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Abstract: The stability and critical levels in development of the complex systems of 

different nature with time shifts are studied. Mathematical modeling and analysis is 

presented for revealing and investigation of the critical levels in systems for various 

natures associated with diverse complicated factors, in particular with shifted 
arguments. Intensive research in this direction may optimize management of the 

complex systems in financial-economic, natural and other fields. Construction of 

adequate mathematical models for development of complex systems, critical modes and 

their effective control are shown in paper on examples.  
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1    Introduction 

Development of the complex systems of various natures associated with diverse 

complex factors, in particular with the shifted arguments in the systems, have 

revealed critical processes and regimes in the contemporary area of research in 

this field during the last few decades [1-17]. The techniques to optimize the 

control of those systems, for example financial-economic, natural and others 

have been developed by Zhirmunsky & Kuzmin, Allen, Kazachkov, etc. [1, 2, 6, 

9, 12, 16, 17]. The systems’ development and their harmonization were in focus 

of many philosophers and scientists from different fields of science since 

ancient times, e.g. the Pythagoras adherents believed that planet motion is 

governed by the same numbers as the harmony of spheres (Fulier) [8],  rhythmic 

unity of processes at diverse organizational levels were considered by ancient 

China and India (Sima Xjan [18], Mahabharata [19]).  

Regularities of the critical levels, the Napierian number e as a module of 

the geometric progression, issues related to general problems of systems’ 

development in different branches of science and practical activities were 

considered in a number of books and papers, e.g. the ones by Zhirmunsky & 

Kuzmin (1990) [1], where a historical aspect was laid out together with the 

results of their own researches. The effective research method for a number of 

different developing systems has been elaborated and many examples of diverse 

origins, nature and scales were analyzed in detail and amazing features revealed 
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from just simple analysis of the features of equations, without their solution. 

Development and investigation of the physical and mathematical models for 

complex systems with shifted arguments and critical modes, their effective 

control are important for a wide range of modern problems, which are of 

paramount interest. Critical levels in a development of economic, banking, 

industry, technical, political and other systems, which may cause instability of 

the system and destroy a stable development of the system due to growing 

oscillations in a system, must be revealed and accounted in the strategic and 

tactical planning.  

The problem stated is vital for study, mathematical modeling and 

simulation. The theory of nonlinear dynamical systems with shifted (deviated) 

arguments provides a powerful mathematical tool for the study of complex 

systems and determination of critical levels in their development. Properties of 

many real objects essentially depend on the after-effects due to which their 

behavior in the next moment of time depends on the previous history of 

development, and not only on the current state of the object. The simplest cases 

of such systems have been studied in the theory of functional differential 

equations with shifted arguments (delay and forecast terms by time): [2, 3, 6]. 

Then during the recent times: [4, 5, 9-15]. It should be noted that real objects are 

more complicated and the mathematical models describing them, even with 

simplification described by systems of differential equations, contain the 

arguments depending on many deviating arguments, which, moreover, can 

themselves be time-dependent and to be linked: [1, 9, 16, 17].  

 

2    Statement by Mathematical Modeling of Complex Systems 

Over several decades the fundamental results in the theory of dynamical systems 

with delayed and forecasting arguments formed the theory of differential 

equations with shifted arguments applied during the last 30 years to modeling of 

complex systems from a wide range of science, technology, wildlife, economics, 

and the like. Development of numerical algorithms and their application to 

problem’s solution devoted a lot of effort [20-26]. But almost no attention was 

given to the equations with shifted arguments. Only Baker, et al. [3] and Yan 

[26] provided classification task with forecasting arguments. In relation to 

nonlinear dynamical systems with delayed and forecasting arguments, they were 

considered for modeling of potentially hazardous objects of nuclear energy [4, 

9-12, 17]. Also in some papers the dynamics of populations’ crashing in 

biological systems and high voltage power lines were considered. Interestingly, 

in the theory of motion control with delay in time the application of necessary 

optimality conditions in the form of Pontryagin's maximum principle leads to 

the conjugate system of the equations with forecasting arguments [22]. 

The effective numerical methods and methods of averaging the 

differential, integral, as well as the integro-differential operators allowing 

performing mathematical simulation in a wide range of complex processes and 

systems are applied for solution of differential equations with delayed and 

forecasting arguments. In particular, modeling the dynamics of behavior of 
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potentially hazardous industries, based on statistical information about the 

objects. Since such complex objects in most cases do not allow constructing the 

precise deterministic mathematical models due to big or even huge number of 

influential parameters and often unknown links between them, then the 

aggregate model built on statistics about the object can be useful for studying 

the nature and behaviors of the objects.  

