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Abstract. The usual class of Markov processes which we involve many times has
some restrictions that it does not cover many interesting processes. We shall refer, in
this paper, to some problems involving stochastic calculus, diffusion approximation
and Markov processes. In this context the problem of absorbing and reflecting barriers
is also discussed.
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1 Introduction

When a stochastic differential equation is considered if it is allowed for some
randomness in some of its coefficients, it will be often obtained a so-called
stochastic differential equation which is a more realistic mathematical model of
the considered situation.

Many practical problems conduct us to the following notion: the equation
obtained by allowing randomness in the coefficients of a differential equation is
called a ”stochastic differential equation”.

Therefore, it is clear that any solution of a stochastic differential equation
must involve some randomness. In other words one can hope to be able to say
something about the probability distribution of the solutions.

In the sequel we shall refer to some aspects relating to the approximation
in the study of Markov processes and Brownian motion. Such problems were
developed particularly by Schuss[13], Kushner and Yin[5], I1t6 and McKean
Jr.[3], Wasan[14].

Results on almost sure convergence of stochastic approximation processes
are often proved by a separation of deterministic (pathwise) and stochastic
considerations. A key problem in effective applications concerns the amount of
noise in the observations, and this leads to variations that incorporate variance
reduction methods. With the use of these methods, the algorithm becomes
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more effective, but also more complex. Hence, it is desirable to have robust
algorithms, which are not overly sensitive to unusually large noise values.

More details and related topics can be found in Schuss[13], Kushner and
Yin[5], It6 and McKean Jr.[3], Ito[4], Qksendal[6], Dksendal and Sulem[7],
Stroock[12], Orman[9], [10], Wasan[14] which are also the basis in our deve-
lopment.

2 Preliminaries

Definition 1. The sample space {2 of a random experiment is the collection
of all possible outcomes. An event A is a subset of the sample space, that is, a
set of outcomes.

Definition 2. A probability measure on a sample space {2 of a random experi-
ment is a function P[-] that maps events in {2 to real numbers such that: (3)
P[] =1,

(#3) P[A] > 0 for all events A,

(#i1) P U Al = ZP[Ai] where I is a finite or countable infinite set of
i€l iel
integers and any pair of the events Ay, A, As, - -+ is disjoint.
Let us consider the triplet ({2, K, P) where

e (2 is the sample space. Its elements are referred to as sample points;
e IC is a o-field of subsets of {2 containing 2 itself. Its elements are events;
e P is a probability measure on the measurable space ({2, K).

If an event A is of the type A = {w € 2| R(w)} for some property R(-), (of
the probability) we may write P(R) for P(A). An event is called a sure event
if P(A) =1 and a null event if P(A) = 0. Alternatively, R(-) is said to hold
a.s. if P(R) = 1.

The triplet (§2, K, P) is referred to as a probability space.

Let now consider an experiment that is repeated n times and suppose that
m (m < n) times the event B occurred. Also suppose that & times (k < m) the
event A occurred, provided that B occurred. Then, the event A N B occurred
k (k < n) times, such that we have P(ANB) = £ Now £ = 2. £ —
P(B) - P(A|B). In this way the following relation is obtained P(A N B) =
P(B)-P(A|B) or

P(ANB)

P(A|B) = —pp.

P(B) > 0. (1)
P(A|B)in (1) is called a conditional probability whenever P(B) > 0. We retain
that the function

Pp(A) = P(A|B) (2)

is a probability measure in B, where B is now considered as a smaller sample
space.
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Hence, the measure P(A | B) is the probability of the event A provided that
B occurs.

A fundamental concept of probability is the notion of random variable. A
random variable is a function that gives a numerical value to each outcome
of a random experiment. The distinction between the random variable and
the experimental outcome itself can become blurry in this case, because if w
denotes an outcome, then X (w) = w. But we retain that the random variable
is a function and the outcome is its input. The domain of the random variable
is the sample space and that its range is a set of numbers.

Definition 3. Let ({2, K, P) be a probability space and let us denote by E a
subset of R". A random variable X is a function from 2 into E. We refer to
FE as being the state space of the random variable.

So, a random variable encodes an experimental outcome as a number, or a
vector of real numbers in the multidimensional case. When a random variable
has a multidimensional state space, we emphasize that fact by calling it a
random space.

