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Abstract. Height fields provide efficient means for representing surface elevation
data which can be used for rendering 3D terrains or landscapes. In this paper, a
novel method for representing height fields using fractal interpolation techniques is
presented. The proposed methodology allows describing natural surfaces with an
intrinsic fractal structure in a more convenient manner. Specifically, fractal interpo-
lation surfaces constructed on rectangular domains have been used. Results indicate
the feasibility and advantages of the proposed method in terms of quality of repre-
sentation as well as compression ratios.
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1 Introduction

Height fields provide an efficient tool for representing surface elevation data
and are often used, among other applications, in 3D computer graphics for
rendering 3D terrains or landscapes. A height field is essentially a 2D array
of height values and is usually stored as a raster image; the pixel intensity
corresponds to the height at the location defined by the pixel coordinates. An
example of landscape rendering based on a height field is shown in Figure 1.

Fractal interpolation as defined by Barnsley[1] and other researchers is based
on the theory of iterated function systems. It provides an alternative to tradi-
tional interpolation techniques, aiming mainly at data which present detail at
different scales or possess some degree of self-similarity. These properties define
an irregular, non-smooth, structure which is inconvenient to be described by
using elementary functions such as polynomials. A fractal interpolation func-
tion is a continuous function whose graph is the attractor of an appropriately
chosen iterated function system. In case this graph, usually of non-integral
dimension, belongs to the three-dimensional space and has Hausdorff - Besi-
covitch dimension between 2 and 3, the resulting attractor is called fractal
interpolation surface.
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Fig. 1. Rendering of a landscape defined by a height field.

In this paper, a novel methodology for representing height fields using frac-
tal interpolation techniques is introduced. Our motivation stems from the fact
that natural surfaces, such as earth terrains, present an intrinsic fractal struc-
ture, i.e. detail at multiple scales and some degree of self-similarity. The most
important and non-trivial part for constructing fractal interpolation surfaces
on rectangular domains involves ensuring their continuity. We also present the
application of the proposed methodology to terrain data, indicating its feasibil-
ity and advantages in terms of quality of representation as well as compression
ratios.

The paper is structured as follows. In Section 2 we briefly review the theory
of iterated function systems. The necessary concepts of fractal interpolation
surfaces, focusing on the proposed construction on rectangular domains, are
introduced in Section 3. In Section 4, we present the proposed methodology for
height field representation and compression using the surfaces of the previous
section. Section 5 contains the result of the application of our method to terrain
data, in terms of quality of representation as well as compression ratios. Finally,
Section 6 summarizes our conclusions and indicates areas of further work.

2 Iterated function systems

Let X,Y ⊂ Rn. A function f :X → Y is called a Hölder function of exponent
a if

|f(x)− f(y)| ≤ c |x− y|a

for x, y ∈ X, a ≥ 0 and for some constant c. Note that, if a > 1, the functions
are constants. Obviously, c ≥ 0. The function f is called a Lipschitz function
if a may be taken to be equal to 1. A Lipschitz function is a contraction
with contractivity factor c, if c < 1. An iterated function system, or IFS for
short, is a collection of a complete metric space (X, ρ) together with a finite
set of continuous mappings wn:X → X, n = 1, 2, . . . , N , where ρ is a distance
between elements of X. It is often convenient to write an IFS formally as
{X;w1, w2, . . . , wN} or, somewhat more briefly, as {X;w1−N}.
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The associated map of subsets W :H(X)→ H(X) is given by

W (E) =

N⋃
n=1

wn(E) for all E ∈ H(X),

where H(X) is the metric space of all non-empty, compact subsets of X with
respect to some metric, e.g. the Hausdorff metric. The map W is called the
collage map to alert us to the fact that W (E) is formed as a union or ‘collage’
of sets. Sometimes H(X) is referred to as the “space of fractals in X” (but
note that not all members of H(X) are fractals).

If wn are contractions with corresponding contractivity factors sn for n =
1, 2, . . . , N , the IFS is termed hyperbolic and the map W itself is then a con-
traction with contractivity factor s = max{s1, s2, . . . , sN} (Barnsley[1], The-
orem 7.1, p. 81). In what follows we abbreviate the k-fold composition
f◦f◦· · ·◦f as fk. The graph of f is the set of points G(f) = {(x, f(x)) : x ∈ X}.

The attractor of a hyperbolic IFS is the unique set A∞ for which limk→∞
W k(E0) = A∞ for every starting set E0. The term attractor is chosen to
suggest the movement of E0 towards A∞ under successive applications of W .
A∞ is also the unique set in H(X) which is not changed by W , so W (A∞) =
A∞, and from this important perspective it is often called the invariant set of
the IFS.

