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1 Introduction

A prominent role in the development of the analytical methods of the probabil-
ity theory played Abraham DeMoivre, Pierre Simon de Laplace, Karl Friederich
Gauss, Siméon Denis Poisson. Beginning with the middle of the 19th century
and in the 20th, the development of the probability theory is connected fre-
quently with the name of P.L. Chebyshev, A.A. Markov and A.M. Lyapunov.

On the other hand the initial developments in the design of information-
processing systems dealt mainly with the problems of hardware design and the
integration of the hardware to make it perform a given task. As the hard-
ware problems were solved, however, it became evident that the theoretical
techniques necessary for designing the hardware portion of a system were not
adequate to study the abstract characteristics of complete digital systems. A
whole new area of research had to be undertaken to study these properties. The
results appear in a new scientific discipline that can be defined as the study of
the dynamic behavior of information systems.

Within this area we find not only problems that deal with digital computers
but also problems associated with such topics as describing the behavior of
nerve networks, the representation of the properties of languages, the analysis
of information-transmission systems, and the modeling of how man perceives
and reacts to his environment. In this sense we mention that the algorithms of
the stochastic approximation type have found applications in new and diverse
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areas. For example, the applications in signal processing can be successfully
developed, whether or not they are called stochastic approximations. Such
algorithms occur frequently in practical systems for the purpose of noise or
interface cancellation, the optimization of ”post processing” or ”equalization”
filters in time varying communication channels, adaptive antenna systems, and
many related applications.

On the other hand, when a stochastic differential equation is considered
if it is allowed for some randomness in some of its coefficients, it will be of-
ten obtained a so-called stochastic differential equation which is a more realistic
mathematical model of the considered situation. Many practical problems con-
duct us to this notion. Therefore, it is clear that any solution of a stochastic
differential equation must involve some randomness. In other words one can
hope to be able to say something about the probability distribution of the
solutions.

At the same time, results on almost sure convergence of stochastic approx-
imation processes are often proved by a separation of deterministic (pathwise)
and stochastic considerations. The basic idea is to show that a ”distance” be-
tween estimate and solution itself has the tendency to become smaller. The
so-called first Lyapunov method of investigation does not use knowledge of a
solution. Thus, in deterministic numerical analysis gradient of Newton pro-
cedures for minimizing or maximizing F by a recursive sequence (Xn) are
investigated by a Taylor expansion of F (Xn+1) around Xn - a device which
has been used in stochastic approximation for the first time by J.R. Blum, H.J.
Kushner, Z. Schuss, M.T. Wasan, M.B. Nevel’son & R.S. Hasminskij.

Since the Brownian motion was firstly investigated by L. Bachelier and A.
Einstein, and then N. Wiener had the possiblity to put it on a firm mathe-
matical foundation, many of the scientific works have been done on their appli-
cations in physics, chemistry, communications, population genetics, and other
fields.

Many researchers were fascinated by the great beauty of the theory of Brow-
nian motion and many results have been obtained in the last decades. As for
example, among other things, in the theory of diffusion processes and related
topics by K. Itô and H.P. McKean Jr. ([8]); in the theory of stochastic dif-
ferential equations and their applications or in stochastic approximation by Z.
Schuss ([21]), M.T. Wasan ([24]); and in stochastic calculus and its applications
to some problems in finance by J.M. Steele ([22]).

In this line we shall consider together some fundamental problems for the
study of the systems, discussed separatelly, in some previous Sessions of Chaotic
Modeling and Simulation International Conferences.

Among other things the usefulness of such results in the study of the systems
is emphasized.

2 On Markov processes. A general vision on some
fundamental aspects

It is observed that the usual class of Markov processes which we consider has
many times some restrictions which do not cover many interesting processes.
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This is the reason for which we try often to obtain some extensions of this
notion. Research in this direction is due, among others, to Kiyosi Itô. In
this context we shall refer here to Markov processes and their impact for some
practical problems (see for example [7], [8], [9]).

Thus, we develop some aspects regarding to the Markov processes in the
vision of Kiyosi Itô. Firstly, we introduce the transition probabilities and we
define the Markov process. Then, we shall refer to the Markov property as
a fundamental concept in the study of the systems and, in this context, we
consider some aspects regarding the extended Markov property and the strong
Markov property.