Let (E,&) be a measurable space and X : (2,K,P) — (E,§) a random
variable (i.e. a measurable map). The image p of P under X is a probability
measure on (F, &), called the law of X and denoted by L£(X). The events
{w] X(w) € A} for A € ¢ form a sub-o-field of K called the o-field generated
by X and denoted by o(X). More gneral, given a family X,,, a € I, of random
variables on ({2, /C, P) taking values in measurable spaces (E,,&,), o € I,
respectively, the o-field generated by X, a € I, denoted by o(X,,a € I), is
the smallest sub-o-field with respect to which they are all measurable. They
may be situations where it is preferable to view {X,,, a € I'} as a single random
variable taking values in the product space [[ E, endowed with the product
o-field []&,. If so, this definition reduces to the preceding one.

Two (or more) random variables are said to agree in law if their laws coin-
cides. They could be defined on different probability spaces. A random variable
X (w) generates a field (o-field) Kx of events generated by events of the form
{w| X (w) = a} where a is any number. The field consists of events which are
unions of events of the form {w | X (w) = a}. The probability function P on the
events of this field Lx generated by X (w) is called the probability distribution
of X (w).

Suppose we have n random variable X;(w), -+, X,,(w) defined on a pro-
bability space. The random variables Xy, ---, X, are said to be independent
if the fields (o-fields) Kx,, - -, Kx, generated by them are independent.

Definition 4. A stochastic process is a parametrized collecion of random vari-
ables

{Xt}teT

defined on a probability space ({2, KC, P) and assuming values in R™.

The parameter space T' may be the halfline [0, +00), or it may also be an
interval [a, b], or the non-negative integers and even subsets of R", for n > 1.
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Now, for each t € T fixed, we have a random variable w — X (w), w € £2.
On the other hand, fixing w € {2, we can consider the function

t— Xy(w), teT (3)

which is called a path of the random variable X;. It is useful to think of ¢ as
time and each w as an individual particle or experiment. Thus, X;(w) would
represent the position (or the result) at time ¢ of the particle (experiment) w.
In some cases it is convenient to write X (t,w) instead of X;(w), such that the
process can be regarded as a function of two variables (t,w) — (¢, w) from
T x {2 into R™. In stochastic analysis this is often a natural point of view,
because there it is crucial to have X (t,w) jointly measurable in (¢,w).
In this paper we shall denote a stochastic process by X (t).

3 Markov process and diffusion process

Definition 5. A stochastic process X(¢) on [0,7] is called a Markov process
if for n = 1,2,3,--- and any sequences 0 < tg < t; < -+ < t, < T and
o, X1, ,xn, the following equality is satisfied:

P(X(tn) < Zp | X(tn—l) = Tn-1, X(tn—2) =Tp—-2,""" 7X(t0) = xO) =
= P(X(tn) < 2| X(tn1) = 2n1). (4)

The equation (4) means the fact that the process forget the past, provided
that t,,_1 is regarded as the present.

Let £2x be the state space of the random variables X;. Take Kx as the
o-field of measurable subsets of {2x. For convenience, assume that there is a
first point to the set T. The probability structure is specified in terms of an
initial probability measure and a transition probability function describing how
transitions take place from one time to another.

We denote by P(tg, A) a probability measure on the sets A of Kx. This
is the probability distribution at the initial time ¢g. Further let the transition
probability function p(t,z;7, A), to <7 <t, x € 2%, A€ Kx be a function
with the following properties:

i p(t,x;7,A) is a probability measure in A € Kx for fixed ¢, x, 7;
i1 p(t,x;7, A) is measurable in x with respect to Kx for fixed ¢, 7, A;
it p(t,x; 7, A) satisfies the integral equation (commonly called the Chapman-
Kolmogorov equation)

Pt 27, A) = / p(s, 57, A)p(t, a3 5, dy) 5
2x

~

for any s with t < s < 7.

As it is shown in the theory of stochastic processes, the transition pro-
bability function p(¢,z;7, A) is the conditional probability

p(t,z;7, A) = P[X;(w) € A| Xy(w) = z]. (6)
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Now the transition distribution function
F(t,z;7,y) = P(X;(w) <y| X¢(w) =) (7)

can be obtained, corresponding to the case when in p(t,x; 7, A) we take A of
the form (—o0,y). It verifies the following relation

F(t,x;T,y):/ F(s,z;1,y)d.F(t, x;s, 2).
R

Then, the transition density function with respect to y is as follows
0]
fta7y) = ay F(t,x;7,y), (8)

and verifies the equalities
Yy
Ftairy) = [ feanads [ fearpa=1
R

Furthermore, the Markov property (4) implies that
ftairy) = [ fommpftmsd,  t<s<r (0
R

that is, the probability that X (¢) goes from x to y in the time interval [t,T]
is that probability that X(-) goes to any point z at any time s and then,
independently of the way it reached z, it goes to y. The equality (10) is also
referred to as the Chapman-Kolmogorov equation for Markov processes.

