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Abstract. It is shown firstly that the forced Van der Pol oscillator and the forced Duffing 

oscillator are transformed into two-dimensional (2-D) models by a commonly used 
transformation and/or the Liénard transformation, and the 2-D models are compared with 

the FitzHugh-Nagumo (FHN) model, which explains neural phenomena. Then, the 

related 2-D solvable chaos maps to the FHN model are derived from the 2-D chaos 

solutions, and the solutions corresponding to the orbit of neural cells are numerically  
calculated with the algorithm and a MATLAB program. Finally, the mean free time, the 

particle-like and the wavefront-like properties of orbit, and the dynamic stability region 

for neural cells are briefly discussed on the basis of the numerical result. 
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1  Introduction 
 

Over a long period, papers and books on nonlinear dynamics have appeared in 

order to describe the nonlinear science [1, 2]. As is well discussed, nonlinear 

difference equations and differential equations have arisen widely in the field of 

biological, physical, chemical, mechanical, electrical and social sciences, and 

are known to possess a rich spectrum of dynamical behavior as chaos in many 

respects [3-6]. In the meantime, scientists, mathematicians and engineers have 

come to understand the complicated behavior and the fundamentals of chaos [7, 

8]. Particularly, a population growth in biology has been afforded by the   

simplest nonlinear difference equation called the logistic map, which is 

analogous to the logistic function and equation [9]. After many attempts, a 

piecewise-linear electric circuit is accepted to generate chaos [10], and various 

chaotic sequences have been proposed for pseudo-random numbers and 

cryptosystems [11-13]. 

On the other hand, for biological systems, a mathematical model to explain the 

electrical behavior through the surface membrane of squid giant axons has been 

presented [14], and impulse trains in the model have been considered by the 

phase space methods and the equivalent electric circuit as one of a large class of 

nonlinear systems, which show excitable and oscillatory behaviors [15, 16]. In 

addition, dynamic experiments have been performed for the evidence of chaotic 
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behaviors of the giant neuron in marine mollusk, and the chaotic field potential 

of rat hippocampus is recorded by using microelectrodes [17, 18].  

Recently, chaos functions and its application to engineering have been proposed, 

and one-dimensional (1-D), 2-D and 3-D solvable chaos maps are derived from 

the chaos solutions [19, 20]. The aim of this paper is firstly to show in Section 2 

that the forced Van der Pol oscillator [21] and the forced Duffing oscillator [22, 

23] are transformed into 2-D models, and are compared with the FitzHugh-

Nagumo (FHN) model [15, 16] for neural phenomena. Secondly, 2-D solvable 

chaos maps corresponding to the FHN model are derived in Section 3. Finally, 

Section 4 is devoted to the numerical calculation with the algorithm and a 

MATLAB program. In addition, from the numerical result, the mean free time, 

the particle-like and the wavefront-like properties of orbit, and the dynamic 

stability region for neural cells are briefly discussed. Conclusions are 

summarized in the last Section. 

 

2  The FitzHugh-Nagumo Model 
 

For nonlinear differential equations of the second order, we consider firstly the 

forced Van der Pol oscillator [21] given by 

 

),sin()1( 0

2 tExxxx                                        (1) 

 

which represents a model for a simple vacuum tube oscillator circuit with a 

nonlinear damping term, where )(txx   is the proposition coordinate function 

of time t, and },,0{ 0  E  are the system parameters. By a commonly used 

transformation xy  , we have the following 2-D model from (1) as 

 

,yx                                                                                 (2) 

),sin()1( 0

2 tExyxy                                      (3) 

 

where the term )sin(0 tE   in (3) is the external force of (1). Moreover, by the 

Liénard transformation [15]; 
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we find another 2-D model from (1) and (4) as 
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which is known to have chaotic behaviors in the equivalent circuit with 

sinusoidal forcing [24]. 

Secondly, we discuss the forced Duffing oscillator of the form; 

 

                              ),cos(3 txxxx                                        (7) 

 

where )(txx   is the displacement at time t, x  is the velosity, and x  is the 

acceleration. The coefficients },,,{   are real constants, and the rhs of (7) 

gives a periodic driving force. Here, it is well known that randam oscillations 

occuring in the equivalent nonlinear electric circuit to (7), have been studied, 

and the points of orbit give the Japanese attractor on the phase-plane [22, 23]. 

