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The geometry of transition states: How
invariant manifolds determine reaction rates
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Abstract. Over the last years, a new geometrical perspective on transition state
theory has been developed that provides a deeper insight on the reaction mechanisms
of chemical systems. This new methodology is based on the identification of the
invariant structures that organize the dynamics at the top of the energetic barrier
that separates reactants and products. Moreover, it has allowed to solve, or at least
circumvent, the recrossing-free problem in rate calculations. In this paper, we will
discuss which kind of objects determine the reaction dynamics in the presence of
dilute, dense and condensed phase baths.
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1 Introduction

The rate at which some substances (reactants) are combined to produce others
(products) has always been a central problem for chemists. For this purpose,
the correct identification of reactive trajectories is crucial. Numerical simula-
tions, like all-atom molecular dynamics, provide suitable methodologies for this
task, but they are usually time consuming due to the large number of inter-
acting particles whose dynamics must be computed. Transition State Theory
(TST) provides an alternative way to calculate chemical rates that is simple
and accurate. Though initially proposed to study chemical reactions of small
molecules, TST has been later applied to other fields of science, like celestial
mechanics [1] or atomic ionization [2], among others.
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In many reactions reactants and products are separated by an energetic
barrier. The crossing of this barrier is the most critical step for the reaction
to take place; it acts as a bottleneck in phase space. Traditional TST assumes
the existence of a dividing surface (DS) between reactants and products that
is free of recrossings, i.e., a surface that is crossed once and only once by all
reactive trajectories. This DS is usually placed at the top of the energetic
barrier. The fundamental challenge in TST is adequatelly identifying such an
optimal recrossing-free DS, particularly in systems strongly coupled to their
surrounding environment. For this purpose, variational TST, determines the
DS by minimizing the number of recrossings [3].

Over the last years, TST has been extended by shifting the focus from
the calculation of a DS to the identification of the invariant structures that
organize the dynamics close to the barrier top. This new geometrical perspec-
tive has provided a better understanding of the reaction mechanism as well
as alternative ways to reliably identify reactive trajectories and perform rate
calculations in externally driven systems. In this paper we will review some of
these recent advances from a unified point of view, which allows us to highlight
the fundamental ideas that underly seemingly disparate developments.

First, in Sec. 2 we discuss the reaction mechanism for reactions in gas
phase, where coupling to the environment is negligible. Section 3 is devoted to
solvated systems that are strongly coupled to a bath characterized by a white
noise force. Then, in Sec. 4 we describe the flux-over-population method that
provides a well-established framework for a rate calculation. The extension of
the previous results to correlated noise is briefly discussed in Sec. 5. Finally,
we conclude the paper in Sec. 6 with a short summary.

2 Autonomous reactions in the gas phase

The interaction with the environment in dilute gas phase reactions is usually
so small that it can simply be neglected. As a consequence, the dynamics of
the system is conservative to a good approximation and can be described in a
Hamiltonian framework.

Let us consider for simplicity a system with 2 degrees-of-freedom (dof) and
an energetic barrier, with a saddle point at position qSP = 0. The correspond-
ing phase space is then 4 dimensional, but all dynamics takes place in the three
dimensional volume confined by the energy shell E = U(q). A necessary condi-
tion for a trajectory to react is that its energy exceeds the saddle point energy.
This energy shell is represented in grey for two characteristic settings in Fig. 1.
As can be seen in Fig. 1(a), the energy surface is divided in two disconnected
parts if the energy is smaller than the energy, USP = U(qSP). All in all, a
given initial condition can react, i.e., move from the reactant region into the
product region, only if its energy exceeds USP. If that happens, the energy
surface connects the reactant (left) and product regions (right), as shown in
Fig. 1(b). However, this is only a necessary but not a sufficient condition.

