detecting 

and distinguishing the «useful signal» from Poisson's «white noise» was found 

in the limits of the proposed stochastic model. 

As already indicated in the derivation of formula (6), it is possible to divide the 

studying time interval T into r identical time cells. If the radioactive decay is a 

purely Poisson process, then under these conditions we have an equiprobability 

temporal distribution of the pulses at the output C in time cells, or for 

sufficiently large r  

0

, 1

T
d

d d
T

 


       (A.11) 

Under the conditions of the Shnol experiment, taking into account (A.5), this 

distribution has no longer equiprobability 

1

0

( ( ))( )
, 1

T
f F dd

d d 

     
   

 


     (A.12) 
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It is not difficult to see that when 0f  we return at (A.11). 

Having all the temporary information about the experiment, we can construct a 

histogram, using the partitioning of the interval T into r cells, i.e. /T r d . 

Each realization ( , , )ix i T n is considered as realization of a random process 

with period T and with a zero reference count of the position of the pulses. 

This means that the corresponding computer program divides the entire 

experiment period MT into M identical periods with the r cells, and then 

presents a histogram 

 [ ( ) / ; / ] ( , , ) , 1,...i

i

T
Hist X t M T r H x i T n j H j j r

r

 
    

 
 (A.13) 

 For a Poisson process the histogram (A.13) must correspond to a uniform 

distribution. 

Consider now the case corresponding 2T   and Fig. A1. Paradoxically, at 

first glance, but there must be a uniform distribution or close to it! 

In that affair half of the realizations give an increase in the «density» of the 

pulses during the positive half-cycle ( )F t , and the other half of the realizations 

gives on the average during the half-period the same decrease. As a result, the 

experimenter will receive a temporal histogram, practically corresponding to a 

uniform distribution. 

The optimal option for the time histogram corresponds 1T  . In this case 

we obtain from (A.12) 

1 1

1 1

1

0

( ) ( ) 1
1 ( )

( ( ))

f f f

T

f

F F
F

T T
F d



      
 

 
   

   
    

 

 (A.14) 

As a result, the histogram b at Fig.A2 corresponding to (A.14) presents  – a 

uniform distribution, as if modulated by an «external effect». A paradox here is 

too! The histogram b corresponds in average to a purely Poisson process with 

the distribution (3) and parameter 1  , i.e. Fig.A2, a.  

Note that probably in those paradoxes conceal the source of misunderstandings 

between Shnol and collaborators from one side and orthodox physicists on the 

other side.  The former receive histograms with a «fine structure», but without a 

physical model they can not in optimal way represent the results of their 

experiment. The second ones deny the Shnoll effect, without proof that in their 

experiment the distribution  is equally probable. At the same time, the signs 

of a «fine structure», which revealed with them, are unproven explained by 

some «statistical inertia». 
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6.3 Modeling distribution 

 
The previous was written before acquaintance with the recently published 

book of S.E. Shnoll (Shnoll [12]). Unfortunately, it lacks at least one complete 

experimental data protocol, as well as the entire process of treatment the results 

of observations with using the chosen method and obtaining a concrete 

conclusion on this basis. 

If the graphic characteristics of the 1957 experiment are given (Figure 1, 

2 of (Shnoll [12, p. 18])), then the protocol of this experiment that can be 

processed either by known methods of mathematical statistics or with the help 

of the above approach is not given. Nevertheless, already from this material it is 

possible to draw some conclusions, on the basis of the proposed model. 

 

 
Fig.A3.1. The graph of successive counts in chemical Shnoll experiment 
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Fig.A3.2. Histogram of chemical Shnoll experiment 

 

To do this, we obtain a table of values that form the histogram of FigA3.2. 

 

 

Table A3. Data that form the histogram of FigA3.2. 

n 1 2 3 4 5 6 7 8 9 10 11 12 

A 170 180 190 200 210 220 230 240 250 260 270 280 

h 1 5 1 3 7 5 7 0 4 6 4 2 

n 13 14 15 16 

 

 

17 18 19 

 

 

20 21 22 23 24 

A 290 300 310 320 330 340 350 360 370 380 390 400 

h 5 2 6 4 4 13 14 18 17 10 4 7 
n 25 26 27 28 29 30 31 32 33 34 35  

A 410 420 430 440 450 460 470 480 490 500 510  

h 2 5 1 2 5 5 0 0 1 1 2  

 