By the commonly used transformation xy  , the differential equation (7) is 

rewritten into a 2-D model as  

 

,yx                                                                                  (8) 

),cos(3 tyxxy                                         (9) 

 

which has a similar form to the 2-D model (2) and (3) of the forced Van der Pol 

oscillator (1), and has the third-order nonlinear term in (9). 

On the other hand, the FitzHugh-Nagumo (FHN) model [15, 16] is a 2-D 

simplification of the Hodgkin-Huxley model [14] of spike generation in squid 

giant axons, and is given by 
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which has an electric circuit for (10) and (11) as one of a large class of nonlinear 

systems showing excitable and oscillatory behaviors, where v is the membrane 

potential, w is the recovery variable, I(t) is the stimulus external current, and 

}0,,{ ba  are model parameters. Here, it is interesting to note that the 

forced Van der Pol oscillator (1) has an equivalent circuit involving the tunnel-

diode to the FHN model (10) and (11) [16, 24]. Moreover, it should be noticed 

that the 2-D model (5) and (6) of the forced Van der Pol oscillator has the 

external voltage term in (6), and the FHN model (10) and (11) has the stimulus 

external current term in (10). 

 

3  2-D Solvable Chaos Maps 
 

We have derived 2-D models of the forced Van der Pol oscillator and the forced 

Duffing oscillator in Section 2, and have compared the models with the FHN 

model, which explains neural phenomena. In this Section, 2-D solvable chaos 
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maps are derived, and are discussed by introducing the proposed time-dependent 

chaos functions [19, 20]. 

Firstly, from the following chaos solutions consisting of time-dependent chaos 

functions; 
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here },,0,0{ 2121 bbaa   are coefficients and parameters, {l, m} are finite 

positive integers, and the condition obtained from (12) and (13) is 
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then we have a 2-D solvable chaos map as 
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which has chaos solutions (12) and (13) with (14), and therefore we find that the 

form of the 2-D map (16) and (17) corresponds to the 2-D model (5) and (6) of 

the forced Van der Pol oscillator, and to the FHN model (10) and (11). The 

third-order nonlinear term is involved in (5), (10) and (16), respectively. 

Secondly, from the chaos solutions consisting of the same time-dependent chaos 

functions as (12) and (13) given by, in the reverse order of chaos functions; 
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with (14) and the following condition obtained from (18) and (19); 
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then we derive another 2-D solvable chaos map as 
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which has chaos solutions (18) and (19) with (14). Here, the form of the 2-D 

map (21) and (22) corresponds to the 2-D model (2) and (3) of the forced Van 

der Pol oscillator (1), and to the 2-D model (8) and (9) of the forced Duffing 

oscillator (7). Therefore, it is interesting to note that the 2-D model (2) and (3) 

of the forced Van der Pol oscillator is equivalent to the 2-D model (8) and (9) of 

the forced Duffing oscillator, in terms of replacing the coodinate axis with chaos 

functions from (12) and (13) to (18) and (19). 

 

4  Numerical Calculation 
 

In general, computer simulation and physical experiment are the most widely 

used techniques for understanding dynamical behaviors in chaotic systems. In 

this Section, chaos solutions (12)-(14) to the 2-D solvable chaos map (16) and 

(17) are numerically simulated, and the properties are discussed. 

It is important to emphasize that if we regard the parameter b1 in (12) as a 

function of time )(11 tbb  , and 02 b  for simplicity, then the solutions (12)-

(14), the condition (15) and the 2-D chaos map (16) and (17) are rewritten as 
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where we choose a discrete time 
itt   satisfying (14). Therefore, the )(1 itb  in 

(26) corresponds to the stimulus external current )(tI  of the FHN model (10) 

and (11), and the term )()/2( 112 itbaa  in (27) is corresponding to the external force 

)sin(0 tE   of the 2-D model (5) and (6) for the forced Van der Pol oscillator, 

respectively. 