Development of the models for studying the evolution of complex systems 

(economic, political, social, banking, physical, combined by different nature and 

properties, etc.) in a rather general setting requires consideration of the delayed 

and forecasting temporal arguments. This is because development of the system 

is really accompanied by some delays compared to the planned indicators due to 

various reasons, as well as orientation for leading indicators what is known as 

the term "foreseen adaptation". Such phenomena have actually been observed in 

a number of different processes and systems in wildlife and technical origin [1].  

 

3   Development of the mathematical models for complex systems 

One of the first equation for system development was considered in 18
th
 century 

by T.R. Malthus [25, 27] who was a pivotal figure in development of the 

empirical study of human populations, well known for his Essay on the 

Principle of Population, the central theme of which was tendency for human 

numbers to `outstrip the means of subsistence', based on solution of the equation  

                                                   
  

  
   ,                                                 (1) 

where у,t are the function describing evolution of some magnitude and time, 

respectively, k is the growth factor of the system, which generally can be 

function of time. 

The solution of equation (1) for the simplest case with a constant growth 

rate k has shown that a law of population growth was seen as threatening to 

society and spawned the philosophical course of Malthusianism, which justified 

the war as a necessary mechanism for regulation of population growth. It was a 

big mistake based on a simplified equation of the system’s growth. In fact, later 

on it was shown that the system can start development following the law (1), but 

further the coefficient k depends on time, e.g., decreases according the 

hyperbolic law (so called allometric process). Thus, the function’s increase rate 

is going down with time. Since that time, there were many attempts to use this 

as a simple equation of development, and many others, more accurately given 

the characteristics of the systems under consideration.  

The observation of a number of systems has shown the development 

processes better described in several other equations: over time, in some cases, 

coefficient k is being gradually or abruptly falling down, and this leads to 

solutions, in which there is no exponential growth function. This behavior 

corresponds better to the realities of different systems of diverse nature: first 

there is an intensive development process, which is adjusted according to the 
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results of the development and analysis of the development’s needs. In the real 

systems some time delays and forecasting terms are met.  

The linearity of the systems’ development may be broken in many cases 

(systems with more complex behavior), which in the example of equation (1) 

can be demonstrated as follows: 

                                                
  

  
        ,                                           (2) 

where A is the maximum possible value of y under consideration. Limit values 

are defined by natural or artificial means in the specific system. For example, it 

may be a limit of a number of population for existing conditions with respect to 

given power supplies, the number of workers for the industry, if the industry is 

considered as a complex system and the limiting possible value is known, a 

limited amount of financial provision in development of the bank, and the like. 

As seen from (2), the growth stops at the level y=A upon reaching the limit. 

Another kind nonlinearity of the system (1) is available due to dependence 

of the coefficient k against time and the function y against deviating arguments: 

                                              ,                                             (3) 

where τ is a value of time delay of the system. For solving the equation (3) the 

initial conditions on the time interval τ that precedes the starting point are 

needed, to specify in time or to examine the mechanism of delay (lag) only after 

a period of time τ. This is a significant feature of the equations with time delay, 

which greatly complicates solution (the numerical solution of differential 

equations with automatic selection of time step must approximate point values 

with a shift in time, which may not be available by automatic partitioning of the 

time interval). Equation (3) has much broader  applications to modeling the 

development of complex systems because it accounts a possibility of time 

delays in the system’s development relative to a current state of the system.  

By positive factor k in the equation (3), the solution is increasing function. 

If k is negative – attenuation system (decrease of the function y, that is, the drop 

development, extinction of populations, reducing the Bank's funding, etc. - 

depending on the nature of the complex system that is modeled). The equations 

with shifted arguments have more complex modes and features, in particular, 

critical stages of development and the possible instabilities that rapidly lead to a 

destruction of the system. Such regimes are particularly important and must be 

thoroughly investigated. In complex real systems the type (3) can be many 

different and each of the plurality of interrelated system parameters may have its 

own delay, which significantly complicates the mathematical model of the 

system. The solution of (3) with the constant τ and k can be sought in the form:  

                            ,                               (4) 

where  is the initial value у at ,  are the Eigen values of the 

differential operator, u, v are, respectively, the real and imaginary part of the 

Eigen values,  is the imaginary unit. By substitution of (4) into (3) the 

equation for calculation of the Eigen values is got (after deletion by ): 
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                                                .                                                     (5) 

Applying the Euler's formula to (5), for the real and imaginary parts of the 

equation (5) yields the following equation array: 

                              ,  ,                            (6) 

where from follows: at v=0 two processes are possible: monotonously 

exponentially increasing (u>0) and decreasing (u<0) in time. Obviously the 

region by  is  n=0,1,2, 

… for u>0. Because v is considered positive, from the second equation (6) 

yields the attainable region by parameter v:  

therefore the common region by  is . Thus, the 

oscillating solution growing in time is realized by  which means 

that it starts from . For unstable regime the equation (4) results in  

                                           ,                                              (7) 

where  is a frequency of oscillations depending on the time delay . 