If using the Mathematica5 computer program, this data may be recorded as 

L= {{1,170},{5,180},{1,190},{3,200},{7,210},{5,220},{7,230},{0,240}, 

{4,250},{6,260},{4,270},{2,280},{5,290},{2,300},{6,310},{4,320},{4,330}, 

{13,340},{14,350},{18,360},{17,370},{10,380},{4,390},{7,400},{2,410}, 

{5,420},{1,430},{2,440},{5,450},{5,460},{0,470},{0,480},{1,490},{1,490}, 

{2,510}} 

These experimental data are conveniently considered as Bernoulli tests with a 

certain number of discrete numbered cells, in this case there are 35. The 

transition to the initial discrete variable is carried out by the formula  

0 010( 1), 170, 1...35A A n A n     . 

Accordingly, we convert the data of the Table A3.1. 

L'={{1,1},{5,2},{1,3},{3,4},{7,5},{5,6},{7,7},{0,8},{4,9},{6,10},{4,11}, 

{2,12},{5,13},{2,14},{6,15},{4,16},{4,17},{13,18},{14,19},{18,20},{17,21}, 

{10,22},{4,23},{7,24},{2,25},{5,26},{1,27},{2,28},{5,29},{5,30},{0,31}, 

{0,32},{1,33},{1,34},{2,35}}. 

Using the program Mathematica5, we obtain a histogram corresponding to 

FigA3.2. 
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Fig. A3.3. Histogram of convert data from Table A3. 

 

In this case, we are dealing with experiment for measuring the rate of a chemical 

reaction. The experimenters rightly conclude that the histogram of observations 

does not correspond to a priori expectations for the mean value and scatter of 

counts. This means that it is impossible to apply sufficient simple theoretical 

probability distributions (Poisson, Gauss), and accordingly nobody conclude 

that the observed value of the reaction rate is a constant. Factors influence at the 

experiment can be the following: 

1) The statistical spread of the measurements, which a priori was estimated by 

several %; 

2) Internal fluctuations and oscillatory processes of the chemical sample, 

leading to instability of measurements; 

3) External influences (irremovable?). 

As the result of experiments it was proved that the first two factors are not 

completely determining. For this it is sufficient to take several identical samples 

instead of one sample at discrete instants of time (after 15 seconds?) and to 

estimate their dispersion. In the theory of stochastic processes this is called as 

averaging over an «ensemble». In the simplest case, studying process is ergodic, 

and then the observed values of such system are distributed identically both 

«over the ensemble» and «temporal averaging». 

This means that histogram is formed not by single probability distribution, but 

by mixture of several such distributions. We also note that there are no grounds 

for choosing Poisson or Gaussian distributions as these distributions. They refer 

to purely theoretical limit distributions with infinite boundaries which are never 

realize in practice. 

It is appropriate to start from Binomial distributions, and for analyze the 

observations to build on the mathematical modeling of a mixture of such 

distributions. Indeed, in considered case we have a limited number of states or 

«cells» 35N  . 

Calculate the average by the formula for the histograms and get estimate  

xm  17, 4046. 

Calculate the variance by the formula for the histograms and get the value  

xD  58, 449. 
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Already from this it follows that the histogram can not be described with the aid 

of a Poisson distribution, since in this case x xm D   , i.e. at least 

approximately the average and variance should coincide. 

Further we find that the histogram can not be described by single binomial 

distribution, for which , (1 )x xm Np D Np p   , where 35N  for the 

given case is number of «cells», and p  is probability of «success», i.e. getting 

into the «cell». It is not difficult to see that for the histogram of FigA3.3 we 

have 351
2 4,x

hm
n xp D   . Thus, the results of the experiment can not be 

described using a Poisson distribution, which is the theoretical limit for the 

binomial distribution at 0,p n  . Also, the variance is too large for 

histogram corresponding to single binomial distribution. 

This follows from the solution of equations 

( 17,4; (1 ) 58,45np np p   ), – we have a unique solution {p-

2.3592, n-7.3754}, incompatible with the probability distribution parameters. 

