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Abstract. We study qualitative properties of the solutions of the system of par-
tial differential equations modeling thermomechanical deformations for mixtures of
thermoelastic solids when the theory of Green and Lindsay for the heat conduction
is considered. Three dissipation mechanisms are proposed in the system: thermal
dissipation, viscosity effects on one constituent of the mixture and damping in the
relative velocity of the two displacements of both constituents. First, we prove the
existence and uniqueness of the solutions. Later we prove the exponential stability of
the solutions over the time. We use the semigroup arguments to establish our results.
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1 Introduction

Thermoelastic mixtures of solids have been an important issue of study for
mathematicians and engineers in the last decades (see, e.g., [5–8,12,13,33,34]).
Interesting applications of thermoelastic mixtures can be found in several bran-
ches of engineering. On the other side, the systems of partial differential equa-
tions that arise when different classes of materials are studied drive to challeng-
ing problems for mathematicians. In particular, a lot of effort has been done
to find qualitative properties of the solutions of these systems. Results con-
cerning existence, uniqueness, continuous dependence and asymptotic stability
can be found in the literature [1–3,20,25–27,31,32]. In these contributions the
Fourier law is used to describe the heat propagation. However, it is known
that the classical Fourier theory gives rise to several paradoxes. Perhaps the
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most known is the infinite velocity of propagation, which is not compatible
with the causality principle. Since the decade of the 1960’s, other thermome-
chanic theories that allow heat to propagate as a wave with finite speed have
been stated to overcome the aforementioned paradox. These new theories are
mainly based on the heat conduction model of Cattaneo and Maxwell [28] (for
a deeper knowledge about these theories see Hetnarski and Ignaczack [17,18],
the books by Ignaczack and Ostoja-Starzewski [22], Straughan [35] and the
references cited therein). In 1972, Green and Lindsay [11] presented another
thermoelasticity theory by adding restrictions on the constitutive equations; in
fact, they used an entropy production inequality proposed by Green and Laws
[10]. In the last decade of the twentieth century, Green and Naghdi [14–16]
also proposed a set of three theories which have been deeply studied lately.

In this paper we want to study several qualitative properties of the solutions
for the system of partial differential equations that arise for thermoviscoelastic
mixtures in the three dimensional case when the heat conduction is modeled
using the theory of Green and Lindsay. To be precise, we will analyze the theory
proposed by Iesan and Scalia [21] following the works of Green and Lindsay.
We want to point out that, recently, the asymptotic behavior of the solutions
for the mixtures problem when the Lord-Shulman theory [24] is considered has
been studied by Alves et al. [4].

The structure of the paper is the following. First of all we recall the field
equations, impose the initial and boundary conditions and set the assumptions
over the constitutive coefficients. In Section 3 we prove the existence and
uniqueness of the solutions using semigroup arguments. In Section 4 we analyze
the time behavior of the solutions and we prove their exponential stability
following the arguments proposed by Liu and Zheng in his book [23].

2 The system of equations and the basic assumptions

We consider a mixture of two continua and suppose that, at a fixed time, the
body occupies a bounded and regular region B of the three-dimensional Eu-
clidean space with boundary smooth enough to apply the divergence theorem.

To write the equations we will use the standard notation conventions: a
colon followed by an index i means the partial derivative with respect to the
space variable xi and a dot over the function means the derivative with respect
to the time. Summation over repeated indices is assumed.

The field equations for isotropic and homogeneous bodies with a center of
symmetry are given by the system (see [21], p.238)

A1∆ui +A2uj,ji +B1∆wi +B2wj,ji − ξ(ui − wi)−m(T,i + αṪ,i)

−ξ∗(u̇i − ẇi)− b∗T,i + µ∗∆u̇i + (λ∗ + µ∗)u̇j,ji + τ∗Ṫ,i = ρ1üi

B1∆ui +B2uj,ji + C1∆wi + C2wj,ji + ξ(ui − wi)− β(T,i + αṪ,i)
+ξ∗(u̇i − ẇi) + b∗T,i = ρ2ẅi

k∆T − T0(dṪ + hT̈ +mu̇i,i + βẇi,i) = 0.