Thus, the bigger is a time delay, the lower is frequency of oscillations in a 

system. From (7) for the time , which corresponds to argument by cosine 

going from 0 to , when  (system fall abruptly down), is , . 

The corresponding critical values of the system achieved during the stable 

development are estimated by (6) as follows: 

                                            ,                                          (8) 

where from follows that before starting v≠0 the achieved by  status of the 

system is . The last is solved with , 

u , where from  is estimated as critical level of the 

parameters. Consequently, (8) results in a circle , when  and 

circle  for . The higher is time delay, the lower is 

growing rate of the system and the narrower is region by parameters u,v. 

Thus, when v≠0, the oscillating modes of system’s development with 

exponentially decreasing (u<0) and exponentially increasing (u>0) amplitudes 

become available. In the first case, the oscillating system decays with time and 

is sustainable (can lead to degeneration of the system, the cessation of its 

operation), whereas in the second case, growing over time, the oscillation 

process will quickly destroy the system (growing in time instability cause 

catastrophe). For example, in a case of financial systems this means that the 

rocking of growth and decrease leads to a total collapse. So one needs to find 

the conditions, under which prevention of mode oscillations growing with time 

is possible (control of the system). Thus, it has to evolve, growing smoothly, 

without oscillations. From such general speculations one can come to 

conclusion that the financing of the project should be closely monitored for 
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features of the development, which are modeled by the appropriate equations 

and scheduled for possible delays in time.  

If the time delay exceeds an upper limit for the system, there may be 

fluctuations in the parameters growing over time. The growing amplitude of 

oscillations may destroy the system. Therefore with the time delays in the 

development up to an extreme level nothing dangerous happens. But when the 

limits are exceeded, the system quickly collapses due to growing oscillations. 

 

4 Critical levels of the system and its control in the pre-crisis regime 

The study of the equations (6) by v≠0 concerning an occurrence of values u>0 

leads to the conditions: ,  where 

n=0,1,2,... Analysis shows that the first critical value causes fluctuations of the 

system with growing amplitude is kτ=3π/2. From (6) is got: u , 

which leads to the numerical solution u . Thus, a stable development 

of the system is possible only to a limit in the time delay . 

 
Fig. 1. Critical levels of u versus  and corresponding values y of the real 

system’s development  and forecasting system without delays 

 

This means for a given u the constant increase in time delay is permitted only up 

to a critical value  followed by rapid destruction of the system. 

Based on the above, the strategy for sustainable development with time 

delay requires managing the system starting from any value of rate u = u1. Once 

it attains a critical value of delay , the system’s control must 

reduce the time delay or reduce the rate of the system’s development. These 

features can be clearly traced in Fig. 1 done according to [1], where the critical 

levels of a growth rate of the system and associated delay in the first quadrant 

show the critical dependence of a rate of time delay for the system’s 

development. And in the fourth quadrant the dependence of the lag (time delay) 



  Chaotic Modeling and Simulation (CMSIM)  3: 329-341 , 2017    335 
 

is shown, while in the third – y versus time. Regimes of stable development of 

the system according to Fig. 1 are below the curve . 

The development can be optimally predicted in the following way. If the 

growth of the system starts with a rate u1 at the beginning of such system’s grow 

rate, it may be maintained only until the time t = t1, when the increasing delay 

of the system at the time  becomes critical (line u = u1 crosses a critical 

curve  ) at the point . Then further growth of the system with the 

specified rate is impossible, provided the further growth with the same time 

delay. It is necessary to reduce the rate of growth of the system, e.g. to some u = 

u2, then there is an additional system resource regarding the increase in the 

delay to the intersection of the critical curve at a lower level of growth. If 

possible, for sustainable development it is necessary to reduce the growth of 

time delay, which in many cases is poorly controlled or not controlled at all. 

Under the case of uncontrolled time delay one can improve the situation and 

control the system reducing the growth rate every moment when the critical 

values of time delay are got. In reality, the shift points of the control system 

according to the above described scenario can be realized in the following way. 

For example, the Bank finances the project, which for the equation of 

development has been identified in a specified form, whose solution was found.  

