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Abstract. We study discrete rogue waves in Hermitian and non- Hermitian waveguides. 

We show that the hopping amplitudes, forward and backward direction, indicate the site 

where rogue waves occur. In non-Hermitian waveguides, discrete rogue waves tend to 
accumulate to one side. 
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1  Introduction 
 

Rogue waves are generally known as abruptly large amplitude waves that rarely 

appear in the open sea (Haver, 2004). Their living time is concise, and they are at 

least two times higher than the rest of the sea. Their interesting feature appears 

without warning and disappears like it never happened (Dysthe et al., 2008; Guo, 

Boling; Tian, 2017; C. Kharif et al.., 2008; C. Kharif & Pelinovsky, 2003; Wen-

Rong Sun et al., 2021). These waves can occur in open water and can be 

excessively dangerous for several reasons (M. Onorato et al., 2001). An important 

one is an unpredictability. The other one is their large amplitude. 

Rogue waves have attracted the great attention of researchers because these waves 

have found not only in hydrodynamics but also in other physical fields such as 

nonlinear optics (Kibler et al., 2010), Bose-Einstein condensates (Wen et al., 

2011), superfluids (Chabchoub et al., 2012), plasmas (Moslem, 2011), even in 

finance (Yan, 2011; Zhen-Ya, 2010).   

For centuries, giant waves were thought to be part of marine folklore, but their 

existence has been proved by taking sensitive measurements (Christou & Ewans, 

2014; C. Kharif et al.., 2008). Seafarers describe freak waves as "walls of water" 

because the resulting amplitude may reach the height of 20–30 m or even higher. 

Freak waves can be observed in groups of waves, as well as a single one. In 

literature, two small waves accompanying to central peak, recalling "three 

sisters," are often mentioned ( C. Kharif et al.., 2008). 
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The first scientific record was taken in the North Sea at Draupner platform on 1 

January 1995 (Haver, 2004). The maximum wave height was 25.6 m. It is vital 

since it brings light to how rogue waves occur experimentally.  

Since rogue waves are infrequent, measurements of this event troublesome, 

underlying mechanisms of these giant waves are still in debate (C. D. Pelwan et 

al., 2020). A variety of mathematical explanations of freak waves in the ocean are 

even linear or nonlinear (Dysthe et al., 2008). Although it is too early to state the 

most common causes, main linear and nonlinear physical factors can be said as 

geometrical focusing, temporal focusing, modulational instability, nonlinear 

wave interaction, wind, and strong currents. There is a consensus that the 

nonlinear Schrödinger equation (NLSE) is a convenient and widely-used way to 

investigate rogue waves (Guo, Boling; Tian, 2017; M. Onorato et al.., 2016). 

Bludov, Konotop, and Akhmediev considered the discrete nonlinear Schrödinger 

equation (DNLS) to model an array of nonlinear waveguides. They constructed a 

controlled formation of a discrete rogue wave (Bludov et al., 2009). 

DNLS equation can be defined as follows (Bludov et al., 2009), 
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dt
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=0  

(1)
 

where n is the complex field amplitude at the n-th waveguide, t is the propagation 

direction, 𝑄𝑛 The coupling coefficient between the n-th waveguide and 

neighboring waveguides and a is a dimensionless constant which 0 < 𝑎 and g is 

nonlinear interaction constant. We study with the initial condition that closes to 

the exact solution of NLS. References (Bludov et al., 2009; Efe & Yuce, 2015) 

already show that the initial state has significant importance in observing discrete 

rogue waves. We take the initial condition as, 

 

Ψ(𝑛, 0) = εe−iε2L (1 − 4
1−2iε2L

1+2ε2𝑛2+4ε4L2)  (2) 

 

in references (Bludov et al., 2009; Efe & Yuce, 2015). Here ε is a very small 

parameter (ε<<1) and background amplitude. L is the length of each waveguide 

in the array.  

We work on a numerical solution, and we suppose that equation 1 is 

subject to periodic boundary conditions and initial condition given in eq.2. We 

begin with choosing a=1 in eq.1. This means that forward difference length and 

backward difference are equal to each other, and all waveguides are disseverance 

same. We can define this desired system as a Hermitian waveguide.   

Consider ε=0.2, L=100 and g=1. We take the coupling coefficient of the 

DNLS equation 𝑄𝑛=1.2, 

𝑖
dΨn

dt
+1.2 Ψn+1+1.2 Ψn-1+|Ψn|

2Ψn=0 (3)
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Figure 1: The absolute of field amplitude for ε=0.2 and L=100. Eq. 3 is solved numerically with the 

initial form of field given in eq. 2. Peregrine-like soliton occurred. 

 

Figure 1 shows that when forward and backward differences equal to each other 

and proper initial condition is chosen, Peregrine soliton has occurred. 

Reference (Efe & Yuce, 2015) shows that a small degree of disorder affects rogue 

wave formation deeply. However, it is not shown that if the length of forwarding 

and backward difference waveguides are not equal to each other, this situation 

causes the rogue waves to gather in one region. In this study, we show rogue 

waves' behavior when the lengths of waveguides are not equal. This means the 

system is non-Hermitian. 

Now, let us change the coupling constant and dimensionless constant of the 

DNLS equation, 𝑄𝑛=1.3, 𝑎 ≈ 0,923, 

   

𝑖
dΨn

dt
+1.3 Ψn+1+1.2 Ψn-1+|Ψn|

2Ψn=0 

note that forward difference and backward difference lengths are not equal to each 

other now. Forward difference length is a bit bigger than backward difference 

length.  
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Figure 2: The absolute of field amplitude for ε=0.2, L=100, and g=1. Eq. 3 is solved numerically 

with the initial form of field given in eq. 2. rogue waves accumulate right side. 

 

 

As shown in Figure 2, although some chaotic fluctuations happen, rogue waves 

accumulate right side. 

Does discrete rogue waves evaluation really depend on irregular grids? There is 

the question of what happens if backward difference length is a bit bigger than 

forwarding ones. We will change the coupling constant and dimensionless 

constant of DNLS equation as, 𝑄𝑛=1.2, 𝑎 = 1.083̅, 

 

𝑖
dΨn

dt
+1.2 Ψn+1+1.3 Ψn-1+ |Ψn|

2Ψn=0 
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Figure 3: The absolute of field amplitude for ε=0.2, L=100, and g=1. Eq. 3 is solved numerically 

with the initial form of field given in eq. 2. rogue waves accumulate left side. 

 

Although some chaotic fluctuations happen, as can be seen from the figures, if 

the forward difference is more significant than the backward, the waves 

accumulate to one side. If the backward difference is more significant than the 

forward, the waves accumulate to another side. 

 

Conclusions 
 

In this paper, we have studied discrete rogue waves with different hopping 

amplitudes. We show that choosing hopping amplitude a bit bigger in forward 

and backward direction correlates with discrete rogue waves' sites. According to 

hopping amplitude, discrete rogue waves accumulate to one side. It is vital to 

control where discrete rogue waves occur. That is why hopping amplitudes 

behave like control parameters. It is an open question that can be proven by 

experimental studies. 
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