For the future we take into account that the peak of the binomial distribution is 

located near the value xm np , and if we distinguish several peaks on the 

histogram, this most likely means that it corresponds to a mixture of binomial 

distributions. Given the value 35N  , and assuming that the histogram of 

FigA3.3 (corresponding to FigA3.2) is formed by a mixture of three binomial 

distributions having peaks at 6,19, 29n  , and this corresponds to the values 

6 19 29
35 35 35; ;p   for the densities distribution of the form 

( , ) (1 ) , 1...n n N n

NB N p C p p n N    

With the help of mathematical modeling, we now obtain a sequence of values 

simulating the experiment at FigA3.3. A random numbers generator is used, and 

for each test 173i   the result is determined by the mixture 

6
35 5

29
35 5 6

19
35

(35, ), [ ]

( ), (35, ), [ ], [ ]

(35, ),

i

i i
j

B j

n Random F F B j j

B j other i




   
 

 

Here i imitates discrete time readings, 
5

[ ]i – the whole part of the number. This 

means that counts that are multiply of 5 correspond 6
35(35, )B , in other cases, 

counts that are a multiply of 6 correspond 29
35(35, )B , and all remaining cases 

– 19
35(35, )B . 

As a result, we obtain histograms that can be compared with the histogram at 

Fig.A3.2-3. 
 



380        V. A. Meshkoff 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 27 28 29 30 31 33

2.5

5

7.5

10

12.5

15

17.5

    2 3 4 5 6 7 8 9 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

5

10

15

20

 
             a) {17.8671, 49.0578}                                     b) {17.6127, 54.3317} 

Fig.A3.4. Realizations of distribution F with 173M   and estimate ,x xm D  

In brackets it is point out values of the estimates ,x xm D for this realization. 

Obviously, they well agree with Shnoll experiment (FigA3.2-3), although the 

statistical fluctuations for the number of samples 173M   are large enough, 

and for clarification it is necessary to increase this value by next decimal order. 

Then the spread will decrease noticeably. We have for the number of samples 

1730M  the histogram of the form 
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                 a) {17.7538, 52.4194}                                b)  {17.804, 53.0923} 

Fig.A3.5. Realizations of distribution F with 1730M  and estimate ,x xm D  

 

From this we see that if for the realizations FigA3.2-3 and FigA3.4, from 

statistical fluctuations the error in the determination of peak values are possible, 

then for the realizations of FigA3.5 number of samples is already sufficient 

large, and these peak values can be determined practically accurately. 

On the basis of this, it can be concluded that in the case of the Shnoll 

experiment (FigA3.2-3), the mixture can consist of more than three numbers of 

distributions. However, having only one histogram of the 

experiment 173M  , and based on the research (Shnoll [12]), we can to make 

only preliminary conclusions. 

1) The stochastic properties of the chemical reaction can be characterized by 

mixture of binomial distributions. 

2) This, most likely, means that the chemical system has several discrete 

distinguishable states, with different rates of reaction. 
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3) Causes of transition from the main, most probable state of the chemical 

system to other, less likely states, can be as internal fluctuations or oscillations, 

so external influences, as well as their combination. 

At the molecular level, this may mean that there are several discrete states of the 

protein molecule or other substance, with different threshold values 0E . 

According to the theory set out in Section 6.1 of the Appendix, different 0E lead 

to different values of the rate of chemical reaction. Is this due to the quantum-

mechanical properties of the chemical system, or perhaps it is possible classic 

description, judging by the state of the research, now as yet is difficulty to 

determine.  

In any case, in this Shnoll experiment is actually found an interesting effect of 

the discrete rates of the chemical reaction, leading to significant deviations from 

a priori theoretical expectations. As reasonably noted in (Snoll [12]), there is 

need for further complicated and laborious studies. 

 

6.4 Histograms Shape Similarity 
 

At analyzing the Shnoll effect, researchers use a qualitative concept – 

«Histograms Shape Similarity» (HSS). A quantitative description of this 

concept is not presented, nor is it given a physical definition of this.  

In practice, one of the methods to determine the HSS consist in some smoothing 

out the shape of the histograms, laying over their graphs on each other for 

expertly subjective estimate – is there similarity or not. This corresponds to the 

most primitive method of estimation «by eye» by principle «fit-unfit» for the 

quality of «wares» on the works, using the simplest two-level scale. However, to 

deny the possibility of such a method for the problem of «proving the existence 

of the Shnoll effect», as some of his opponents do, is not constructive. 

 We will seek a strict definition of the concept of HSS in order to obtain a wider 

scale of estimation and to exclusion the subjective factor of it.  

Obviously, the concept of HSS in the general case should be applicable to any 

uniformity histograms. In the simplest case, these are histograms of a random 

process with two different states (such as tossing a coin), consisting of two 

rectangles with a unity base. 

Such histograms will be called bi-component. 

Suppose that series of experiments are carried out and their results are presented 

in the form 

    1 1 2 2 1, 2,, , , , ,i i i
i

h x h x h h N   

where iN  – number of all tests in i -th series. 