In certain conditions of existence, the transition density function satisfies
the following two equations which are referred to as the backward Kolmogorov
equation and respective the forward Kolmogorov equation

0 T T 0 T T 1 0? TT
and
of(t,x; T, 0 1 62
w = gy [t ) + 5 5 By (a7 y)] (12)

where a(t, z), b(t,x), a(t,y), b(r,y) are functions satisfying some conditions
to assure the existence and the uniqueness of the solution of the equations. The
forward Kolmogorov equation is also referred to as the Fokker-Planck equation.

Definition 6. A Markov process X(t) is called a diffusion process if the fol-
lowing conditions are satisfied:

i For every € > 0, t and =,

. 1
AI%IEO A /yz|>€ F(t,z,t + At,y)dy = 0. (13)
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4 There exist the functions a(t,x) and b(¢, ) such that for all e > 0, t and =z,

. 1

Aliglo E /y—a:|§g(y - LL’) f(ta z,t+ At7 y)dy - a(t7 $)7 (14)
: 1 2 —

Al)lglo A ~/|y—x§8(y —x)° f(t,x,t + At,y)dy = b(t, x). (15)

The function a(t, z) is called the (infinitesimal) drift coefficient of X (t) and
b(t, ) is called the (infinitesimal) diffusion coefficient. The intuitive meaning
of conditions (13) - (15) and of the coefficients a(t, x) and b(t, z) is the follow-
ing. In a short time interval h, the displacement of X (-) from a point = at time
t is given by a(t, ) At + dx + 0(At), where a(t, x) is the velocity of the medium
in which a particle (whose motion is described by X (+)) drifts, dx is the random
fluctuation of the particle due to random collision or thermal fluctuation, a.s.o.
Furthermore, E dz = 0,Vardx = b(t,z)At. That is to say b(t,x) is propor-
tional to the average energy of the fluid molecules in the neighborhood of the
particle. One can observe that the following conditions imply the conditions ¢
and ¢ above:

(a) For any positive number 4, as At — 0

1
B, | X(t+ At) - X()*T =0

At
(b) and
1
T et [X(E+ At) = X(8)] = a(t, @),
1 2
7 Bra [X(t+ At) = X(8)]* = b(t, ).

4 Absorbing and reflecing barriers

Let us consider that a particle located on a straight line moves along the line
via random impacts occurring at times tq,ts,%3,---. The particle can be at
points with integral coordinates a,a + 1,a + 2,--- ,b. At points a and b there
are absorbing barriers. Each impact displaces the particle to the right with
probability p and to the left with probability ¢ = 1 — p so long as the particle
is not located at a barrier. If the particle is at a barrier then, it remains in the
states Ay and A,,_; with probability 1.

A similar example can be considered for a particle being in a random walk,
when at points a and b there are reflecting barriers. The conditions remain
the same as in the former case, the only difference being that if the particle
is at a barrier, any impact will transfer it one unit inside the gap between the
barriers.
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1. Let now be the case of a Brownian motion with an absorbing barrier.
The forward Kolmogorov equation (12) for a Brownian motion on z > 0 with
an absorbing boundary at x = 0 is given by

o 1% .

aziaiyz m y>0

p(0,t,y) =0, t>0, y>0
plz,t,y) = d(x—y) as t}0, >0, y>0.

The solution of such an initial boundary value problem is as follows

(2.t.9) 1 [ _a—p? _ Gaxy?
T, = e 2t —e 2t
b Y o

It can be seen that by symmetry, p(z,¢,0) = 0. Then, it can be shown that

_ (aty)?

1 —+o00
— e 2? x)dr — o(—y) =0
o /m p(z) o(—y)

as t | 0 if y > 0. Therefore,

p(z,t,y) = 6(x —y) as t} 0 forall x>0,y >0.

2. Now let us consider the Brownian motion on x > 0 but with a reflection
barrier at the origin.

The forward Kolmogorov equation for a Brownian motion on z > 0 with
an absorbing boundary at z = 0 is given by

op 10%

a == 5 aizyQ, y >0

op(z.ty) | _
oy =0

plx,t,y) = d(x—y) as t}0, x>0, y>0.

In this case the following solution is found

(z.1.7) 1 { _ (@-p? N _ (ety)?
z,t, = — |e 2t2 e 2¢2
P Y t2m
and the condition

op(z,ty) | _

8$ x=0

holds too.
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