In the system under study, the natural choice for a DS is such that it is
placed at the barrier top, where a bottleneck is formed, as shown in Fig. 1(b).
By shifting this surface, Pechukas and Pollak [4] demonstrated that the DS
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Fig. 1. Phase space of a system with two degrees of freedom. (a) For low energies,
the energy surface (grey) is divided in two disconneted regions (one for products and
the other one for reactants), and then there are no reactive trajectories. (b) When
the energy is larger than that of the saddle point that sits on the top of the energetic
barrier, the reaction can take place. Reactive trajectories (like the green one) are only
those that lie inside the invariant manifolds (purple tubes), while those outside (like
the red one) do not react. The invariant manifolds are connected along the unstable
periodic orbit on the barrier top (yellow semicircle).

that minimizes the reactive flux is an unstable periodic orbit called Periodic
Orbit Dividing Surface (PODS) and that the action of the PODS equals the
reactive flux (14). Furthermore, the PODS is a strictly recrossing-free DS and
yields the exact classical reaction rate if it is the only periodic orbit in the
barrier region [5].

The reactivity of the system is determined by the invariant manifolds that
emerge from the PODS [6–8]. The stable and unstable manifolds of the PODS
consist of all those trajectories that asymptotically approach the PODS for
large positive or negative times, respectively. They are topologically cylinders:
The motion around the PODS, which appears as a circle in phase space, is
combined with the motion towards or away from the PODS. These cylinders
are often called reaction tubes because all initial conditions starting inside the
stable cylinder (like the green trajectory in Fig. 1) will cross the saddle to the
other side and leave the barrier region through the unstable cylinder. Trajec-
tories outside the stable cylinder will not cross the barrier.

Similar structures exist in the phase space of a higher-dimensional Hamil-
tonian system with f dof near a saddle point of the potential energy [2,9,10]
and for energies not too high above the saddle point energy. The PODS is
then replaced by an invariant (hyper-)sphere of dimension 2f − 3 called a Nor-
mally Hyperbolic Invariant Manifold (NHIM). Its associated stable and unsta-
ble cylinders have dimension 2f−2. As in the 2-dof case, they divide the energy
shell into a reactive interior and a non-reactive exterior. All these objects can
be computed using normal form theory (see, e.g., Ref. [2]).

3 Reactions in stochastically driven systems

In most chemical reactions, the reactive system is strongly coupled to its envi-
ronment. In principle, of course, the system could still be described within the
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formalism of the preceeding section if the system and all the particles of the en-
vironment were considered as part of an extended system. However, this unified
system would have so many dof (of the order of Avogadro constant), that this
approach is rarely feasible. Alternatively, one can describe the influence of the
bath phenomenologically through an external force, which depending on the
nature of the environment can either be deterministically prescribed, as, e.g.,
the force exerted by a laser field [11,12], or can be randomly fluctuating, as in
a solvent. For the sake of simplicity and brevity, we will restrict the discussion
to one dimensional barriers. The interested reader can find further details and
a discussion for higher dimensional barriers in Refs. [13–17].

3.1 Langevin model for reactions in thermalized baths

The equation of motion for a reactive system driven by a thermalized bath is
well described by the Langevin equation [18], one of the most famous models
for stochastic systems. This equation is given by

mẍ = −dU(x)

dx
−mγẋ+ ξ(t), (1)

where x is the reaction coordinate, U(x) is the potential energy of the system,
or the potential of mean force in the case of a fluctuating environment, and γ is
a friction constant. Though this is not indicated in the notation, the external
force ξ(t) can also depend on the system coordinate x or velocity ẋ. In our case,
however, we will assume that the fluctuating external force ξ = ξα(t) depends
on a realization α of some random noise, following a Gaussian distribution with
zero mean. The strength of the random force is related to the friction constant
by the fluctuation-dissipation theorem