If now from these data to construct two histograms with indices i , j  and to lay 

them on each other, then it is not difficult to understand how in this case to 

obtain an estimate of the HSS. 
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                a)                                b)                            c)                           d) 

Fig.A4.1. Histograms a) 
1,ih ;b) 

2,ih ; c) its laying over ; d) graph of HSS 

 

Obviously, as this estimate we can choose the area of the rectangles common to 

both histograms. For the case i jN N N  mathematically this is expressed 

as 

  1, 1, 2, 2,, ( , ) ( , )i j i jHSS i j Min h h Min h h   

It is not difficult to see that, depending on the different shapes of such 

histograms, the domain of estimation can take on values 0 HSS N  , i.e. 

from complete coincidence to complete incompatibility. Thus, in this particular 

case of the simplest histograms we already have a discrete scale for estimating 

the HSS in a wide range. 

To compare histograms in the case i jN N , then should go to the frequencies 

of events, which is equivalent to presenting the results in the form 

    1 1 2 2 1, 2,, , , , , 1i
i i i

i
i

h
h x h x h h h

N
   , 

and, accordingly, we have a scale of estimates similar to probability, i.e. 

0 1,HSS   where 

  1, 1, 2, 2,, ( , ) ( , )i j i jHSS i j Min h h Min h h   

It is easy to generalize these results for multi-components histograms consisting 

of rectangles with a unity base, which have representing 

      1 1 2 2 ,

1

, , , , ... , , , ,
K

K K k i i
i

k

h x h x h x h N


  

Accordingly, for comparing histograms in the case i jN N N   we have 

  , ,

1

, ( , )
K

k i k j

k

HSS i j Min h h


  

For comparing histograms in the case i jN N , it is necessary get to 

frequencies, i.e. normalized histograms. We denote
,

,

k i

k i

i

h
h

N
 , and then we 

obtain generalization of the preceding formulas 
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       1 1 2 2 , , ,

1 1

, , , , ... , , , 1, , ( , )
K K

K K k i k i k j
i k k

h x h x h x h HSS i j Min h h
 

    

The last formulas correspond with histograms – analogues density function (DF) 

of probability, which does not have infinite jumps. Consequently, the concept of 

HSS can be generalized to the theoretical DF of random variables x  having 

properties 

( ) 0, ( ) 1f x f x dx





   

Further it will consider DF with finite boundaries, and write the last equation 

without specifying limits of integration. HSS for two different DF is their joint 

area, i.e. the projection of one flat figure of a unit area onto another with the 

same properties 

1 2 1 2 1 2( ( ), ( )) ( , ) ( ( ), ( ))HSS f x f x f f Min f x f x dx     

The last integral has presentation  

1 2 1 2

1 2 1 2 1 2

( ) ( ) ( ) ( )

( ( ), ( )) ( ) ( ) 1 ( ) ,
f x f x f x f x

Min f x f x dx f x dx f x dx f f dx

 

         

where it is designation  
, 0

0, 0

y y
y

y



 


, and accounted  

1 2 1 2

1 1

( ) ( ) ( ) ( )

( ) ( ) 1
f x f x f x f x

f x dx f x dx
 

   . 

 

That presentation transform with account of identity 

1 2 1 2 1 2 2 1 1 2( , ) ( ) ( ) ( ) ( ) 2 ( )f f f x f x dx f f dx f f dx f f dx              , 

where it is used that  

1 2 1 2 2 1( ) ( ) ( ) ( ) 0f x dx f x dx f f dx f f dx          . 

In result it is presentation 1
21 2 1 2( , ) 1 ( , )f f f f    . 

This can be interpreted as the existence of two ways of estimating HSS. If above 

it was used the method based on estimating the coincident area of the 

histograms or DF, then it is possible another method, connected with estimation 

difference of areas of these figures. At the same time, we find that Snoll 

qualitative approach to the definition of HSS makes sense. They practically 

visually estimate the proximity of the curves enveloping the histogram and DF, 

and this estimate corresponds exactly to 1 2 1 2( , ) ( ) ( )f f f x f x dx   – 

the integrated difference between the two curves. 

Although from mathematics point of view both methods are equivalent, but 

intuition and the empirical approach did not let down the experimenters. A 

visual qualitative estimate is really more expedient and more accurate to 
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produce with the help 1 2( , )f f , i.e. difference area, since in formula 

1
21 2 1 2( , ) 1 ( , )f f f f     it comes with a multiplier 1

2 . This already 

makes it possible to conclude that the results obtained in Shnoll experiments, 

despite the qualitative subjective methods of processing experimental data, are 

quite significant for «proving the existence theorem». 