2.1 Transition probabilities

Let S be a state space and consider a particle which moves in S. Also, suppose
that the particle starting at x at the present moment will move into the set
A ⊂ S with probability pt(x,A) after t units of time, “irrespectively of its
past motion”, that is to say, this motion is considered to have a Markovian
character.

The transition probabilities of this motion are {pt(x,A)}t,x,A and we con-
sidered that the time parameter t ∈ T = [0,+∞).

The state space S is assumed to be a compact Hausdorff space with a count-
able open base, so that it is homeomorphic with a compact separable metric
space by the Urysohn’s metrization theorem. The σ-field generated by the open
sets (the topological σ-field on S) is denoted by K(S). Therefore, a Borel set
A is a set in K(S).

The mean value

m = M(µ) =

∫
R

xµ(dx)

is used for the center and the scattering degree of a one-dimensional probability
measure µ having the second order moment finite, and the variance of µ is
defined by

σ2 = σ2(µ) =

∫
R

(x−m)2µ(dx).

On the other hand, from the Tchebychev’s inequality, for any t > 0, we
have

µ(m− tσ,m+ tσ) ≤ 1

t2
,

so that several properties of 1-dimensional probability measures can be derived.
Note that in the case when the considered probability measure has no finite

second order moment, σ becomes useless. In such a case one can introduce
the central value and the dispersion that will play similar roles as m and σ for
general 1-dimensional probability measures.

Remark 1. We recall that J. L. Doob defined the central value γ = γ(µ) as
being the real number γ which verifies the following relation∫

R

arctg(x− γ)µ(dx)) = 0.
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Here, the existence and the uniqueness of γ follows from the fact that

arctg(x− γ) is continuous and decreases strictly from
π

2
to −π

2
, for x fixed, as

γ moves from −∞ to +∞.

The dispersion δ is defined as follows

δ = δ(µ) = − log

∫ ∫
R2

e−|x−y|µ(dx)µ(dy).

We will assume that the transition probabilities {pt(x,A)}t∈T,x∈S,A∈K(S)

satisfy the following conditions:

(1) for t and A fixed,
a) the transition probabilities are Borel measurable in x;
b) pt(x,A) is a probability measure in A;

(2) p0(x,A) = δx(A) (i.e. the δ-measure concentrated at x);

(3) pt(x, ·)
weak−→ pt(x0, ·) as x→ x0 for any t fixed, that is

lim
x→x0

∫
f(y)pt(x, dy) =

∫
f(y)pt(x0, dy)

for all continuous functions f on S;
(4) pt(x, U(x)) −→ 1 as t↘ 0, for any neighborhood U(x) of x;
(5) the Chapman-Kolmogorov equation holds:

ps+t(x,A) =

∫
S

pt(x, dy)ps(y,A).

The transition operators can be defined in a similar manner. Consider
C = C(S) to be the space of all continuous functions (it is a separable Banach
space with the supremum norm).

The operators pt, defined by

(ptf)(x) =

∫
S

pt(x, dy)f(y), f ∈ C

are called transition operators.
The conditions for the transition probabilities can be adapted to the tran-

sition operators, but we do not give the details here (for more details see [7],
[8], [9], [1]).

Remark 2. Let us observe that the conditions (1) - (5) above are satisfied for
Brownian transition probabilities. One can define

pt(x, dy) =
1

t
√

2π
e−

(y−x)2

2t2 dy in R

pt(∞, A) = δ∞A.

Definition 21 A Markov process is a system of stochastic processes

{Xt(ω), t ∈ T, ω ∈ (Ω,K,Pa)}a∈S ,

that is for each a ∈ S, {Xt}t∈S is a stochastic process defined on the probability
space (Ω,K,Pa).
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The transition probabilities of a Markov process will be denoted by {p(t, a,B)},
and we will denote by {Ht} the transition semigroup and by Rα be the resolvent
operator of {Ht}.

The next results shows that p(t, a,B), Ht and Rα can be expressed in terms
of the process as follows (we do not insist on this aspect):

Theorem 21 Let f be a function in C(S). Then

i) p(t, a,B) = Pa(Xt ∈ B).
ii) For Ea(·) =

∫
Ω
·Pa(dω) one has Htf(a) = Ea(f(Xt)).

iii) Rαf(a) = Ea
(∫∞

0
e−αtf(Xt)dt

)
.