(1)

Here u = (u1, u2, u3) and w = (w1, w2, w3) are the displacements of each
constituent, T is the temperature, A1, A2, B1, B2, C1, C2, ξ, m, ξ∗, b∗, µ∗, λ∗,
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β, k, d, h, τ∗, ρ1, ρ2, α and T0 are the constitutive coefficients. T0 is usually
the temperature at the reference configuration and, from now on and without
loose of generality, we will assume that T0 = 1. Coefficient α is a relaxation
parameter in the temperature which is typical for the Green-Lindsay theory.
We use ∆ to denote the Laplace operator.

We consider three different dissipation mechanisms in the system: thermal
dissipation, viscosity effects on the first constituent and damping in the relative
velocity.

To have a well posed problem we need to impose initial and boundary
conditions to the unknowns of system (1). As initial conditions we take

ui(x, 0) = u0i (x), u̇i(x, 0) = v0i (x) in B,

wi(x, 0) = w0
i (x), ẇi(x, 0) = z0i (x) in B,

T (x, 0) = T 0(x), Ṫ (x, 0) = θ0(x) in B,

(2)

for some given functions. And as boundary conditions we consider homoge-
neous Dirichlet conditions:

ui(x, t) = wi(x, t) = T (x, t) = 0, in ∂B. (3)

In order to obtain results of existence and uniqueness for the solutions of
the problem determined by system (1) with initial conditions (2) and boundary
conditions (3) we need some basic assumptions over the coefficients.

First of all, we impose that the internal mechanical energy of the system
has to be positive. To this end, we will suppose that the matrices(

A1 B1

B1 C1

)
and

(
A2 B2

B2 C2

)
(4)

are definite positive and that ξ > 0.
We will also assume that

ρ1 > 0, ρ2 > 0, dα− h > 0, h > 0, (5)

conditions given by the entropy production law.
Secondly, we want the dissipation to be also positive and, therefore, we

impose that the following inequalities hold:

3λ∗ + 2µ∗ ≥ 0, µ∗ ≥ 0, 4(dα− h)(3λ∗ + 2µ∗)− τ∗ ≥ 0,

k > 0, and 4kξ∗ − (b∗)2 ≥ 0.
(6)

3 Existence and uniqueness of solutions

The aim of this section is to prove the existence and the uniqueness of solutions
for problem (1)–(3). It is worth noting that for the problem arising when the
Fourier heat conduction law is used, existence and uniqueness of the solutions
have been already proved [31]. The arguments we use here are similar to the
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ones used there. Nevertheless, we think suitable to sketch at least the more
important features.

For the system coefficients we assume the conditions proposed at (4), (5)
and (6).

With the usual notation, we introduce the Hilbert spaces (see [9]) L2(B),
H1

0 (B), H2(B) and H−1(B) acting on a bounded domain B. Let 〈·, ·〉 and ‖ · ‖
denote the L2-inner product and the L2-norm, respectively.

In the case of Dirichlet thermal boundary conditions, let us consider the
Hilbert space

H = H1
0 ×H1

0 ×H1
0 × L2 × L2 × L2.

We will denote the elements of H by U = (u,w, T,v, z, θ), with v = u̇, z = ẇ
and θ = Ṫ .

We define an inner product in H by

〈(u,w, T,v, z, θ), (ũ, w̃, T̃ , ṽ, z̃, θ̃)〉H =
1

2

∫
B

ΠdV, (7)

where

Π = A1ui,j ũi,j +A2ui,iũj,j +B1(ui,jw̃i,j + wi,j ũi,j) +B2(ui,iw̃j,j + wi,iũj,j)+

C1wi,jw̃i,j + C2wi,iw̃j,j + ρ1viṽi + ρ2ziz̃i + ξ(ui − wi)(ũi − w̃i)+
h

α
(T + αθ)(T̃ + αθ̃) + (d− h

α
)T T̃ + αkT,iT̃,i.