Thus, we calculate numerically the chaos solutions (23) and (24) by introducing 

the following algorithm for long time chaotic series to avoid the accumulation 

of round-off error caused by the numerical iteration of (23) and (24); 
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where N is the iteration number, )/( 0 rpl  is a rational number, l0 is the initial 

integer of 
nl , and 

rp  is a large prime number [20, 25]. 

In Fig. 1, it is illustrated that the mean free time t  given in the algorithm (28) 

is the average time of a neural cell travel between two collision points  

))(),(( inin tytx  and ))(),(( 1111  inin tytx  with other cells of the orbit on the 
nn yx   

plane, as a chaotic process. Therefore, it should be noted that the time t  is 

changeable by setting the rational number )/( 0 rpl  for each travel in the algorithm 

(28).  

 

     
 
             Fig. 1. The mean free time t  between two collision points of the orbit. 
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The numerical results are shown in Figs. 2-5 for the orbit of one neural cell with 

initial values )}(),({ 000000   inin tyytxx ; (a) the external force )(1 itb  in (23) 

corresponding to the stimulus external current of the FHN model, (b) the 

membrane potential )( in tx , (c) the recovery variable )( in ty , and (d) the orbit on 

the 
nn yx   plane, in Figs. 2-5. For the calculation, the term )(1 itb  is given as an 

input signal, and the iteration number is N=200. Then, we choose the prime 

number 431rp in (28), according to  ,12  Npr
 in order to avoid the 

accumulation of round-off error and the periodicity caused by the iteration [25]. 

For reference, a MATLAB program for Fig. 3 is given in Appendix.  

Next, in Fig. 2(a)-(d), the external force )(1 itb  with no pulse in (a), the chaos 

solution )( in tx  (23) with 0.21 a  in (b), another solution )( in ty  (24) with 

5.02 a  in (c), and the orbit of one neural cell on the 
nn yx   plane with an initial 

point )5.0,0(),( 200  ayx  for (23) and (24) in (d), are illustrated, respectively. 

Here, it is found that )( in tx  in (b) and )( in ty  in (c) give chaotic time series, and 

have a particle-like property. However, all the collision points of orbit in (d) are 

on the discrete quadratic curve given by the condition (25), and show a 

wavefront-like property on the 
nn yx   plane. In addition, it is interesting to note 

that the strange attractor of the Hénon map [26] has a similar discrete curve to 

Fig. 2(d).  

In Figs. 3-5, chaos solutions )( in tx  and )( in ty  are shown in (b) and (c) for the 

cases that rectangular pulses of )(1 itb  in (a) are forced as an input signal. One 

pulse input )(1 itb  in Fig. 3(a), two pulse input in Fig. 4(a), and two (positive and 

negative) pulse input in Fig. 5(a) are presented. In Figs. 3(b), 4(b) and 5(b), 

chaotic time series responding to each pulse input )(1 itb  are obtained by 

calculating (23). It is important here to notice that the similar chaotic responses 

to Figs. 3(b)-5(b) are experimentally recorded for the giant neuron of marine 

mollusk and the rat hippocampus [17, 18]. Then, for the 
nn yx   plane of Figs. 

3(d)-5(d), the orbit of one neural cell is found to be on the discrete quadratic 

curve (25), and the neural cell is pushed forward from the wavefront-like curve 

onto another discrete curve by the discrete pulse input signal )(1 itb , as a signal 

propagation. Thus, the neural cell is pushed forward and/or backward depending 

on the input signal )(1 itb  as illustrated in Figs. 3(d)-5(d). Therefore, the 2-D 

system (23)-(27) for neural cells may describe a physics of non-equilibrium 

open systems. 

Generally, fixed points and the linear stability for a given nonlinear difference 

equation are commonly studied in order to determine the stability. However, for 

the case of the 2-D solvable chaos map (26) and (27), which is derived from the 

solutions (23) and (24), we have the condition (25) consisting of chaos solutions 

(23) and (24), and the orbit starting from the initial point  )5.0,0(),( 200  ayx  of  
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                                                           (b) )( in tx  

 

 

 
                                                           (c) )( in ty  

 

 

 
                                                            (d) 

nn yx   

 

                      Fig. 2. No pulse input )(1 itb , chaotic time series )( in tx ,  

                                   )( in ty  and the  
nn yx   plane. 
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                                                       (d) 
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Fig. 3. One pulse input )(1 itb , chaotic time series )( in tx ,  

