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Abstract: The purpose of this paper is to study the interaction of the oscillating 

system and the shaker, which is driven by the amplifier. The amplifier is 

considered as self-exciting system which has a power source of limited power. 

The current produced by it is converted by the shaker into mechanical force, 

which leads to vibrations of the shaker base. A mechanical oscillator is mounted 

on the shaker base. The influence of oscillator vibrations on the formation of the 

driving force leads to a number of specific effects, in particular, to the 

Sommerfeld’s effect. New nonlinear effects in the coupled shaker–oscillator  

system is studied in details. Steady-state regimes of the constructed model are 

investigated by methods of the theory of dynamical systems. Regular periodic 

and chaotic regimes are found and studied.  

Keywords: shaker-oscillator system, Sommerfeld-Kononenko’s effect, chaotic 

steady-state regimes. 

 

1. Introduction 

 
The coupling effect between an excitation machine and vibrational loads was 

found by Sommerfeld [1-3], is a universal phenomenon and a manifestation of 

the law of conservation of energy.  A rather complete study of the Sommerfeld 

effect has been given in the works of Kononenko [4], so that we call these 

phenomena as Sommerfeld-Kononenko’s effect [5-8]. As shown by Kononenko  

for a linear oscillator  with  limited  excitation  the characteristics  of a  

nonlinear oscillator arise,  such  as the occurrence  of  instability  regions. In 

view of this, in  the  present  study, the existence of new possible characteristics  

is investigated for  an oscillator with damping and an electrodynamic shaker. 

Presence of both direct and feedback interactions between the oscillator and the 

shaker are main goal of our modelling and study in present paper. The mutual 

influence between an oscillating system and the mechanism of its excitation, 

when the later has limited power, gives rise to a number of unusual phenomena 

in their behaviour [9-12]. The effects of the interaction of an electrodynamic 

shaker powered by a vacuum-tube amplifier of limited power, and a linear 
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oscillator which affects the amplitude and frequency of the driving force, are 

studied in this paper. 
 

2. The mathematical model with strong interaction  

 
Let us consider an oscillator with damping, mounted on the base of a shaker 

which undergoes displacements ( )w t  (Fig. 1). The equation of vibrations of the 

oscillator of mass m with the vibrational resistance coefficient 0  has the 

following form  

 

mx x cx mw                                         (1) 

 

The base of the shaker has a displacement ( )w t  as a result of the action of the 

force 0 0H i  [5, 7] applied to the coil 1 ,L which is rigidly attached to the base. 

The quantity 0H  is a constant characterizing the electromagnetic field of the 

vibrator; 0i  is the current of the shaker circuit. The law of motion of the centre 

of mass of the coil with the base (their mass is 1m ) and the oscillating system 

may be written in the form  

 

 1 0 0( )m w m w x H i                                        (2) 

 

The current of the shaker is related to the amplifier current 2 3( )i i and the 

displacement ( )w t  by the differential relationship [5, 7]  

 

0 2 3
0 1 0

( )
( ) 0

di d i i dw
L L M H

dt dt dt


                              (3) 

 

Suppose that the tube operates under conditions when the anodic current equals 

[5]  

 
3

0 1 3( ) ( )a g a g ai a a e De a e De                               (4) 

 

where ge  is the tube grid voltage; ae is the anodic voltage; D  is the 

penetration factor of the tube; and   is a small positive parameter.  

Applying the method of contour currents, we can write the following 

Kirchhoff’s equations for each branch of the generator current: 

                                        1 2 3 ,ai i i i    
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                                        1,a a ae E R i   

                                       
2

2 ,a k k

di
e L R i

dt
    

                                      
2

2 3

1
,k k

k

di
L R i i dt

dt C
    

                                       
2 .c c k

di
e E M

dt
    

 
 

Fig. 1. Schema of a shaker with an amplifier  interacting with an  oscillator . 

 

After setting up these Kirchhoff's equation for each branch of the amplifier 

current, let us reduce them to one equation with respect to a new variable 

 u t  ( )dt g ge E   ( gE is the constant component of the voltage ge ). 

We retain only terms of the first order of smallness. Here we assume 

that   2

0 1 1 2 0 3L  M / L   L   ,  D  ,  H           . 

Selecting the slope of the tube characteristic in (4), 1a  in accordance with the 

equation of amplitude balance, we assume it to be equal to  

 

 1       0 .
( )

c a a c

a c c

R R C L
a a a

R M DL
 


  


  

 

With this value of 1a  we obtain the following nonlinear equation for the 

function  u t :   
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2
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a c c c

c c a c c c c

E M M Md u du
u a a

L C R L C L C dtdt
 

 
     

 
 

32

1 32

c c c
g

a c a c c c c

R R du M du
a u a E x

R L R L C dt L C dt


  

   
       

  
        (5) 

 

Here  

2 a c

c c a

R R

L C R



 ; 3

0 1 1( )( )

c

c c a

MM m

L C R L L m m
 

 
 

The tube obtains energy from the energy sources aE  and gE , which are 

rectifiers of the supply voltage. We assume the rectifiers to be nonideal sources 

of energy [4], since the output voltage E  of the rectifier depends on the current 

i  flowing through the load (of the tube oscillator, in this case), according to the 

external characteristic |5], which is given approximately by ocE  E  ri   

( ocE   is the open-circuit voltage; r  is a quantity equivalent to the rectifier 

resistance). Neglecting the grid current, we assume g ocE   E .  By 

considering the equality of rectifier output voltage on a shunt of high 

capacitance aC  (assuming aC 1/  ), we obtain the following relationship 

for the voltage Ea :  

1 2( )e

a oc

e

R du
E E ru t r

R r dt
 


  


                             (6) 

where eR  is the equivalent resistance (the sum of aR , the tube resistance, and 

r ); 1r  and 2r  are constants determined by the parameters of the tube 

oscillator and rectifier.  