(8)

Here, and from now on, a bar over a variable denotes its complex conjugate.
The corresponding norm is given by

‖(u,w, T,v, z, θ)‖2H =
1

2

∫
B

Π∗dV, (9)

where

Π∗ = A1ui,jui,j +A2ui,iuj,j +B1(ui,jwi,j + wi,jui,j) +B2(ui,iwj,j + wi,iuj,j)+

C1wi,jwi,j + C2wi,iwj,j + ρ1vivi + ρ2zizi + ξ(ui − wi)(ui − wi)+
h

α
(T + αθ)(T + αθ) + (d− h

α
)TT + αkT,iT,i.

In view of the assumptions on the constitutive coefficients we conclude that
there exists a positive constant c such that the inequality

‖(u,w, T,v, z, θ)‖2H ≥ c
(
‖∇u‖2 + ‖∇w‖2 + ‖v‖2 + ‖z‖2 + ‖θ‖2 + ‖∇T‖2

)
,

is satisfied. For the sake of simplicity, here and in what follows we will employ
the same symbol c for different constants, even in the same formula. Notice
that the inner product proposed here is equivalent to the usual one in the
Hilbert space H

We will rewrite system (1) in matricial terms and, afterwards, we will use
the technique of contractive semigroups to prove the existence and uniqueness
of the solutions.
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In order to obtain a written synthetic expression for our problem, we intro-
duce the following operators:

A1u = 1
ρ1

(A1ui,jj +A2uj,ji − ξui), A2w = 1
ρ1

(B1wi,jj +B2wj,ji + ξwi),

A3v = 1
ρ1

(µ∗vi,jj + (λ∗ + µ∗)vj,ji − ξ∗vi), A4z = 1
ρ1

(ξ∗zi),

A5T = 1
ρ1

(−mT,i − b∗T,i), A6θ = − 1
ρ1

((mα− τ∗)θ,i),

A7u = 1
ρ2

(B1ui,jj +B2uj,ji + ξui), A8w = 1
ρ2

(C1wi,jj + C2wj,ji − ξwi),

A9v = 1
ρ2

(ξ∗vi), A10z = − 1
ρ2

(ξ∗zi),

A11T = 1
ρ2

(−βT,i + b∗T,i), A12θ = − 1
ρ2

(βαθ,i),

A13v = 1
h (−mvi,i), A14z = − 1

h (βzi,i),

A15T = 1
h (k4T ), A16θ = − d

hθ.

Therefore, system (1) with initial conditions (2) and boundary conditions (3)
can be written as

d

dt
U(t) = AU(t), U(0) = U0, (10)

where U0 =
(
u0,w0, T 0,v0, z0, θ0

)
, and A is the following matrix operator

A =



0 0 0 I 0 0

0 0 0 0 I 0
0 0 0 0 0 I

A1 A2 A5 A3 A4 A6

A7 A8 A11 A9 A10 A12

0 0 A15 A13 A14 A16


. (11)

The domain of the operator A is D(A) = {U ∈ H : AU ∈ H} . It is clear that
it contains a dense subspace of H and, therefore, D(A) is dense in the Hilbert
space H.

Lemma 1. The operator A is the infinitesimal generator of a C0-semigroup
of contractions, denoted by S(t) = {eAt}t≥0.

Proof. We will show that A is a dissipative operator and that 0 belongs to the
resolvent of A (in short, 0 ∈ ρ(A)). Then our conclusion will follow by using
the Lumer-Phillips theorem (see, e.g., [29]).

If U ∈ D(A) then, direct calculations give

Re〈AU,U〉H = −1

2

∫
B

D+dV, (12)

where

D+ = µ∗vi,jvi,j + (λ∗ + µ∗)vi,ivj,j + ξ∗(vi − zi)(vi − zi) + τ∗Re θvi,i
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+b∗ReT,i(vi − zi) + (dα− h)θθ + kT,iT,i.

