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1    Introduction 
 

Currently known methods for constructing uniform (homogeneous) composite 

chaotic multiattractors, that consist from identical chaotic attractors – elements 

of multiattractor (see, e.g., [1-8]). 

It is obvious that homogeneous multiattractors are only part of a larger family of 

similar objects, which should also include multiattractors, containing dissimilar 

elements. It is therefore of interest to find ways of introducing differences 

between the elements of compound chaotic multiattractors. 

Let us consider a method for constructing dynamical systems, having 

nonuniform composite chaotic multiattractor, local chaotic attractors which 

belong to the same dynamic system, but correspond to the different values of the 

constants, included in the equations of motion. 

The system of ordinary differential equations with constant coefficients 

describing the motion in a homogeneous composite chaotic multiattractor has 

the form [1]: 

 

  ,xf)x(Hx  ,                                       (1) 
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Here x=x1, x2, ... xn – variables of replication, each of which represents either the 

independent variable or linear combination of independent variables of the 

original dynamic system;  – constants of the linear part of the equations; fj() – 

nonlinear terms; j – constants included in the equations of non-linear members; 

Hj(xj) – replicate operators, providing creating copies of the chaotic attractor of 

the original dynamical system and combining them into a single multiattractor. 

Replicate (reduplication, replicator) operators (functions) are nonlinear 

functions of replication variables, consisting of line segments of unit slope, 

interconnected intermediate portions (which may be linear or non-linear 

segments of opposite slope, discontinuities of the first kind or the area of the 

hysteresis). 

From 0 to n-1 replicate functions in equations (1) can consist of a single 

segment with unit slope, i.e. to coincide with your argument. If the system (1) 

contains such, "singular", operators, replication will be performed only on part 

of replication variables. 

The action of m (m n) nondegenerate replicate operators on the dynamic 

system can be represented as a formation in the phase space of the system (1) m-

dimensional array of phase cells, within each of which is a fragment of the 

phase space is identical to the fragment of the phase space of the original 

dynamic system containing its attractor. The inner area of the phase cells 

correspond to the segments with unit slope. The intermediate segments replicate 

functions correspond to the layers of the phase space, dividing phase of the cell. 

Continuous replicate functions can be represented, for example, the following 

expression: 
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xP , hj – is half of the length of the phase 

cell, that contains the chaotic attractor of the original dynamical system, up to j-

th replication variable; Mj – number of local chaotic attractors, up to j-th 

replication variable from the original chaotic attractor; Nj is the number of local 

chaotic attractors down on the j-th replication variable from the original chaotic 

attractor; dj – module of the slope of the intermediate segments of replication 

function for the j-th replication variable; sj is a constant that takes into account 

the asymmetry of the attractor of the original dynamical system for the j-th 

replication variable. 

To local attractors differ, obviously, must vary the corresponding equations of 

motion. In the present case, this requires that the values of the constants in 

equations (1) had individual values in each phase bin. 

 

2    Establishment Differences between of the Elements of 

Multiattractor 

 
For this purpose it is necessary to multiply all the constants on a special weight 

("individualizing") functions, the values of which remain constant within each 

phase cell, but vary from cell to cell. In this case the arrays of constants and 

nonlinear terms in equations (1) is converted to the following form: 
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where  (x) – "individualizing" function; x = x1, x2, ... xn. 

Due to changes in the constants in the equations of motion is to change 

parameters of the attractor, including its configuration in the phase space of the 

system. In particular, changing the size and relative position of the phase cells 

containing local attractors. 
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3 Creating Conditions for Merging of Different Chaotic 

Attractors in a Single Multiattractor  

 
Be combined with each other such cells without gaps or overlaps in the general 

case impossible. Therefore, after introducing into the equations the weighting 

functions it is necessary to change the size and position (relative to the centers 

of the local coordinate systems) of all local attractors, so that the phase cells, 

containing them, again took the same still (same as in a homogeneous 

multiattractor) ordered arrangement. (The sizes of all local attractors and their 

position within their phase cells can convert, for example, to the size and 

position of a chaotic attractor of the original dynamic system). 

The normalization of the size of the local attractors requires to perform a local 

scale transformation of the phase space within each phase of the cell. That is, 

within the k-th cell have to do a change of variables of the form: 

x


j=k,j xj,     j=1,2,…n,                                  (3) 

 

where k,j – is the conversion factor scale in the k-th cell to j–th variable, which 

will change the size of the attractor by a new variable in k,j times. 

For conversion of the local attractors to the same position relative to the centers 

of the local coordinate system the expression (3) must be reduced to the form: 

 

x


j=k,j(xj+k,j),    j=1,2,…n, 

 

where k,j – is the interval displacement of the k-th local attractor for the j-th 

replication variable. 

In order for the transform coefficients of the scale and balancing the coefficients 

have individual values in each phase cell, the equations of motion need to enter 

the appropriate scaling and balancing functions, providing different values for 

scale and balancing coefficients within different phase cells. This can be done 

by conversion replicate operators to the following form: 

 

H


j(xj)=j(x)H(xj+j(x)),    j=1,2,…n, 

 

where j(x) and j(x) – respectively the scaling and balancing functions on the j-

th replication variable. The values of these functions, as well as the values of the 

weighting functions (x), remain constant within each phase of the cell but vary 

from cell to cell. 

After that, the equations describing the dynamics of a system with chaotic 

multiattractor composite, consisting of different local attractors will take final 

look: 

 

 



 Chaotic Modeling and Simulation (CMSIM)  3:  317-327        321 
 





































)x(

x

...