Therefore, Ea  is not a constant but depends on the variable function  u t .  

This fact clearly must be reflected in the formulation of  u t .  After 

substituting (6) into (5), the 

components    a c c l 2M / R L C [ r u  r du / dt ]c    reflecting the nonideal 

character of the energy source of the excitation mechanism, appear on the right 

side. Terms on the right side of equation (5) may be regarded as ‘internal forces’ 

and as the effect of interaction with the oscillator. Therefore, we write  

 
2

2

02
, ,

d u du du dx
u L u K u

dt dt dt dt
  

   
      

   
                    (7) 
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Here  u,  du / dtL  is the sum of the internal forces causing energy influx; 

 u,  du / dtK  is the sum of the internal resistance forces; 0  is the 

frequency of the self-oscillation conditions of the unloaded excitation 

mechanism; i.e., 0  and amplitude 0  are determined for the function 

0 0cosu t   from the serf-oscillation equation  

 
2

2

02
, , 0

d u du du
u L u K u

dt dt dt
 

   
      

   
 

 

We call the function  u,  du / dtL  the static characteristic of the energy 

source, since under stationary conditions   u,  du / dtL  opposes the energy 

loss  u,  du / dtK .  These functions have the following form: 

2
1 2

2

3

( , ) [( ) ]

3 ( ) ;

c c

a c c a c c

c
g

c c

du r M R du
L u a

dt R L C R L C dt

M du
a E

L C dt

  
 

   
 



 

2 3

3(u, ) 3 ( ) ;c
g

c c

du M du du
K a E

dt L C dt dt
 

 
  

 
                                           (8) 

And the frequency Ω could be determined from 

 
2

2 2 1 1
0 u u.c c

a c c a c

r M R

R L C R L

  
     

 

We should note that the nonideal model of the shaker with amplifier (7) has 

principal difference from the model constructed and used in the papers [9-11], 

where it has unlimited energy source of variable current. So it is impossible to 

influence on the frequency what is crucial for stability of the process of 

interaction [13]. 

Transforming equations. (1), (2), and (3) and expressing the current 2 3( )i i by 

 u t  enable us to define  
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2

2

12

0

,
d x du dx

x u
dt dt dt


    


                       (9) 

where  

2 1

1

1

( )
;

c m m

mm


   3

1 0 1

;
( )

c

c a

HMR

m M R L L
 


 

0

;a cR C





 
0 1

1

( )
.

m m

mm





  

Concluding, the system of equations (7) and (9) represents of the coupled 

shaker- oscillator model with nonideal amplifier. 

 

3. Numerical simulations results  
 

Introducing the following dimensionless variables  

,
g

u

E


  ,

d

d


 


  1 ,

x
x

w
 1

1 ,
dx

x
d

 0 ,t    

the system of equations  (7) and (9) can be written in the form: 

 

2 3
1 2 3 4

1

5 6 0 1 7 .

p

x p

p x p

 

        

     

 


     



    

            (10)                         

 

Where the coefficients are 

32
1 1 32

0

( ) 3 ;c c c
g

a c c c ca c c

M R Mr
a a E

R L C L CR L C
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 

 
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  
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The system (10) is nonlinear, so we may study it numerically. The following 

values of variables and constants are used in our numerical simulations [7]:  

700 ;gE V 2000 ;aE V 56.5 10 A/ V;a   160 ;aR   10 ;cR  

9 3
3 5.184 10 A/ V ;a X    0.015;D  0.094 ;cL H 100 ;L H

1 ;M H 0.275 ;cM H 1.0465 .cC mF  

Using these variables one may obtain the following coefficients for the system 

(10):  

0 0.995,   1 0.0535,   2 0.63 ,X   3 0.21 ,X   4 0.5   

5 0.0604,    6 0.12,   7 0.01,  X is the bifurcation parameter. 

The phase portraits of steady state solutions for the initial conditions 

0.3  , 0.2,  0.1x p  are shown in Figure 2.  The limit cycle graph is 

shown in Figure 2 a) and corresponds to regular regimes of oscillations [14] 

with periodically changing variables  and  . Of course, the variables x and p 

are also regular and periodic in time. The phase portrait for chaotic regimes of 

interaction are presented in Figure 2 b).  

The spectrum in Figure 3 a) has discrete peaks. So that, this graph indicates that 

there is regular regimes in the system at X=1.0. With increasing value of X the 

transition to chaos occurs. Thus, at X=2.0 chaos is realized in the system, when 

the spectrum in Figure 3 b) is continuous [14] and the projection of the phase 

portrait occupies some area in the phase space (Fig.2 b)). 

 
                        a                                                                               b                                              

Fig. 2. Graphs of projection of the phase portrait at X=1 a), X=2 b)  
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                        a                                                                               b                                               

Fig. 3. Graphs of the power spectra at X=1 a), X=2 b)  

 

 

4. Conclusions 

 
The coupled shaker-oscillator model, which takes into account both direct and 

reverse influence of subsystems is worked out. The methods of modern theory 

of the dynamical systems are used to study laws of the steady-state regimes of 

the complex model with strong interaction. The chaotic regimes were found out. 

The dynamics of the oscillator system is in good correspondence with 

experimental information of a limited power shaker behavior [10, 11, 12]. 

Found irregularities of phase trajectories of the complex model depend on 

intensity of the amplifier tube. 
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