〈ξα(t)ξα(t′)〉α = 2kBTmγ δ(t− t′), (2)

where 〈. . . 〉α denotes an average over the noise.
It is often useful to expand the potential U around the saddle point xSP = 0

as

U(x) = −1

2
mω2

bx
2 +m

c3
3
x3 +m

c4
4
x4 + . . . , (3)

and separate the harmonic (quadratic) part from the higher orders. (Note that
ω2
b > 0 because U has a maximum, not a minimum, at xSP.) If we rewrite

Eq. (1) as a system of differential equations in phase space with coordinates x
and v = ẋ and introduce the new coordinates

zi =
v − λjx
λj − λi

, (4)

where i, j = 0, 1, j 6= i, and λi = − 1
2

[
γ − (−1)i

√
γ2 + 4ω2

b

]
, the equation of

motion (1) takes the form

żi = λizi +
f(z0 + z1)

λi − λj
+

1

λi − λj
ξ(t), (5)
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where f(x) = mω2
bx−U ′(x) = −c3x2−c4x3−. . . gathers the anharmonic terms

of the mean force. Equations (5) decouple for a hamonic barrier, f = 0, and
it becomes visible that the λi are the eigenvalues of the linearized dynamics
near the stationary point. Because λ0 > 0 and λ1 < 0, the coordinate z0
corresponds to an unstable direction in phase space whereas z1 corresponds to
a stable direction.

3.2 The transition state trajectory

An immediate consequence of the influence of the environment is that the
energy of the reactive system is not conserved. Therefore, it does not make
sense to discuss the phase space structure at a fixed energy, as it was done in
Sec. 2, that may vary for different energies. Instead, there is a single set of
invariant objects near the saddle point that is to be discovered.

A second consequence of the external driving is that the equilibrium point on
top of the barrier disappears: The system can no longer be at rest on the barrier
top and remain there, as it could in the Hamiltonian case. It might appear that
thereby the foundation for the construction of invariant structures, as it was
carried out for gas phase reactions, is undermined. To overcome this difficulty,
an invariant structure must be found that can replace the equilibrium point.
The crucial idea [13,19,20] is to identify a trajectory, called the Transition State
(TS) trajectory, that remains in the vicinity of the barrier for all time, without
ever descending into either the reactant or the product wells.

The exact nature of the TS trajectory and the method of its calculation
depend, of course, on the details of the external driving. Its existence can
nevertheless be shown for a large class of systems. In the simplest case, the
external driving is periodic in time, which renders a TS trajectory that is an
unstable periodic orbit [11,12].

For any type of external driving, the TS trajectory can easily be constructed
if the barrier is harmonic, i.e., f(x) = 0. The equations of motion (5) can in
this case be solved by

zi(t) = Cie
λit +

1

λi − λj
S[λi, ξ; t], (6)

where Ci are arbitrary constants and the S-functionals [13,21] are given by

S[λ, g; t] =


−
∫ ∞
t

g(t′) exp(λ(t− t′)) dt′, if Reλ > 0,

+

∫ t

−∞
g(t′) exp(λ(t− t′)) dt′, if Reλ < 0.

(7)

(We assume for the sake of simplicity that Reλi 6= 0, i.e., the friction constant
γ is non-zero. For the case of driven Hamiltonian systems with Reλi = 0, see
Ref. [21].) Because the exponential terms in Eq. (6) diverge exponentially as
t→ +∞ (for z0) or t→ −∞ (for z1), a trajectory that remains near the origin
can only be obtained by setting Ci = 0, which gives rise to the TS trajectory

z‡i (t) =
1

λi − λj
S[λi, ξ; t]. (8)
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Fig. 2. Time-evolution of different characteristic trajectories. (a) The transition state
trajectories for different noise ensembles and kBT = 1 (dashed blue), kBT = 5
(magenta), and kBT = 10 (orange) always fluctuate around the saddle point po-
sition, xSP = 0. (b) Typical trajectories descend from the saddle quickly. A reactive
trajectory (green) crosses the transition state trajectory (dashed blue) once. A non-
reactive trajectory (red) does not cross the transition state trajectory.

