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Abstract. The world is filled with complex systems whether it is the traffic patterns
in cities, weather patterns, information flow in the internet, or turbulence in fusion
reactors. These complex systems are not often amenable to simple analytic solutions,
understanding these systems requires a new statistical method beyond traditional
equilibrium theory, i.e. Boltzmann Gibbs statistics. We present a novel method for
understanding complex dynamics of such systems by using the Observable Represen-
tation which has been successfully applied to complex systems in detailed balance.
Specifically we generalise it to non-equilibrium systems where detailed balance does
not hold, i.e. the system has non zero currents. We construct a new transition ma-
trix by accounting for this current and compute the eigenvalues and eigenvectors.
From these, we define a metric whose distance provides a useful measure of correla-
tion among variables. This is a very general method of understanding correlation in
various systems, in particular, long-range correlation, or chaotic properties. As an
example we show that these distances can be utilized to control chaos in a simple
dynamical system given by the logistic map.
Keywords: detailed balance, non-equilibrium, chaos, complex systems.

1 Introduction

When studying a system in nature, we often devise experiments whose goal is to
understand the interactions of a set of proposed variables. The ultimate goal of
these investigations is to try and discover how the variables interact to form the
underlying dynamical equations which govern the system. Often though the
system is so complicated that finding these unknown equations is impossible.
Instead of attempting to derive the underlying functions of a system, we take
a different approach. Just as the field of dynamical systems uses graphical
representations of systems that are difficult or impossible to solve analytically.
We use a graphical representation of the system which comes from a master
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equation. The distances in this representation can be used to understand the
original system without having any knowledge of its underlying functions which
govern the system.

This representation of a system is called the Observable Representation
(OR), it was originally developed by Schulman and Gaveau to try and under-
stand non-equilibrium phase transitions, [4], [5]. Since its inception the OR
has been applied to Ising models [6], course graining [1] and the reconstruction
of coordinate spaces [2] among others. Coifmann et.al. have also used an ex-
tremely similar spectral approach which has been applied to the Fokker-Planck
equation [3]. This paper will outline the notation of both the detailed balance
OR and our non-detailed balance extension of the OR, the NOR. We will then
show how to use this approach to control chaos in a simple dynamical system
given by the Logistic map. Finally we will summarize with a brief conclusion.

2 Observable Representation with detailed balance

The system which is being studied is represented by the NxN stochastic matrix
of transition probabilities Rxy. States of the system are given by x, y ∈ X, X
is a state space of cardinality N < ∞. The system moves according to Rxy,
Rxy is defined as,

Rxy = Pr(x← y) = Pr[state at (t+ 1) is x |state at t is y]. (1)

po(x) is a unique strictly positive stationary distribution such that
∑
x po =

1, and Rxypo(y) = po(x). There are several requirements of Rxy, the two
main ones are that

∑
xRxy = 1. We also require that Rxy is irreducible and

assume Rxy is diagonalizable though the ideas should carry over if Rxy requires
a Jordan form. These lead to an eigenvalue λo = 1 which corresponds to
the stationary probabilities po(x). We rearrange the eigenvalues in decreasing
magnitude, 1 = λo ≥ |λ1| ≥ |λ2| ≥ . . . ≥ |λN |. The eigenvectors corresponding
to each eigenvalue are reordered accordingly. The left and right eigenvectors of
Rxy are defined as,

Aα(x)TRxy = λαA
T
α(y), RxyPα(y) = λαPα(x). (2)

The subscript α denotes column number while the argument of the eigenvec-
tor x or y denotes the row, T is the transpose. The slowest decaying eigenfunc-
tions of Rxy, will be the macroscopic “observables” which will give the averaged
quantities of the system. While the faster decaying eigenvectors are the quickly
fluctuating quantities of the system, which average themselves out. It follows
from the form of Rxy that ∃ a left eigenvector, Ao = 1, s.t. ATo R = ATo .
We normalize the eigenfunctions, Aj and Pk to form an orthonormal basis,
〈Aj |Pk〉 = δjk.

To see how the OR can be used to represent the coordinate space underlying
system, we will build the basic structure of the Sierpinski fractal. This self
similar fractal at its heart consists of three points or states as we will refer
to them connected to form a triangle, with a smaller rotated triangle inside.
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To find the coordinate space we first built an adjacency matrix WN×N of the
connections between the states of the system,

W =


0 1 0 0 0 1
1 0 1 1 0 1
0 1 0 1 0 0
0 1 1 0 1 1
0 0 0 1 0 1
1 1 0 1 1 0

 (3)

Where each non zero value in Wxy says that the system can move from

state y to state x in one time step. This is normalized so that Rxy =
Wxy∑
xWxy

.