It remains only to remove the existing shortcomings by applying a computer 

way of processing the measurement results on the basis of the above theory and 

formulas. Then let's show on a concrete example how to do it. 

As the request to provide real experimental data, E.S. Shnoll did not send it, and 

then we use the resources of the computer program Mathematica with the built-

in random number generator (RNG). 

With the help of the RNG is formed the array of primary «experimental data». A 

random variable is generated by a binomial distribution 

Binomial Distribution [n, p] = B [35,18
35 ] 

The random «series» consists from iN N  discrete samples of random values 

(r.v.), imitating, for example, the number of particles of radioactive radiation 

registered on the fixed period of time. 

The mathematical representation of the series has the form 

list = {17, 23, 17, 19, 10, ..., 20, 22, 20}. 

With the help of subroutine Frequencies [list], this representation is converted 

to the data for plotting the histogram:  

Frequencies [list] = {{3, 10}, {2, 11}, {4, 12}, …, {2, 24}, {2, 26}}. 

At 173N   histograms have a graphical representation as the Fig.A4.2. 

 

FigA3. 2 
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Fig.A4.2. Histogram for one of realizations 

Binomial Distribution [n, p] = B [35,18
35 ], N=173. 
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However now it is not the need to build many such graphs and visually compare 

them all pair-wise. The entire data array is eventually presented as a matrix with 

elements , ,( , ), 1...i k i k iH h x i M . Further all HSS estimates can be calculated 

automatically. For 100M   and all histograms of this array, we get estimates 

( , ),i jHSS H H i j and in turn get the distribution of these estimates at 

Fig.A4.3. 

For its construction are made ( 1) / 2 4950M M    pair-wise comparisons. 

 

 

122 124 112025 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 
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                125                               135                               145                                155                   HSS 

Fig.A4.3. Distribution of estimates ( , ),i jHSS H H i j
 

 

At that stage of calculations it is convenient pass to estimate HSS in 

percentages. For that it is sufficient transform the marks of horizontal scale at 

formulas  

% ( / ) 100%HSS HSS N   

For that histogram it is found the diapason of values  

% (122/173 162/173) 100% (73,5 93,6)%.HSS     

For corresponding with some threshold qualitative estimate, we can to set the 

value of the HSS, down which the histograms are not considered similar. 

Choosing, as example, % 90%, 156HSS HSS  , we get that the share 

of estimate % 90%HSS   is relatively small. The choice of this or any 

another threshold value, in general case can not have a logical and objective 

basis and is always conditional. But for estimation tasks of different histograms 

arrays the threshold value can be chosen, that allows objectively comparing 

histograms with certain properties. For considered example (Fig.A4.3) the 
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choice of the threshold value % 70%HSS   corresponds to the fact that for 

the given experiment all the histograms must be within similarity. 

But this may be a consequence of that the distribution of r.v. is enough compact, 

or the RNG creates a limited «variety» of histograms. In such cases, it is 

necessary to analyze the full information about HSS, i.e. of distribution 

Fig.A4.3. Visual analysis reveals that the form of distribution is well-shaped, 

without explicit expressed components, and we can conclude in favor of the first 

assumption, and with respect to RNG this indicates its qualitative functioning. 

Consider an array of histograms with a more complex distribution, when r.v. – a 

mixture of three binomial distributions: 
19 6 292 1 2

3 35 5 35 15 35
[35, ] [35, ] [35, ], 173.B B B N    

A typical histogram of the «series» , ,( , ), 1...i k i k iH h x i M  is shown at 

Fig.A4.4. 
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Fig.A4.4. Histogram for one of realizations 

19 6 292 1 2
3 35 5 35 15 35

[35, ] [35, ] [35, ], 173.B B B N    

 

At Fig.A4.5 it is the distribution ( , ),i jHSS H H i j    for comparing «series» 

by 100.M   
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Fig.A4.5. Distribution of estimates ( , ),i jHSS H H i j   

 
% (116/173 154/173) 100% (67,0 89,0)%.HSS     

We can see as the spread of values for this r.v. diminished, like the similarity of 

histograms in general. As if threshold 90% is not achieved at all, but choice of 

calibration threshold also % 70%HSS   is valid. It can be concluded that 

less compact r.v. give less similarity for histograms with all other equal 

conditions. This computer method is very sensitive to changes in the properties 

of r.v. 