The TS trajectory on an anharmonic barrier can be obtained by writing

zi(t) = z‡i (t) +∆zi(t),

where ∆zi(t) denotes the deviation of the exact TS trajectory from its harmonic
approximation (8). It satisfies the equations of motion

∆żi = λi∆zi +
f(x‡ +∆z0 +∆z1)

λi − λj
(9)

with the position x‡(t) = z‡0(t) + z‡1(t) the position of the harmonic TS trajec-
tory. Equations (9) can be solved formally by

∆zi(t) =
1

λi − λj
S
[
λi, f(x‡ +∆z0 +∆z1); t

]
. (10)

This is only a formal solution because the unknown functions ∆zi appear in
the S-functional on the right hand side. Nevertheless, because the ∆zi appear
only through the anharmonic force f that is small near the barrier, Eq. (10)
provides a suitable basis for a numerical scheme. If the harmonic approximation
∆z0 = ∆z1 = 0 is substituted into the right hand side of Eq. (10), the S-
functionals can be evaluated to yield an improved approximation for the ∆zi.
The new approximation can then be substituted into the right hand side again,
and the process iterated to convergence. This process has successfully been
used to obtain the TS trajectory on strongly anharmonic potentials for periodic,
quasiperiodic and stochastic driving [12].

Figure 2(a) shows the TS trajectory for a harmonic barrier under stochas-
tic driving. The TS trajectories have been samples for three different noise
sequences at three different temperatures. As expected from Eq. (8), the dy-
namics of the TS trajectory depends strongly on the noise sequence α. More-
over, the amplitude of the oscillations increases with the temperature. In any
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case, the TS trajectory remains “jiggling” in the vicinity of the barrier top.
Let us remark that, as it randomly moves, it also displaces its invariant man-
ifolds, which organize the dynamics in the barrier top as will be discussed in
the next subsection. By contrast, as shown in Fig. 2(b), a generic reactive
(nonreactive) trajectory quickly dives into the product (reactant) side, defined
by x > 0 (x < 0). Notice that these trajectories cross the naive DS xSP = 0
many times, but TS trajectory. This fact can be explained because of their
different velocities, as will be reported below.

3.3 Time-dependent invariant manifolds

Having identified the TS trajectory that corresponds to the equilibrium point
or the NHIM in an autonomous Hamiltonian system in that it is bound to the
neighborhood of the barrier for all times, we now turn to an investigation of
the phase space structures that surround it. To this end, consider once again
the relative coordinates

∆zi = zi − z‡i (11)

with the harmonic TS trajectory z‡i . The relative coordinates satisfy the equa-
tions of motion (9) but their interpretation is now different from what was used
in Sec. 3.2. They represent a typical trajectory in the barrier region, away from
the TS trajectory.

Notice that the dynamics of the relative coordinate described by Eq. (9)
does not depend explicitly on the noise, but it does implicitly through the
coordinate x‡ of the TS trajectory. Moreover, the two equations of motion
decouple in the harmonic approximation, i.e., if f(x) = 0. In that case, their
solution is given by

∆zi(t) = ∆zi(0) eλit, (12)

The lines ∆z0 = 0 and ∆z1 = 0 are invariant under dynamics, as any initial
condition with ∆z0(0) = 0 or ∆z1(0) = 0 satisfies ∆z0(t) = 0 or ∆z1(t) =
0, respectively, for all times. In fact, these lines are the invariant manifolds
associated with the TS trajectory. In particular, ∆z0 = 0 defines the stable
manifold, because every initial condition with ∆z0(0) = 0 will asymptotically
approach the origin, i.e., the TS trajectory, as λ1 < 0. Similarly, ∆z1 = 0
determines the unstable manifold because any initial condition ∆z1(0) = 0
will move away from the origin as t → ∞, but it will approach the origin as
t→ −∞, since λ0 > 0.