Assume that y(t) for sustainable development is known. If one needs to 

take into account some possible time delays in the system and manage it for 

optimal development and lack of critical modes, which destroy the system, it is 

necessary to determine a delay by comparing the characteristics of the system in 

real-time calculated, as shown in Fig. 1. The forecasted system’s parameters 

yp(t) obtained without taking into account the possible time delay in comparison 

with y(t) obtained for a given delay are compared to identical values, resulting 

in delays expressed by the following expressions: ,  ,  

, and so on. Thus, it is possible to determine the actual delay, if the 

results of the behavior of a real system are known.  

Any control of complex systems has not only to consider the time lag, but 

it is also based on the forecast, and therefore the mechanism of adjustment of 

the managed system, its sustainability must be proactive. Therefore, in many 

cases the development management of the systems requires simultaneous and 

consistent taking into account both the time delay and the switching 

mechanisms of adjustment (adaptation) of the system under the future features. 

To study characteristic mechanisms of timing and their impact on sustainable 

development of systems it can be considered, for example, the following 

mathematical model: 

                                       ,                                              (9) 

where  is the time forecasting term of the system.  

Equation (9) means that the rate of development of the system focuses not 

on current performance as in equation (1) and not on previous performance as in 

equation (3), but on a future performance. To solve (9), the initial conditions on 

the time interval from zero to τ must be specified. For example, funded project 
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and its execution at each moment of time has a rate that does not match the 

current level of funding, and one that meets the future, a higher level, which is 

the head. This is a case of development in advance. Modeling the development 

of complex systems with forecasting terms has interesting features that are 

worth exploring and are used for optimal control of systems’ development. 

Considering solution of (9) in the form (4) and substituting it in (9), the 

equation for the Eigen values is: . Researching possible solutions of 

this equation yields the highest value kτ, by which solution exists: 

                                          ,  ,                                           (10) 

where it is clear that as similarly to equation with time delay, when v=0 there 

are two cases: exponentially increasing (u>0) and exponentially decreasing 

(u<0) in time. When v≠0, the oscillating modes of development in a system with 

exponentially decreasing (u<0) and exponentially increasing (u>0) amplitudes 

take place. In the first case, the process of oscillation is damped over time and is 

sustainable (can lead to the degeneration of the system, the cessation of its 

operation). The rates of development of the system, taking into account 

forecasting in time that are below , will lead to increasing time-

oscillations of the system, leading to its destruction (see in Fig. 1). 

According to the above and (10), similar to the previous case, here 

parameters of the growing system satisfy the same circle , when 

 and circle  for . The higher is time delay, the 

narrower is region by parameters u,v. Thus, the strategy of development is in the 

range between the circles  and . By the 

fixed time delay and time forecast, parameters of oscillations are interconnceted. 

The above considered forces to conclude that for sustainable development of the 

system both processes of the time delay and time forecasting must be correlated 

in a system development. A stable development is possible only between these 

two strategies and the actual behavior of the system can only be inside the 

region between them. Example of building the control strategy for system with 

prevention of critical regimes in steady development is considered below.  

Given the peculiarities of behavior of system’s development with shifted 

arguments, one can construct a control strategy in the following way. Let at the 

initial moment of time (t = 0) the intensity of development equal to , delay is 

absent (τ=0), so the system according to (4) develops following the law 

                                                                                                   (11) 

at time t , where the delay is equal to , then it must 

switch the rate of development to the border region, which is leading to the 

arguments . Next, the system continues stable growth 

law (9) with the new rate  point-in-time when the delay 

reaches a critical level of development for a strategy with delay (Fig. 1). Then 

again, one can go to the lower critical curve, which corresponds to the 

development strategy with forecasting . And so on to 

provide the desired level of system development. For the control of a time delay 
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it is useful to have function  obtained for example as a polynomial 

satisfying the conditions: t , ; t , ; t , : 

                        .                           (12) 

5 Peculiarities of the non-linear systems  

Equation (1) is linear; equation (2) is nonlinear. The nonlinearity in the system 

by the mathematical model (2) is relatively simple. But the equation (3) with 

delayed arguments seems linear, but it contains the worst type of nonlinearity 

(2). If in equation (3) replace the function of delayed argument y(t-τ) according 

to the Elsholtz’s theorem [6], which is satisfied for monotone functions, then the 

function y(t-τ) is represented in the Taylor series relative to the point t by τ with 

accuracy to the linear terms, since the linear approximation is the most precise 

in this case: , then equation (3) takes the form: 

                                                                         (13) 

Equation (13) differs relatively little from (1) and delay affects only the 

time deformation. But when the function is non-monotonic, such solutions can 

be oscillatory, the theorem of Elsholtz is broken, and the left side (13) is 

complete Taylor series to the derivative of y and the powers of τ. The last case is 

exactly critical, examples of which have just been considered. Significantly 

stronger effect of the time delay in case of the nonlinear equation (2) is: 

                                  ,                                 (14) 

which even for the case of monotonous growing, when Elsholtz theorem 

satisfies, leads to the strong nonlinear equation of the form 

                           ,                 (15) 

containing the nonlinear terms of different type. 