Diagonalizing Rxy and plotting A1, A2 in figure (1) we recover the basic struc-
ture of the Sierpinski fractal. This process can be increased for as many layers
of the fractal as one wishes. A 3-D version can also be created using the same
process. This time plotting A1, A2 and A3 in figure (2).
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Fig. 1. Plotting the OR for the basic structure of the Sierpinski fractal. The lines
have been added in to show connections.

It was shown in [2] that using the left eigenvectors, one can create a distance
metric. The metric inequality is defined as,

∑
x

∣∣∣∣∣Rxi −Rxj√
po(x)

∣∣∣∣∣ ≥
√√√√ m∑

α

|λα(Aα(i)−Aα(j))|2. (4)

The right hand side is the distance in the OR called, DOR. While the left
hand side is a distance using Rxy. m is the dimension of the OR, where m ≤ N .
The inequality says that states of the system, which are related dynamically
are also related in the OR. For the inequality to hold, Rxy must satisfy detailed
balance, which is defined as,

Jxy = Rxypo(y)−Ryxpo(x) = 0. (5)

Though, even when Jxy 6= 0 the OR can often still recover the topology of
the underlying coordinate space for simple systems. The derivation of the right
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Fig. 2. Plotting the OR for the basic structure of the 3-D Sierpinski fractal. The
lines have been added in to show connections.

hand side of equation (4) which represents the distance in the OR, abbreviated
DOR, relies on the eigenfunctions of Rxy having a one to one relation with a
similarly symmetric matrix, Sxy. When Jxy 6= 0 this is not guaranteed. To
recover the ability to relate distances in an OR, we define a new matrix Bxy,

Bxy = Rxy −
Jxy

2po(y)
. (6)

Bxy is an NxN matrix which is column wise stochastic. This is due to
the fact that Jxy follows Kirchoff’s loop rule, that the amount of current into
a node is equal to the amount out. We also require Bxy to be irreducible.
It can easily be shown that Rxy and Bxy share the same unique stationary
distribution, po(x). There is at least one eigenvalue of order unity, νo = 1. The
rest we again reorder into decreasing magnitude, νo ≥ |ν1| ≥ . . . ≥ |νN |. The
right and left eigenvectors of Bxy are similarly defined as,

Bxyϕα(y) = ναϕα(x) Γα(x)TBxy = ναΓα(y)T . (7)

There is a relationship between the matrix Bxy and the corresponding ma-
trix Sxy, which can be shown to be symmetric even when Jxy 6= 0. The
symmetry in Sxy is what guarantees the completeness of the eigenvectors of
Bxy. The eigenvectors of Bxy and Sxy also share a relationship,

ϕα(i)√
po(i)

= ψα(i), Γα(i)
√
po(i) = ψα(i). (8)

Using Sxy and the left eigenvectors of Bij we can construct the non-detailed
balance version of the OR, which we denote the (NOR). As was done in [2]
we can also construct a distance metric where in equation (4) λα → να and
Aα(i) → Γα(i). The metric which we will call DNOR quantifies the relation-
ship between the dynamical relations of a system to its macroscopic behavior
when the system does not satisfy detail balance. The derivation of our metric
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conveniently follows just as was done in [2]. This simple extension opens up
an entirely new class of systems to be studied using the NOR. As an exam-
ple we will control the chaotic properties of the logistic map when its control
parameter, a = 4.

3 Controlling chaos in the Logistic map

The Logistic map is defined as,

xn+1 = M(xn) = axn(1− xn), (9)

xn is the position of a test particle in the system on iteration n, a is the
control parameter which will be equal to 4 in the following. To control chaos in
this system we initially track how the position of particles changes over many
iterations and use this information to make, Rxy and Bxy. Bxy is then used to
find the distances DNOR between course grained points in the domain of the
Logistic map. The minimum of the first off-diagonal of DNOR will be the point
that we perturb the system to when the Lyapunov exponents L, is greater than
0. L is defined as,

L =
1

n

∑
i

log |M
′
(xn)|. (10)

We see in figure (3) that from 1 ≤ n ≤ 50, L > 0 for all the particles. From
n > 50 we start to perturb the system on each iteration which is 50 < n ≤ 75
until L ≤ 0 for all particles. From approximately n > 75 the system is allowed
to freely evolve unless L > 0 for a particle, then it is perturbed back to the
chosen position.
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Fig. 3. The evolution of Lyapunov exponents for 100 particles in the Logistic map.
we see the Lyapunov exponents become greater than zero until we begin to perturb
the system at n = 50. Then the Lyapunov exponents approach and stay around zero.
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4 Conclusion

In this paper we have shown a general method for deciphering the interactions
of complex system when they no longer satisfy detailed balance. We have then
applied this to the toy problem of stopping chaos in the Logistic map. Future
work will consist of applying this method to real world system and system
with more variables. We will also address questions with regards to the correct
dimension of the OR and the NOR for a general system in future publications.
We would like to thank Paul Mitchener, Mike Ruderman, Chris Nelson, Nabil
freij and Stuart Mumford for their useful discussions.
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