Figure 3(a) sketches the harmonic approximation to the stable and unstable
manifolds in relative coordinates along with four typical trajectories. As in a
Hamiltonian system, the latter fall into four distinct classes, depending on
whether they originate on the reactant or product side of the barrier in the
remote past and whether they end on the reactant or product side in the
distant future. As can be seen, the invariant manifolds form the boundary
between phase space regions with qualitatively different behavior. For our
present purposes, we will only study the future behavior of trajectories and
call trajectories reactive or nonreactive if they move to products or reactants,
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Fig. 3. Phase space view of the time-dependent invariant manifolds of the Langevin
equation (1). (a) The invariant manifolds are time-independent in the harmonic
approximation and in relative coordinates. (b) In space-fixed coordinates, the invari-
ant manifolds are attached to the transition state trajectory (yellow dot) and move
through phase space with it. In any case, all trajectories above the stable manifold
are reactive (green), while those below are nonreactive (red). For initial conditions
with x = xSP = 0, trajectories with velocities above a critical value V ‡ are reactive
(see Sec. 4).

respectively. This distinction can be made with the help of the stable manifold:
all initial conditions that lie below the stable manifold are nonreactive, while
those above the stable manifold are reactive.

The phase space structure that has so far been described in relative coordi-
nates can now be transferred to space-fixed coordinates x and v, in which the
origin ∆x = ∆v = 0 of the relative coordinates is identified with the TS trajec-
tory x‡, v‡ and is time-dependent. Therefore, the invariant manifolds, indicated
by dashed lines in Fig. 3(b), move through phase space with the TS trajectory,
but they retain their function: They still separate reactive from non-reactive
trajectories. In particular, a knowledge of the instantaneous position of the
stable manifold allows one to predict with certainty whether a trajectory will
be reactive.

Figure 3 also shows that the time-dependent DS ∆x = 0 or x = x‡ will be
recrossing free, as was indicated already in Fig. 2(b).

If the barrier is anharmonic, the invariant manifolds are distorted, as shown
in Fig. 3(b). Their shape, as well as their location, will depend on time and on
the details of the external driving. Still, if the anharmonicity is not too large,
they survive [22] and keep on acting as separatrices for reactivity.

The TS trajectory as well as the associated invariant manifolds can be
computed by normal form theory. For stochastically driven systems this was
carried out in Ref. [23–26]. These calculations provide full detail of the phase
space structure. As will be described below, for specific purposes, such as rate
calculation, it can be advantageous to use a specialized computational scheme
that provides the information of immediate interest at significantly reduced
computational cost.
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4 Reactions in white noise

We will now discuss how the phase space structures described so far can be used
in the calculation of reaction rates. The details of such a calculation depend,
of course, on the precise setup of the system under study and on the definition
of the rate constant.

A common setup in which to study a thermally activated crossing of an
energy barrier is to assume that particles that have crossed the barrier and
progressed sufficiently far to the product side are removed there, while at the
same time particles are replaced on the reactant side with low energy and at
a sufficient distance from the barrier. For sufficiently long time, a stationary
state will be established in which there is a steady flux of particles from the
reactant to the product side. A reaction rate for this situation was first derived
by Kramers [27]. The interested reader is referred to Ref. [18] for a review of
the extensive literature in the field.

The reaction rate can be computed through the flux-over-population ex-
pression given by

k =
J

N
, (13)

where N is an average population of the reactant region and

J = 〈vχr(v)〉α,IC (14)

is the reactive flux out of that region. Here v is the velocity, and 〈 〉α,IC denotes
an average over interactions with the environment, α, and an ensemble of initial
conditions (IC) that are in thermal equilibrium following the Boltzmann dis-
tribution p(x, v) = δ(x− xSP) exp

[
−v2/(2mkBT )

]
being m the particle mass.