The nonlinearity of the systems cause unpredictable properties and 

characteristics of their behavior including the existence of various special and 

critical parameters and system modes. Possible points of bifurcation in a system 

correspond to the situations, where the system abruptly jumps from one mode to 

another (usually completely different from the previous one). There are 

available also strange attractors (sets of trajectories in the phase space of the 

system in which all other trajectories approach under any initial conditions), and 

the other features. Solution of equation (2) by initial condition: ,  is:                                   

                                                                                          (16) 

Because  the denominator in (16) is non-zero, the non-linear system, in 

contrast to the linear one, is growing in time smoothly. The limit value  is 
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achieved at . Now the equation (14) is considered in the following 

simplified form with initial condition: , : 

                                       ,                                       (17) 

where time delay is accounted only in the main term to the right but not in the 

multiplier A-y as far as this term controls the current state of the system and its 

closeness to the limit. Solution of the (17) is found in the form similar to the 

above obtained (16) for the equation without time shifts:   

                                           z=u+iv.                                    (18) 

Substituting (18) into (17) yields characteristic equation similar to (5), (6), 

with only difference multiplier A: 

                   .            (19) 

Surprisingly the result for non-linear system with the time delay is absolutely 

similar to the above obtained for the linear development equation. The solution 

(18) can be presented in the following complete form 

                          .                       (20) 

Imaginary part is omitted in (20). Here A  n= 0,1,2,..., 

where from  is estimated as critical level of the parameter u for 

transformation of the monotonous solution to the oscillating one. The frequency 

of oscillation in non-linear system  is the same as in the linear one. 

Despite the non-oscillating solution following to (19) is similar to the above 

considered linear development equation with time delay, its solution (20) is 

stable for both v=0, as well as for v≠0.  

Parameters u,v according to (19) are interconnected as follows 

                                          .                                      (21) 

The equation (21) differs from (8) only with additional multiplier A in this non-

linear case. At v=0 two processes are possible: monotonous with exponentially 

increasing in time (u>0) term but not exponentially growing, just monotonously 

rapidly achieving the limit A, and oscillating process with increasing amplitude 

but just to limit A (at u<0). Obviously from (19), similar to the above, the 

oscillating solution growing in time up to limit A is realized by  

which means that it starts from , when (20) gets oscillations growing 

only up to limit A due to non-linear effects. For the monotonous regime (v=0)  

                                                                                           (22) 

Thus, from (22) is seen that y is going with time to limit value A. The oscillating 

regime according to (20) by  is going to limit .                            
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6 Complex systems with many parameters and shifted arguments 

Complex systems with a large number of governing parameters and delays or 

forecasting terms are difficult to investigate in the above-mentioned way. But 

the general patterns are similar on a qualitative level and must be accounted. 

The aggregated mathematical model of a potentially hazardous object in nuclear 

energy developed in [17], studied in detail in [6, 9-12] has the following form: 

            
6

0 0

1

[ ( )] ( ),i
i ij j ij i i

j

dz
b b z t z t

dt
 



      1 6,i                            (23) 

where 
ij  is the time delay for the corresponding parameters. Here   - system’s 

parameters,    - coefficients of the mathematical model, which are determined 

for each model based on the results of its functioning.  

The equation array (23) is more complex than the equations discussed 

above and allows analyzing the critical levels by described methods. It was 

investigated numerically [6, 9-12] for many different situations. Surprisingly 

despite 6 interconnected nonlinear equations and a lot of shifted arguments the 

solutions did not reveal instability in contrast to the linear equations with shifted 

arguments. One of typical solution in presented in Fig. 2: 

 t 

Fig. 2 Parameters of the potentially hazardous object modeled on computer 

 

7    Conclusions 

The equations for the development of systems with delayed and forecasting 

arguments have been considered. The critical levels revealed allow building an 

optimal strategy for the development. Nonlinear equations with limit levels of 

the development revealed absolutely stable regimes in contrast to the linear 

systems having unstable regimes due to shifted arguments. 
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