2.2 On Markov property - A concept useful in the study of the
systems

The Markov property is given in the theorem below:

Theorem 22 Let Γ ∈ K be given. The following is true

Pa(θtω ∈ Γ |Kt) = PXt(ω)(Γ ) a.s.(Pa),

that is to say
Pa(θ−1t Γ |Kt) = PXt(ω)(Γ ).

Remark 3. The following notation can be used

PXt(ω)(Γ ) = Pb(Γ )|b=Xt(ω).

Proof. It will be suffice to show that

Pa(θ−1t Γ ∩D) = Ea(PXt(Γ ), D) (1)

for Γ ∈ K and D ∈ Kt.
We distinguish the following three cases.

I. Let us consider Γ and D as follows:

Γ = {Xs1 ∈ B1}
⋂
{Xs2 ∈ B2}

⋂
· · ·
⋂
{Xsn ∈ Bn},

and
D = {Xt1 ∈ A1}

⋂
{Xt2 ∈ A2}

⋂
· · ·
⋂
{Xtm∈Am}

with

0 ≤ s1 < s2 < · · · < sn

0 ≤ t1 < t2 < · · · < tm ≤ t

and Bi, Aj ∈ K(S).
Now it will be observed that the both sides in (1) are expressed as integrals
on Sm+n in terms of transition probabilities. Thus, one can see that they
are equal.
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II. Let now be Γ as in the case I and let us denote by D a general member of
Kt. For Γ fixed the family D of all D’s satisfying (1) is a Dynkin class. If
M is the family of all M ’s in the case I then, this family is multiplicative
and M⊂ D. In this way it follows

D(M) ⊂ D = K(M) = Kt

and one can conclude that, for Γ in the case I and for D general in Kt, the
equality (1) holds.

III. (General case) This case can be proved in the same manner as case II by
fixing an arbitrary D ∈ Kt.
It will follows that Pa(Γ ) is Borel measurable in a for any Γ ∈ K.

Corollaire 21

Ea(G ◦ θt, D) = Ea(EXt(G), D) for G ∈ B(K), D ∈ Kt,
Ea(F · (G ◦ θt)) = Ea(F · EXt(G)) for G ∈ B(K), F ∈ B(Kt),
Ea(G ◦ θt|Kt) = EXt(G) a.s. (Pa) for G ∈ B(K).

2.3 The extended Markov property

It is interesting to see that the Markov property can be extended. We will refer
to the following theorem as the extended Markov property.

Theorem 23 Let Γ ∈ K be given. The following is true

Pa(θtω ∈ Γ |Kt+) = PXt(Γ ) a.s. (Pa).

Proof. Returning to the equality (1) above, we will prove it now for D ∈ Kt+.
To this end, we will show the following equality:

Ea(f1(Xs1(θtω)) · . . . · fn(Xsn(θtω)), D) = Ea(EXt(f1(Xs1) · . . . · fn(Xsn)), D)
(2)

for fi ∈ C(S), D ∈ Kt+ and 0 ≤ s1 < s2 < . . . < sn.
But D ∈ Kt+h for h > 0, so that by Corollary 21 we obtain

Ea(f1(Xs1(θt+hω))·. . .·fn(Xsn(θt+hω)), D) = Ea(EXt+h(f1(Xs1)·. . .·fn(Xsn)), D).
(3)

It can be seen that

Ea(f1(Xs1) · . . . · fn(Xsn))

is a continuous function of a, since

Ea(f1(Xs1) · . . . · fn(Xsn)) = Hs1(f1 · . . . · (Hsn−1−sn−2
(fn−1 ·Hsn−sn−1

fn)))

and Hs : C −→ C.
Since Xt(ω) is right continuous in t, we obtain

fi(Xsi(θt+hω)) = fi(Xsi+t+h(ω)) −→ fi(Xsi+t(ω)) = fi(Xsi(θtω))



Chaotic Modeling and Simulation (CMSIM) 3: 389–402, 2018 395

as h↘ 0.
The equality (2) follows now by taking the limit in (3) with h↘ 0.
In this way, for Gi open in S, from (2) we obtain the following equality

Ea(Xsi(θtω) ∈ G1, · · · , Xsn(θtω) ∈ Gn, D) =

= Ea(PXt(Xs1 ∈ G1, · · · , Xsn ∈ Gn), D), (4)

and therefore we can use Dynkin’s theorem, concluding the proof.