The characteristic function χr(v) in Eq. (14) encodes all the complexity
of the reaction mechanism and determines which trajectories must be incor-
porated in the reactive flux; this function equals 1 if the trajectory is reac-
tive, and 0 otherwise. The simplest approximation to this function is yielded
by TST, which assumes that every trajectory with positive velocity reacts,
i.e., χTST

r (v) = 1 if v > 0, and 0 otherwise. Unfortunately, this assumption
is usually violated. Then TST overestimates the true reactive flux, and con-
sequently the reaction rate (13). The accuracy of the TST prediction can be
quantified through the transmission factor given by

κ =
k

kTST
≤ 1, (15)

which gives the ratio between the true rate k and the TST prediction kTST

obtained using the previous characteristic function χTST
r . Equation (15) has

rather simple form but its numerical evaluation can be computationally de-
manding as one must take averages over several interactions with the environ-
ment and over several initial conditions to asses which trajectories are reactive
and which ones are not, by solving the equations of motion of the system until
their energies lie far below the barrier top.

However, as the phase space plot in Fig. 3(b) shows, once the initial position
x = xSP = 0 of the initial ensemble has been fixed, there is a critical velocity
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V ‡ such that trajectories with initial velocities larger than V ‡ are reactive,
those with smaller velocities are nonreactive. In terms of the critical velocity,
the characteristic function can be expressed exactly as

χr(v) =

{
1, if v > V ‡,

0, if v < V ‡.
(16)

The critical velocity V ‡ depends on the realization α of the noise.
By substituting the characteristic function (16) into the flux formula (14),

one obtains the transmission factor [20,14–16]

κ =

〈
e
−mV ‡ 2

2kBT

〉
α

. (17)

Equation (17) reduces the problem of rate calculation to a computation of the
critical velocity. As shown in Refs. [14,15], the perturbative scheme that was
used in Sec. 3.2 to obtain the TS trajectory can be adapted to this purpose.
It yields an expansion of the critical velocity in powers of

√
kBT , gives rise

to an expansion of the transmission factor in powers of kBT . For a general
one-dimensional potential (3), the leading terms are given by

κ = µ− µ

6

c23 kBT

ω6
b

(
1− µ2

1 + µ2

)2
10µ4 + 41µ2 + 10

2µ4 + 5µ2 + 2
+

3

4

c4kBTγ
2

ω3
bλ1(λ0 − λ1)2

, (18)

where µ = λ0/ωb is Kramers’s famous result for harmonic barriers [27]. This
result was first obtained, for white and correlated noise, in Ref. [28,29], and
by the present method in [14,15]. The geometric approach using invariant
manifolds can be extended to multidimensional systems and to systems driven
by correlated noise, as described in Refs. [14–17], where the perturbative rate
formulas are also compared to the results of numerical simulation.

5 Reactions in correlated noise

5.1 The generalised Langevin equation

The Langevin equation (1) assumes that the bath thermalizes infinitely fast.
This is, however, not the case of liquid phase reactions. Consequently, a more
realistic description of the bath must also take into account the finite-time
dynamics and the underlying correlations. For this purpose, the generalized
Langevin equation

mẍ = −dU(x)

dx
−m

∫ t

−∞
γ(t− t′) ẋ(t′) dt′ +mRα(t), (19)

provides an excellent benchmark. In this equation, U(x) represents again the
potential given by Eq. (3), and γ(t) is the friction kernel. In our case, this fric-
tion kernel will be taken exponential as in many realistic chemical reactions [30].
Mathematically,

γ(t) = (γ0/τ) e−t/τ , (20)
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where τ is a characteristic correlation time and γ0 a damping strength. Notice
that in the white noise limit, where τ → 0 , the friction kernel becomes Marko-
vian, γ(t) ≡ γ0, and then Eq. (19) reduces to Eq. (1). Finally, Rα(t) is the
fluctuating Gaussian colored noise force exerted by the heat bath. Let us re-
mark that γ(t) and Rα(t) are related to each other according to the fluctuation-
dissipation theorem, which in this case reads