)x(

x

)x(

x

x

n

n

2

2

1

1













 ;                                                 (4) 

where   
dt

dx
x

j
j   ,    j=1,2,…n;   ),x(f)x(H)x(x *    ;    

 

 
 

 


























)x(xH)x(

...

)x(xH)x(

)x(xH)x(

)x(H

nnnn

2222

1111

*







 ;    























nnnn2n111n1n

n2n222222121

n1n112121111

)x(...)x()x(

............

)x(...)x()x(

)x(...)x()x(

)x(















  ; 

 

 
 

 





















nn

22

11

nmnm2n2n1n1nnn
*

22
*

11
*

n

m2m222222121nn
*

22
*

11
*

2

m1m112121111nn
*

22
*

11
*

1

)x(...,)x(,)x(),x(H),...x(H),x(Hf

...

)x(...,)x(,)x(),x(H),...x(H),x(Hf

)x(...,)x(,)x(),x(H),...x(H),x(Hf

,xf

















. 

 

4  Example of Heterogeneous Composite Chaotic 

Multiattractor, Consisting of Lorentz Attractors 

 

Let us consider an example. We introduce differences between the local 

attractors in "two-dimensional" composite multiattractor, consisting of Lorentz 

attractors, existing in a dynamic system following [10]: 
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Replication of the original Lorenz attractor in this system is performed in two 

replication variables: x and w=y+x ( – constant) by operators H1(x), H2(w) . 

 

Before the introduction of inhomogeneities in multiattractor of system (5) it 

must be transformed to the form (1), that is, to write the equations of motion 

with respect to the replication variables: 
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 (Due to the fact that in this system replication on z is not made, the operator 

H3(z) is degenerate: H3(z)=z). 

To introduce differences between the local attractors, assign the constants A, B, 

C distinct values in each phase bin. To do this, transform equation (6) to the 

form (4): 
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where A0, B0, C0 – constant values, corresponding to the attractor of initial 

dynamic system. 

Since the Lorenz attractor is symmetric on variables x and w the corresponding 

balancing function is equal to zero: 1(x,w)=2(x,w)=0, therefore in equations 

(7) 
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Replicates functions are defined by equations (2). Individualizing, scaling and 

balancing function, in the case of two-dimensional composite multiattractor can 

be represented by the following expression: 
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where A, B, C – arrays of values of weight coefficients specifying individual 

values of the constants A, B, C, respectively, in each phase cell; 1, 2, 3 – 

arrays of values of scaling factors that ensure the standardization of the sizes of 

all local attractors in terms of the variables x, w, z, respectively; 1, 2, 3 – 

arrays of values of the balancing factors that ensure the balancing of local 

attractors in terms of the variables x, w, z, respectively. 

S(x,w,) – is a function specifying the distribution of coefficients over cells in 

phase space; it is a sum of components, each of which has a specified value 

within a single cell and equals zero in all other cells. The equation defining this 

function, are shown in table.I. 
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
 








  h
d

h2
h

h4

d
),(1P ; 




















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
















d

1
1h2)(с . 

M1 and N1 – is the the number of local attractors respectively up and down on 

the variable x relatively of the attractor of the original dynamic system;  

M2 and N2 – is the number of local attractors respectively up and down on of 

the variable w relatively of the attractor of the original dynamic system;  

h1 and d1 – is half the length of the phase of the cell that contains the chaotic 

attractor of the original dynamical system, and the module of the slope of the 

intermediate segments of the replicate function, respectively, on the of the 

variable x;  

h2 and d2 – is half the length of the phase cell, that contains the chaotic 

attractor of the original dynamical system, and the module of the slope of the 

intermediate segments of the replicate function, respectively, on of the 

variable w. 

 

In Fig.1 shows an example of nonuniform chaotic multiattractor which is 

observed in the system (8) with the following constants: =-0.45; h1=17.1; 

h2=17.7; d1=d2=100; s1=s2=0; s3=24.65; A0=10.5; B0=28; C0=8/3; M=2; 

N=1; M1=2; M2=1; N1=N2=1; O1=O2=2. 
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

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


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
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


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3 . 

 

Moreover, these constants have the following values: 

 

Fig.1. Nonuniform compound chaotic multiattractor whith Lorenz 

local attractors 
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
















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

















75400100400

50202820

10001540025

B ; 



















7.015620

41383.0

805.0101

C . 

 

All local attractors in Fig.1 are given the same dimensions close to the 

dimensions of the attractor of the original dynamical system (it is located in the 

phase cell, containing the origin). 

Figure 2 illustrates the difference between local chaotic attractors that are part of 

multiattractor shown in Fig.1. 

 

 

In Fig.3 is example of time dependences of variable x. 
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Fig.2. Illustration of differences between local chaotic attractors 

that are part of multiattractor shown in Fig.1. 
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5    Conclusions 

Thus, there is the possibility of building dynamic systems that have 

composite chaotic multiattractors, in which it is possible a priori assignment of 

the differences between local chaotic attractors. The necessary modification of 

the original dynamic system with compound chaotic multiattractor, includes the 

introduction in the equations of motion of the three groups of additional 

nonlinear functions, one of which actually was responsible for the introduction 

of differences between the local attractors, and the other two for regulation of 

the size and configuration of the phase cells containing local chaotic attractors. 
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Fig.3. Example of time dependence of variable x. 
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