                               )( in ty  and the  
nn yx   plane. 
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                                               (b) )( in tx  

 

 

 
                                                        (c) )( in ty  

 

 

 
                                                      (d) 
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                  Fig. 4. Two pulse input )(1 itb , chaotic time series )( in tx , 

                               )( in ty  and the  
nn yx   plane. 
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Fig. 5. Two (positive and negative) pulse input )(1 itb , chaotic  

time series )( in tx ,  )( in ty  and the  
nn yx   plane. 
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the solutions (23) and (24) has a discrete dynamic stability region given by 
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which is numerically obtained by iterating the map (26) and (27), and relates to 

the fractal sets for nonlinear dynamics of the 2-D chaotic maps, as considered in 

[27]. 

 

Conclusions 
 

As a result, we find in Sections 2 and 3 that 2-D models of the forced Van der 

Pol oscillator and the forced Duffing oscillator are equivalent to the FHN model 

from a viewpoint of the 2-D chaos solutions with the external force )(1 itb . Then, 

we have calculated the solutions (23) and (24) numerically with the algorithm 

and a MATLAB program, and finally have discussed in Section 4 that the mean 

free time t , the particle-like property, the wavefront-like property and the 

dynamic stability region based on the quadratic curve (25) with the discrete 

function of time  )(1 itb  as an input signal, would be helpful for describing the 

chaotic dynamics of neural cells in real neural phenomena. 

 

Appendix 
 
% MATLAB program for Fig. 3 by S. Kawamoto 

% initial conditions 
T=zeros (1,200); 

B1=zeros (1,200); 

ILN1=zeros (200,200); 

ILN2=zeros (200,200); 
X=zeros (200,200); 

Y=zeros (200,200); 

XX=zeros (1,200); 

YY=zeros (1,200); 
L=1; 

PR=431; 

A1=2.0; 

A2=0.5; 
% external input b1(ti) and 2-D chaos solutions 

for I=1:200, T(I)=I.*L.*pi./PR; end 

for I=1:13, B1(I)=0.0; end 

for I=14:25, B1(I)=2.0; end 
for I=26:200, B1(I)=0.0; end 

for I=1:200 

      for N=1 

            ILN1(I,N)=mod(2   N.*I.*L,PR); 
            X(I,N)=A1.*(sin(ILN1(I,N).*pi./PR)).   2+B1(I); 

            ILN2(I,N)=mod(2   N.*I.*L,2*PR); 
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            Y(I,N)=A2.*cos(ILN2(I,N).*pi./PR); 
      end 

      for N=2:I 

            ILN1(I,N)=mod(2.*ILN1(I,N-1),PR); 

            X(I,N)=A1.*(sin(ILN1(I,N).*pi./PR)).   2+B1(I); 
            ILN2(I,N)=mod(2.*ILN2(I,N-1),2*PR); 

            Y(I,N)=A2.*cos(ILN2(I,N).*pi./PR); 

      end 

end 
for I=1:200 

      XX(I)=X(I,I); 

YY(I)=Y(I,I); 

end 
% figures (a)-(d) 

figure(‘position’,[100 100 350 100]) 

plot(T,B1,’-b.’,’MarkerFaceColor’,’b’,’MarkerSize’,7); 

xlabel(‘ti=0-200’); ylabel(‘b1(ti)’) 
figure(‘position’,[100 100 350 100]) 

plot(T,XX,’-b.’,’MarkerFaceColor’,’b’,’MarkerSize’,7); 

xlabel(‘ti=0-200’); ylabel(‘xn(ti)’) 

figure(‘position’,[100 100 350 100]) 
plot(T,YY,’-b.’,’MarkerFaceColor’,’b’,’MarkerSize’,7); 

xlabel(‘ti=0-200’); ylabel(‘yn(ti)’) 

figure(‘position’,[100 100 350 350]) 

plot(XX,YY,’-b.’,’MarkerFaceColor’,’b’,’MarkerSize’,7); 
xlabel(‘xn(ti=0-200)’); ylabel(‘yn(ti=0-200)’) 
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