2.4 The strong Markov property

As it is known, the intuitive meaning of a Markov process (for example X(t)) is
the fact that such a processes “forgets” the past, provided that tn−1 is regarded
as the present.

Now, the intuitive meaning of the Markov property is that under the con-
dition that the path is known up to time t, the future motion would be as if it
started at the point Xt(ω) ∈ S.

The following question arises: what will happen if the time t is replaced by
a random time σ(ω) ?

Definition 22 A random time σ : Ω → [0,∞] is called a ”stopping time” with
respect to {Kt} if

{σ ≤ t} ∈ Kt (5)

for every t.

Note that the above condition is equivalent to the condition

{σ < t} ∈ Kt (6)

for every t.

Remark 4. Note that if the condition (5) holds, then

{σ < t} =
⋃
n

{
σ ≤ t− 1

n

}
∈ Kt,

and if the condition (6) holds, then

{σ ≤ t} =
⋂
n≥m

{
σ < t+

1

n

}
∈ Kt+ 1

m

for every m.
Therefore

{σ < t} ∈
⋂
m

Kt+ 1
m

= Kt

by right continuity of Kt. A trivial example is the ”deterministic time” σ ≡ t.

Theorem (Dynkin’s formula). Let us suppose that σ is a stopping time with
Ea(σ) <∞. Then, for u ∈ D(A) it follows:

Ea

(∫ ∞

0

Au(Xt)dt

)
= Ea(u(Xσ))− u(a).
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We will consider now the strong property (for more details and proofs, see
[7], [8], [9], [14], [1]).

The strong Markov property is contained in the theorem below

Theorem 24 The following equalities hold a.s.

i) Pµ(θ−1σ Γ |Kσ) = PXσ (Γ ) a.s. (Pµ) on {σ <∞}, where Γ ∈ K.
ii) Eµ(F (θσω|Kσ) = EXσ (F ) a.s. (Pµ) on {σ <∞}, where F is bounded

and K-measurable.

Remark 5. The following conclusions are true.

i) θσω = θσ(ω)ω for any ω with σ(ω) <∞, and

θ−1σ Γ = {ω : σ(ω) <∞ and θσω ∈ Γ}.

ii) We notice that µ is arbitrary, and for this reason both F (θσω) and EXσ (F )
are K-measurable.

A version of the strong Markov property is given below. It is referred to as
the time-dependent strong Markov property.

Theorem 25 If F (t, ω) is bounded and K[0,∞] ×K −measurable, then the
following equality holds

Eµ(F (σ, θσω)|Kσ) = Ea(F (t, ω))|t=σ,a=Xσ a.s. (Pµ). (7)

Proof. Since σ is Kσ-measurable, it follows that

F (t, ω) = f(t)G(ω).

Considering the additivity of both sides of (7) with respect to F , the general
case follows.

Remark 6. One can observe that such a study implies stochastic calculus and
approximation. Various applications, results and comment has been developed,
among others by B. Øksendal ([14]), B. Øksendal & A. Sulem ([15]), J.M.
Steele ([22]), Z. Schuss ([21]), K. Itô ([9]). At the same time, more details and
related topics can be found also in G.V. Orman ([16], [17]). And a general
presentation of Markov processes t the perspective of Kiyosi Itô is developed
by D.W. Stroock ([23]).

3 From chaotic motion to Brownian motion - new
aspects of the study

In a previous CHAOS Conference we have discussed about this subject which is
very useful in the random systems analysis. Now, we come back to this subject
and complete it with new aspects.

Thus, as in the previous our study, let us imagine a chaotic motion of
a particle of colloidal size immersed in a fluid. Such a chaotic motion of a
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particle is called, usually, Brownian motion and the particle which performs
such a motion is referred to as a Brownian particle. Such a chaotic perpetual
motion of a Brownian particle is the result of the collisions of particle with the
molecules of the fluid in which there is.

But this particle is much bigger and also heavier than the molecules of the
fluid which it collide, and then each collision has a negligible effect, while the
superposition of many small interactions will produce an observable effect.

On the other hand, for a Brownian particle such molecular collisions ap-
pear in a very rapid succession, their number being enormous. For a so high
frequency, evidently, the small changes in the particle’s path, caused by each
single impact, are too fine to be observable. For this reason the exact path of
the particle can be described only by statistical methods.