3 Rectangular subdomain fractal interpolation surfaces

Fractal interpolation surfaces constructed as attractors of iterated function
systems were first proposed by Peter R. Massopust[4], where he considered the
case of a triangular domain with coplanar boundary data. A slightly more
general construction of such fractal surfaces was later presented by Jeffrey
S. Geronimo and Douglas Hardin[3], where the domain used was a polygonal
region with arbitrary interpolation points but same contractivity factors. Here,
we focus on fractal interpolation surfaces constructed on rectangular domains
with arbitrary boundary data and same contractivity factors.

Let D be a closed nondegenerate rectangular region in R2 and let S =
{q0, q1, . . . , qm−1} be m, with m > 4, distinct points in D such that {q0, q1, q2,
q3} are the vertices of D. Given real numbers z0, z1, . . . , zm−1 we wish to
construct a function f such that f(qj) = zj , j = 0, 1, . . . ,m − 1 and whose
graph is self-similar. Notice that the constructed FIS in the present work is
not self-affine since it is resulting from bivariate functions. Let us denote by
C(D) the linear space of all real-valued continuous functions defined on D, i.e.
C(D) = {f :D → R | f continuous}. The basic idea is to decompose D into
N subrectangles R1, R2, . . . , RN with vertices chosen from S and define affine
maps Li:D → Ri and contractions Fi:D ×R → R, i = 1, 2, . . . , N such that
Φ defined by

(Φf)(x, y) = Fi(L
−1
i (x, y), f(L−1i (x, y))) (1)

maps an appropriate subset of C(D) onto itself. If Li is invertible, G(f) is
mapped onto G (Φ(f)|Ri

) by (Li(x, y), Fi(x, y, f(x))). Henceforth we assume



596 V. Drakopoulos and P. Manousopoulos

that {Ri}Ni=1 consists of nondegenerate rectangles whose interiors are noninter-
secting, L−1i (Ri) = D and that the set of vertices of {Ri}Ni=1 equals S.

Let k: {1, 2, . . . , N}×{0, 1, 2, 3} → {0, 1, . . . ,m−1} be such that {qk(i,j)}3j=0

gives the vertices of {Ri}Ni=1. Let i ∈ {1, 2, . . . , N}. Since D and Ri are
nondegenerate, there is a unique invertible affine map Li:R

2 → R2 satisfying

Li(qj) = qk(i,j), j = 0, 1, 2, 3. (2)

Let si be given such that |si| < 1 and Fi:R
3 → R be defined by

Fi(x, y, z) = aix+ biy + gixy + siz + ci, (3)

where ai, bi and ci are uniquely determined by

Fi(qj , zj) = zk(i,j), j = 0, 1, 2, 3. (4)

With these definitions for Li and Fi we have Φ(f)|Ri
∈ C(Ri) and (Φf)(qk(i,j)) =

zk(i,j), j = 0, 1, 2, 3, whenever f ∈ C(D) and f(qj) = zj , j = 0, 1, 2, 3. If Ri

and Ri′ are adjacent rectangles with common edge qjqj′ , it remains to be de-
termined whether Φf is well-defined along qjqj′ , i.e., whether Φf satisfies the
“join-up” condition

Fi(L
−1
i (x, y), f(L−1i (x, y))) = Fi′(L

−1
i′ (x, y), f(L−1i′ (x, y))),

for all (x, y) ∈ qjqj′ . We consider the case where the graph associated with the
tesselation {Ri}Ni=1 has chromatic number 4. The chromatic number of a graph
is the least number of symbols required to label the vertices of the graph so that
any two adjacent vertices (i.e., joined by an edge) have distinct labels. Since
each edge is part of some Ri this implies the vertices {qj}m−1j=0 can be labelled
with l = l(j) ∈ {0, 1, 2, 3} such that the vertices of each Ri have distinct labels.
For i = 1, 2, . . . , N and j = 0, 1, 2, 3 let k(i, j) be determined by the condition

k(i, l(j′)) = j′ for all vertices qj′ of Ri.

Then, Eqs. (2) and (4) become

Li(ql(j)) = qj , Fi(ql(j), zl(j)) = zj (5)

for each of the vertices qj of Ri.
Let CB(D) denote the collection of continuous functions f such that f(qj) =

zj , qj ∈ ∂D.

Theorem 1. Suppose the graph associated with {Ri}Ni=1 has chromatic number
4. Let Li and Fi, i = 1, 2, . . . , N , be determined by (3) and (5) with si = s(|s| <
1). Let Φ be defined by (1). Then Φ:CB(D) → CB(D) is well-defined and
contractive in the sup-norm with contractivity s. Furthermore (Φf)(qj) = zj,
j = 0, 1, . . . ,m− 1 and f ∈ CB(D).