In view of the conditions imposed over the constitutive coefficients we conclude
that

Re〈AU,U〉H ≤ 0,

and, therefore, the operator A is dissipative.
Now, we show that 0 ∈ ρ(A). Given F = (f ,g, h,p,q, r) ∈ H, we must show

that there exists a unique U = (u,w, T,v, z, θ) in D(A) such that AU = F ,
that is

v = f in H1
0,

z = g in H1
0,

θ = h in H1
0 ,

A1u + A2w + A5T + A3v + A4z + A6θ = p in L2,

A7u + A8w + A11T + A9v + A10z + A12θ = q in L2,

A15T +A13v +A14z +A16θ = r in L2.

(13)

Using (13)1-(13)3 in (13)6 we have

A15T = r − (A13f +A14g +A16h). (14)

Thus, the existence of a unique T ∈ H2 satisfying (14) is clear. Now, from
(13)4 and (13)5, we obtain the following system of equations with unknowns u
and w. {

A1u + A2w = p−A5T −A3f −A4g −A6h in H−1,2,
A7u + A8w = q−A11T −A9f −A10g −A12h in H−1,2.

(15)

Taking into account the conditions assumed for the material constants, the
sesquilinear form B : H1

0 ×H1
0 → C given by

B[(u,w), (ũ, w̃)] = 〈A1u + A2w, ũ〉+ 〈A7u + A8w, w̃〉

is continuous and coercive. As the right hand side of (15) is in the dual, using
the Lax-Milgram theorem (see, e.g., [9]), it follows that there exists a unique
vector (u,w) satisfying system (15).

Therefore, there exists also a unique vector U satisfying (13). It is easy to
show that ‖U‖H ≤ c‖F‖H, for a positive constant c. Hence, we conclude that
0 ∈ ρ(A).

As a consequence of the above established results, we can state the following
theorem.

Theorem 1. The operator given by matrix A generates a contraction semi-
group S(t) = {eAt}t≥0, and for U0 ∈ D(A) there exists a unique solution
U(t) ∈ C1 ([0,∞),H) ∩ C0 ([0,∞), D(A)) of system (1) with initial conditions
(2) and boundary conditions (3).
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Remark 1. The existence and uniqueness result can be extended to the same
system but with supply terms. In fact, in this case we can obtain continuous
dependence on the initial conditions and the supply terms. That means that,
under the conditions proposed for the constitutive constants, the problem is
well posed in the sense of Hadamard.

4 Exponential stability

In this section we analyze the asymptotic behavior of the solutions with respect
to the time variable. We consider thermal dissipation, viscosity effects on the
first constituent of the mixture and damping effects on the relative velocity of
the two displacements of both constituents. We prove that, with the above
considerations, the solutions are exponentially stable.

To enforce the dissipation mechanisms act we have to assume that

3λ∗+2µ∗ > 0, µ∗ > 0, 4(dα−h)(3λ∗+2µ∗)−τ∗ > 0, k > 0 and 4kξ∗−(b∗)2 > 0.
(16)

Besides the assumptions for the coefficients given by (16), we also assume
that ∫

B

(B1wi,jwi,j +B2wi,iwj,j) dV ≥ C
∫
B

wi,jwi,j dV or∫
B

(B1wi,jwi,j +B2wi,iwj,j) dV ≤ −C
∫
B

wi,jwi,j dV.

(17)

It is useful to recall the following known result (see [19], [23], [30]):

Theorem 2. Let S(t) = {eAt}t≥0 be a C0-semigroup of contractions on a
Hilbert space. Then S(t) is exponentially stable if and only if the following two
conditions are satisfied:

(i) iR ⊂ ρ(A),
(ii) lim

|λ|→∞
‖(iλI − A)−1‖L(H) <∞.

Lemma 2. The operator A defined at (11) satisfies that iR ⊂ ρ(A).