Next we get the distribution of cross-comparisons ( , )i jHSS H H  for the two 

«series» arrays of «experimental» data discussed above. The distribution of 

Fig.A4.6 is based at the results 
2 4100 10M M    pair-wise histograms 

comparisons. 
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Fig.A4.6. Distribution of estimates ( , )i jHSS H H 
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It is understandable that for various r.v. similarity of histograms should be less 

than similarity of histograms of the same r.v. Really we may see that almost all 

comparisons is out of limits similarity with calibrating threshold 

% 70%HSS   

% (89/173 122/173) 100% (51,4 70,5)%.HSS     

Thus, the computer program built on the basis of the above theory, allows us to 

solve all the problems of estimating the HSS, which are stand up in the 

investigation of Shnoll effect. In result we have a wide scale of estimates, both 

in natural numbers and in percentages, ranging from 0% – total dissimilarity, 

and up to 100% – complete similarity. The subjective factor of obtaining 

estimates and auxiliary operations (histogram smoothing, subtraction of a priori 

distributions, etc.) are completely excluded. Processing the data arrays in above 

presentations and volumes on conventional personal computer takes some 

minutes.  

On this basis it is possible further refinement and improvement of evaluation 

methods. For example, HSS can be determined by matching the samples 

corresponding to the average values of the histograms (analogue of the 

mathematical expectation of a r.v.). For excluding the trend, the HSS estimate 

can be made at various offsets to the right or the left from that comparison point 

for finding the maximum HSS without taking into account the trend, and so on. 

Such improvements are not difficult to implement by adjusting the computer 

program. 

More complex task it is comparing histograms with r.v. of different nature, for 

example, radioactive decay, the rate of a chemical reaction, etc., requires 

validation for parameters of the scale transformation. After this we can use the 

methods outlined above. However, this task and the possibilities of its rigorous 

mathematical solution require separate consideration in each concrete case. 
 

Reference 

 
1. S.E. Shnoll, V.A. Kolombet, E.V. Pozharskii, T.A. Zenchenko, I.M. Zvereva, A.A. 
Konradov. Realization of discrete states during fluctuations in macroscopic processes, 

Phys. Usp., 41, 1025/1035, 1998 (Russian edition). 

2. S.E. Shnoll, T.A. Zenchenko, K.I. Zenchenko, E.V. Pozharskii, V.A. Kolombet, A.A. 

Konradov. Regular variation of the fine structure of statistical distributions as a 
consequence of cosmophysical agents, Phys. Usp., 43, 205/209, 2000 (Russian edition). 

3. Yu.M. Shirokov and N.P. Yudin. Nuclear physics, Nauka Publ., Moscow, 1980 (in 

Russian; English translation: Mir Publ., Moscow, 1982). 

4. V. A. Vatutin,T. M. Televinova, V. P. Chistyakov, Stochastic methods in physical 
researches, Nauka Publ., Moscow, 1985 (in Russian). 

5. W. Feller. An Introduction to Probability Theory and its Applications, Volume 1, Mir 

Publ., Moskow, 1984 (in Russian). 

6. N.G. Van Campen. Stochastic processes in physics and chemistry. Higher School 
Publ., Moskow, 1990 (in Russian). 

7. M. Born. Atomic physics, Mir Publ., 1965 (in Russian). 



Chaotic Modeling and Simulation (CMSIM)  2017:  361-389, 2017        389 

 
8. Derbin A.V., Bakhlanov S.V., Egorov A.I., Muratova V.N. Comment on the paper 

«Realization of discrete states during fluctuations in macroscopic processes». Phys. Usp., 

43, 199/202, 2000 (Russian edition). 

9. S.E. Shnoll. Regular changes in the fine structure of statistical distributions in random 
processes, as a consequence of arithmetic and cosmophysical reasons. Lecture at the 

seminar at Moscow State University, 2002. 

10. Tikhonov V. I. Statistical radio engineering, Soviet Radio Publ., Moscow. 1966 (in 

Russian). 
11. S.I. Baskakov. Radio engineering circuits and signals. Higher School Publ., Moscow, 

1988 (in Russian).  

12. S.E. Shnoll. Cosmophysical Factors in Stochastic Processes. Svenska fysikarkivet, 

Stockholm, 2009 (in Russian); American Research Press, Rehoboth (NM), 2012 (in 
English). 
 

 

 

 