Thus, the influence of the fluid on the motion of a Brownian particle can
be described by the combination of two forces in the following way.

1. The considered particle is much larger than the particle of the fluid so that
the cumulated effect of the interaction between the Browni-an particle and
the fluid may be taken as having a hydrodynamical character. Thus, the
first of the forces acting on the Brownian particle may be considered to
be the forces of dynamical friction. It is known that the frictional force
exerted by the fluid on a small sphere immersed in it is determined from
the Stockes’s law: the drag force per unit mass acting on a spherical particle

of radius a is given by −βv, with β =
6πaη

m
, where m is the mass of the

particle, η is the coefficient of dynamical viscosity of the fluid, and v is the
velocity of particle.

2. The other force acting on the Brownian particle is caused by the individ-
ual collisions with the particles of the fluid in which there is. This force
produces instantaneous changes in the acceleration of the particle. Fur-
thermore, this force is random both in direction and in magnitude, and one
can say that it is a fluctuating force. It will be denoted by f(t). For f(t)
the following assumptions are made:
i The function f(t) is statistically independent of v(t).
ii f(t) has variations much more frequent than the variations in v(t).
iii f(t) has the average equal to zero.

In these conditions, the Newton’s equations of motion are given by the
following stochastic differential equation

dbfv(t)

dt
= −βv(t) + f(t) (8)

which is called the Langevin’s equation.
From the Langevin’s equation, the statistical properties of the function f(t)

can be obtained if its solution will be in correspondence with known physical
laws. One can observe that the solution of (8) determines the transition prob-
ability density (in brief the transition density) ρ(v, tv0) of the random process
v(t), which verifies the equation

P (v(t) ∈ A) |v(0) = v0) =

∫
A

ρ(v, t,v0)dv. (9)
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Now, the initial velocity v0 can be supposed to be given. Then, one gets

ρ(v, t,v0)→ δ(v − v0)

as t→ 0 where δ is the Dirac′s δ-function. On the other hand, from the sta-
tistical physics it is known that the transition density ρ(v, t,v0) must approach
the Maxwell’s density for the temperature T of the surrounding medium and
this, independently of v0 as t→∞. We come to the limit

ρ(v, t,v0)→
( m

2πkT

) 3
2

e−
m|ν|2
2kT (10)

as t → ∞. This means, in other words, that the fluctuating force f(t) has
certain statistical properties. For the formal solution is as follows (according
to (8))

v(t) = v0 e
−βt +

t∫
0

e−β(t−s) f(z) dz. (11)

Therefore, the integral and the difference v(t)−v0 e
−βt must have the same

statistical properties. Since

v(t)− v0 e
−βt ≈ v(t)

for latge values of t, it results that the integral must have in the limit a normal
density. But the integral can be written as a finite Riemann sum in the following
way

t∫
0

e−β(t−s) f(z) dz ≈

≡ e−βt
∑
n

e βn∆t f(n∆t)∆t ≡ e−βt
∑
n

e βn∆t∆gn

where was denoted ∆gn = f(n∆t)∆t. Hence, for large values of t, the following
approximation is found

v ≈
∑
n

e β(n∆t−t)∆gn. (12)

Here ∆gn is a random variable which gives the random accelerations trans-
mited to a Brownian particle in an inteval of time (n∆t), (n+1)∆t. Therefore,
the random variables ∆gn can be assumed to be statistically independent of
each other, the successive collisions being completely chaotic.

One can assume that, in comparison with the average period of a single
fluctuation of the function gn, the time intervals ∆t are enough large. The
function gn has a period of fluctuation of the order of the time between succes-
sive collisions which appear between the Brownian particle and the molecules
of the fluid.
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Thus, if ∆gn is choosen to be a normal random variable with mean zero,
it follows that ν(t) will be also a normal random variable, as it is desired. By
means of 12, and setting D2(∆gn) = 2q∆t one gets

E|v|2 =
∑
n

2q∆t e 2β(n∆t−t) →

→ 2q

t∫
0

e 2β(z−t) dz =
q

β
(1− e− 2βt) (13)

as ∆t→ 0.
But, at the same time, one has

E|v|2 → kT

m

as t→∞, so that q is given by the equality below

q =
βkT

m
. (14)

If x(t) is the notation for the displacement of the Brownian particle then,
we have

x(t) = x0 +

t∫
0

v(z)dz. (15)

Now substituting (11) in (15) one gets

x(t) = x0 +

t∫
0

v0 e
−βz + e−βz

z∫
0

eβyf(y)dy

 dz.