Proof. Following the arguments given by Liu and Zheng [23], the proof consists
of the following three steps:

(i) Since 0 is in the resolvent of A, using the contraction mapping theorem,
we have that for any real λ such that |λ| < ||A−1||−1, the operator iλI − A =
A(iλA−1 −I) is invertible. Moreover, ||(iλI −A)−1|| is a continuous function
of λ in the interval (−||A−1||−1, ||A−1||−1).

(ii) If sup{||(iλI −A)−1||, |λ| < ||A−1||−1} = M <∞, then by the contrac-
tion theorem, the operator

iλI − A = (iλ0I − A)
(
I + i(λ− λ0)(iλ0I − A)−1

)
,

is invertible for |λ − λ0| < M−1. It turns out that, by choosing λ0 as close
to ||A−1||−1 as we can, the set {λ, |λ| < ||A−1||−1 +M−1} is contained in the
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resolvent of A and ||(iλI −A)−1|| is a continuous function of λ in the interval
(−||A−1||−1 −M−1, ||A−1||−1 +M−1).

(iii) Let us assume that the intersection of the imaginary axis and the
spectrum is not empty, then there exists a real number $ with ||A−1||−1 ≤
|$| < ∞ such that the set {iλ, |λ| < |$|} is in the resolvent of A and
sup{||(iλI − A)−1||, |λ| < |$|} = ∞. Therefore, there exists a sequence
of real numbers λn with λn → $, |λn| < |$| and a sequence of vectors
Un = (un,wnTn,vn, zn, θn) in the domain of the operator A and with unit
norm such that

‖(iλnI − A)Un‖ → 0. (18)

If we write (18) in components, we obtain the following conditions:

iλnun − vn → 0, in H1 (19)

iλnwn − zn → 0, in H1 (20)

iλnTn − θn → 0, in H1 (21)

iλnvn −A1un −A2wn −A3vn −A5Tn −A6θn → 0, in L2 (22)

iλnzn −A7un −A8wn −A11Tn −A12θn → 0, in L2 (23)

iλnθn −A15Tn −A13vn −A14zn −A16θn → 0, in L2. (24)

In view of the dissipative term for the operator, we see that

θn, ∇vn, vn − zn, ∇Tn → 0. (25)

From (19) we also have that ∇un → 0.
If we multiply (22) by wn we obtain that∫

B

(B1wi,jwi,j +B2wi,iwj,j) dV → 0,

and, from the assumptions (17), we conclude that ∇wn tends to zero. There-
fore, zn also tends to zero and, in consequence, we have seen that the imaginary
axis in contained in the resolvent of A.

Lemma 3. The operator A defined at (11) satisfies that

lim
|λ|→∞

‖(iλI − A)−1‖L(H) <∞.

Proof. Let us assume the existence of λn → ∞ and a sequence of unit norm
vectors Un such that the relations (19) – (24) hold. Again, our aim is to prove
that Un tends to zero. We proceed as in the previous case. In fact, we obtain
again that θn, ∇vn, vn − zn and ∇Tn → 0. And, hence ∇u → 0 because of
(19). Now, from (22), we see that

λ−1n (A1un + A2wn + A3vn + A6θn)→ 0.
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From (20) we see that λnwn is bounded. Then, we multiply the above expres-
sion by λnwn and, using an argument similar to the one proposed in the proof
of Lemma 2, we obtain that ∇wn tends to zero.

Finally, multiplying (23) by wn we obtain

〈iλnzn,
zn
iλn
〉 − 〈A7un,wn〉 − 〈A8wn,wn〉 − 〈A11Tn,wn〉 − 〈A12θn,wn〉 → 0.

Applying the integration by parts, we see that zn also tends to zero. So, the
lemma is proved.

Theorem 3. The C0-semigroup S(t) = {eAt}t≥0 is exponentially stable.

The proof is a direct consequence of Lemma 2, Lemma 3 and Theorem 2.
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