〈Rα(0)Rα(t)〉α =
kBT γ(t)

m
. (21)

Equation (19) is a second order differential equation, which can be rewritten
as a system of two first order differential equations. Still, the calculation of a
solution is complicated because of the integral from infinitely far past. Never-
theless, this last integral can be avoided by addying the new variable [31–34],

ζ = −
∫ t

−∞
γ(t− s) ẋ(s) ds, (22)

and subtituting Eq. (19) by the system of equations

ẋ = v, v̇ = − 1

m

∂U(x)

∂x
+ ζ, ζ̇ = −γ0

τ
v − 1

τ
ζ + ξα(t), (23)

which defines an extended phase space of dimension three instead of two, be-
ing ξα a white noise source that satisfies the fluctuation–dissipation theorem

〈ξα(t)ξα(s)〉α =
2kBT γ0
mτ2

δ(t− s). (24)

5.2 Invariant manifolds in correlated noise

In the presence of colored noise, an expression for the TS trajectory similar to
that given by Eq. (8) can be also obtained. Note that this TS trajectory has
three components instead of just two as in the white noise setting.

To study the dynamics in the vicinity of the TS, we use again relative
coordinates as in Eq. (11), yielding

∆żi = λi∆zi +Ki f(x), (25)

being Ki some constants (see Refs. [16,17]). As in the white noise setting, the
three Eqs. (25) decouple in the harmonic limit. Their solution is again given
by Eq. (12). However, in this case we have one unstable direction, that parallel
to the eigenvector associated with λ0, and two stable ones, corresponding to
the eigenvectors for λ1 and λ2. Consequently, the stable manifold is in this
case given by the plane defined by the two stable eigenvectors, as shown in
Fig. 4(a).

The calculation of the stable and unstable manifolds becomes much more
involved if the barrier presents anharmonicities. Still, dynamical systems the-
ory assures that they exist as long as the anharmonicities are not too large [22].
As in the white noise limit, the invariant manifolds do not only move randomly
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attached to the TS trajectory but get also stochastically deformed in the pres-
ence of anharmonicities, as shown in Fig. 4(b). In any case, they allow us to
correctly predict which trajectories will end up in the product side: only those
that lie above the stable manifold. Moreover, they can be used to generalize
Eq. (18) to obtain a transmission factor for colored noise that does also ac-
count for the barrier anharmonicities, which extends Grote-Hynes theory to
this more involved situation following an alternative methodology from other
previous studies [28]. The validity of the previous extension has been demon-
strated through extensive numerical simulations, both in model potentials [17],
as well as in a realistic molecule, the LiNC/LiCN isomerizing system [16].

Fig. 4. Extended phase space of the generalized Langevin equation (19) for harmonic
(a) and anharmonic (b) potential barrier. Yellow dot: instantaneous position of
the transition state trajectory. Black curve: unstable manifold. Light blue surface
and trajectories within: stable manifold (SM). The dividing surface (v–ζ plane) is
partitioned into reactive (green) and nonreactive (brown) regions by the intersection
of the dividing surface with the stable manifold and defines the critical velocity V ‡ =
V ‡(ζ) (purple). Representative reactive (green) and nonreactive (red) trajectories
intersect the dividing surface as indicated by black dots.

6 Summary

Over the last two decades, transition state theory has experienced a tremendous
advance because of the application of new mathematical tools to study chemical
reactions. These new methodologies are based on the correct identification
of the geometrical structures —the invariant manifolds— that determine the
dynamics in the transition state, and then the reactivity of the system. More
importantly, they can be used to predict if an initial condition renders a reaction
or not, a task that is particularly demanding when the system is strongly
coupled to a bath. Moreover, they can be used to obtain explicit expressions
for the reaction rate without the need of any reference dividing surface.
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