Proof. See Drakopoulos and Manousopoulos[2] ut
Then the corresponding IFS is of the form {R3;w1−N}, where

wi(x, y, z) = (Li(x, y), Fi(x, y, z)).
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An illustration of this is shown in Fig. 2, where the left part indicates the
vertices and connecting edges of D and the middle and right parts of the figure
indicate where these vertices are mapped by the domain contractions. For
larger data sets, this pattern is repeated as necessary.
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Fig. 2. Rectangular domain contractions to satisfy join-up conditions.

4 Height fields

A height field or relief map (see e.g. Theoharis et al.[5], p. 505) is defined as a
2D array of height values:

H = {(xi, yj , zij : i = 0, 1, . . . ,M and j = 0, 1, . . . , N},

where the x, y coordinates define a rectangular grid on the plane and the z
coordinate defines the height. The underlying grid is usually regular, i.e.

xi = x0 + i∆x, yj = y0 + j∆y,

for every i = 0, 1, . . . ,M and j = 0, 1, . . . , N , where ∆x = (xM − x0)/M and
∆y = (yN −y0)/N . From the above definition, it is clear that a height field can
be directly represented by a fractal interpolation surface of Section 3. The only
issue to be determined is whether all of the height field data will be used in
the construction of the surface or only a subset of them. This can be achieved
by regularly sampling the height field along the x, y dimensions. The sampling
frequency defines a trade-off between quality of representation and compression
ratio.

The proposed representation is expected to be especially fruitful for height
fields defining natural surfaces, such as terrains. These often possess an intrin-
sic fractal structure which is conveniently described by fractal interpolation
models. The idea of representing natural surfaces using fractal interpolation
has also been suggested in Xie et al.[6], where the generation of rock fracture
surfaces using fractal interpolation was examined.
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5 Results

A height field of resolution 257 × 257 is presented in Figures 3(a) and 3(b).
Specifically, the former figure depicts the height field as a 2D raster image where
brighter areas indicate greater height; the latter figure contains its 3D depiction.
This height field, which was created using TerragenTM Classic, contains a total
of 257× 257 = 66049 points.

x

y

(a) (b)

Fig. 3. The original height field depicted (a) as a 2D image and (b) as a 3D surface.

Figures 4(a) and 4(b) show the 2D and 3D representation of this height field,
respectively, using the proposed method. Specifically, it has been represented
by a fractal interpolation surface constructed on a subset of the original data
with s = 0.02; every 8th point along each dimension of the height field has been
chosen as interpolation point. This results in a rectangular grid of resolution
33×33, containing 1089 points in total, i.e. about 1.65% of the original points.
Despite the significant sparsity of the interpolation points, the quality of the
reconstructed height field is satisfactory.
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Fig. 4. The reconstructed height field, using every 8th data point as interpolation
point, depicted (a) as a 2D image and (b) as a 3D surface.

Another example is given in Figures 5(a) and 5(b), where the same height
field has been represented by a fractal interpolation surface using even fewer
interpolation points. Specifically, every 16th point along each dimension has
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been chosen as interpolation point. This results in a rectangular grid of reso-
lution 17× 17, containing 289 points in total, i.e. about 0.44% of the original
points. Also in this case, the results are satisfactory despite the even smaller
number of interpolation points. These results indicate that fractal interpola-
tion surfaces are indeed capable of describing natural surfaces, such as terrains,
with considerable quality even when high compression ratios are involved.
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Fig. 5. The reconstructed height field, using every 16th data point as interpolation
point, depicted (a) as a 2D image and (b) as a 3D surface.

Figures 6–7 depict an artistic rendering of the original height field as well
as its two aforementioned reconstructions; these figures were created using
TerragenTM Classic. As shown in the figures, the reconstructed height fields
produce equivalent results compared to the original one, even though the sig-
nificant sparsity of the interpolation points.

Fig. 6. Artistic rendering of the original height field.

6 Conclusions and future work

We have presented a novel method for the representation and compression
of height fields using fractal interpolation techniques. Specifically, we have
represented a height field as a fractal interpolation surface constructed on the
rectangular domain defined by a subset of the original data. The results indicate
that the proposed methodology is feasible, while achieving satisfactory results
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(a) (b)

Fig. 7. Artistic rendering of the reconstructed height field, using as interpolation
point (a) every 8th data point and (b) every 16th data point.

in terms of quality of representation as well as compression ratios. Further work
will focus on the calculation of the optimal values of the vertical scaling factors
in order to achieve increased localized accuracy, as well as on the exploration
of alternative fractal interpolation surface models, affine or bivariate, including
recurrent fractal interpolation surfaces.
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