If the order of integration is changed the following estimation follows

x(t)− x0 −
v0(1− e−βt)

β
=

= −e−βt
t∫

0

eβzf(z)dz

β
+

t∫
0

f(z)dz

β
≡

t∫
0

g(z)f(z)dz, (16)

where g(z) =
1− eβ(z−t)

β
. If a finite sum approximation to the integral is used

again then, we come to the conclusion that

x(t)− x0 −
v0(1− e−βt)

β

is a normal random variable with the mean equal to zero and the variance given
by the equality

σ2 = 2q

t∫
0

g2(z)dz =
q

β3
(2βt+ 4e−βt − e−2βt − 3). (17)
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Regarding to the probability density of the displacement x(t), it is given by
the follwoing equality

p(x, t,x0,v0) =

[
mβ2

2kT (2βt+ 4e−βt − e−2βt − 3)

] 3
2

×

× e
−

mβ2
∣∣∣x− x0

1−e−βt
β

∣∣∣2
2kT (2βt+ 4e−βt − e−2βt − 3) . (18)

Finally, for sufficiently large values of t it results

p(x, t,x0,v0) ≈ 1

(4πDt)
3
2

e−
|x−x0|

2

4Dt (19)

where D is

D =
kT

mβ
=

kT

6πaη
. (20)

and is referred to as the diffusion coefficient.
Therefore, it results that p(x, t,x0,v0) satisfies the diffusion equation given

below
∂p(x, t,x0,v0)

∂t
= D∆p(x, t,x0,v0). (21)

The expression of D in (20) was obtained by A. Einstein.

Observation 31 From physics it is known the following result due to Maxwell:
Let us suppose that the energy is proportional to the number of particles in a
gas and let us denoted E = γn, where γ is a constant independent of n. Then,

P{a < v1i < b} =

b∫
a

(
1− x2m

2γn

) 3n−3
2

dx

+( 2γn
m )

1
2∫

−( 2γn
m )

1
2

(
1− x2m

2γn

) 3n−3
2

dx

→

→
(

3m

4πγ

) 1
2

b∫
a

e
−

3mx2

4γ dx.

Now, for γ =
3kT

2
the following Maxwell’s result is found

lim
n→∞

P{a < v1i < b} =
( m

2πkT

) 1
2

b∫
a

e
−
mx2

2kT dx.

T is called the ”absolute temperature”, while k is the ”Boltzmann’s con-
stant”.
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Conclusion 31 We think that when, in various problems, we say ”chaos” or
”chaotic and complex systems” or we use another similar expression to define
the comportment of some natural phenomena, in fact we imagine phenomena
similarly to a Brownian motion which is a more realistic model of such phe-
nomena.

Remark 7. More details, proofs and other aspects can be found in K. Itô ([7],
[9]), K. Itô and H. P. McKean Jr. ([8]), A. T. Bharucha-Reid ([1]), B. Øksendal
([14]). And a general presentation of Markov processes from the perspective of
Kiyosi Itô is developed by D.W. Stroock ([23]).
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7. Itô, K. Selected Papers. Springer-Verlag, Berlin Heidelberg, 1987.
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13. Loève, M., Probability theory II. Springer-Verlag, New York, Heidelberg Berlin,

1978.
14. Øksendal, B., Stochastic Differential Equations: An Introduction with Applica-

tions. Sixth Edition. Springer-Verlag, 2003.
15. B. Øksendal, A. Sulem, Applied Stochastic Control of Jump Diffusions, Springer,

2007.
16. Orman, G.V., Lectures on Stochastic Approximation Methods and Related Topics.

Preprint. ”Gerhard Mercator” University, Duisburg, Germany, 2001.
17. Orman, G.V., Handbook of Limit Theorems and Stochastic Approximation.

”Transilvania” University Press, Brasov, 2003.
18. Orman, G.V., Capitole de matematici aplicate. Ed. Albastră, MicroInformatica,
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Princeton, 2003.

24. Wasan, M.T., Stochastic Approximation. Cambridge University Press, 1969.


