
Chaotic Modeling and Simulation (CMSIM) 4: 583–590, 2013

Chaotic Neural Networks with a Random
Topology Can Achieve Pattern Recognition*

Ke Qin1 and B. J. Oommen2,3

1 University of Electronic Science & Technology of China, Chengdu, China. 611731
(E-mail: qinke@uestc.edu.cn)

2 Carleton University, Ottawa, ON, Canada. K1S 5B6
3 University of Agder, Postboks 509, 4898 Grimstad, Norway.

(E-mail: oommen@scs.carleton.ca)

Abstract. This paper confirms the fascinating result that we can design chaotic Neural
Networks (NNs) that have a random topology and that these NNs can achieve chaotic
Pattern Recognition (PR). What we imply by this is that the NN yields a strong periodic
or more frequent signal when a pattern is recognized, and in between two consecutively
recognized patterns, none of the trained patterns are recalled. Finally, and most impor-
tantly, if an untrained pattern is presented, the system yields a chaotic signal. The basic
model that we use here is the Adachi Neural Network (AdNN), which we modify in a
random manner. The AdNN is a fascinating NN which has been shown to possess chaotic
properties, and to also demonstrate Associative Memory (AM) and PR, and some of its
variants have also been used to obtain other PR phenomena, including blurring. All these
NNs require a quadratic number of computations in the training phase. This computa-
tion was reduced to be linear in [1] by resorting to a Maximum Spanning Tree topology,
and a gradient search method. In this paper, we mainly consider the issue of how the
network topology can be modified by involving randomized connections so as to render
the new network much closer to “real” NNs. At the same time, we require that the newly
obtained network still displays PR characteristics. To achieve this, we first construct a
random network by means of the E-R model and then address the problem of computing
the weights for the new network. This is done by constraining the the modified random
connection-based NN to have approximately the same input-output characteristics using
a gradient-based algorithm. Through a detailed experimental analysis, we show that the
new random AdNN-like network possesses PR properties for appropriate settings. As far
as we know, such a random AdNN has not been reported, and our present results are
novel.
Keywords: Chaotic Neural Networks, Chaotic Pattern Recognition, Adachi-like Neural
Networks, Random Networks.

1 Introduction

The goal of the field of Chaotic Pattern Recognition (PR) systems can be sum-
marized as follows: We do not intend a chaotic PR system to report the identity

*A preliminary version of this paper was presented at CHAOS’13,
the 2013 Chaotic Modeling and Simulation International Confer-
ence, Istanbul, Turkey, in June 2013.

Received: 27 March 2013 / Accepted: 8 September 2013
c© 2013 CMSIM ISSN 2241-0503



584 Qin and Oommen

of a testing pattern with a “class proclamation” indicating the class to which the
pattern belongs. Rather, what we want to achieve is to have the chaotic PR sys-
tem give a strong periodic or more frequent signal when a pattern is recognized.
Furthermore, between two consecutively recognized patterns, none of the trained
patterns must be recalled. Finally, and most importantly, if an untrained pattern
is presented, the system must give a chaotic signal.

The use of Artificial Neural Networks (ANNs) is one of the four best approaches
for PR. However, one of the limitations of most ANN models is the dependency
on an external stimulation. Once an output pattern has been identified, the ANN
remains in that state until the arrival of a new external input. This is in contrast to
real biological NNs and the brain, which exhibit sequential memory characteristics.
Indeed, once a pattern is recalled from a memory location, the brain is not “stuck”
in it; it is also capable of recalling other associated memory patterns without being
prompted by any additional external inputs. This ability to “jump” from one
memory state to another in the absence of a stimulus is one of the hallmarks of
the brain, which is one phenomenon that a chaotic PR system has to emulate.

This paper deals with the Adachi Neural Network AdNN [2], which possesses
a spectrum of very interesting chaotic, AM and PR properties, as described in
[1,3–7,9–12]. The fundamental problem associated with the AdNN and its vari-
ants are their quadratic computational requirements. We shall show that by using
the E-R model and an effective gradient search strategy, this burden can be sig-
nificantly reduced, and yet be almost as effective with regard to the chaotic and
PR characteristics.

We are currently working on reducing the complexity of the AdNN and the
associated computations by invoking the so-called “small-world” model.

2 Limitations of the Current Schemes

Adachi et al and Calitoiu et al have done a lot of ground-breaking work in this
area [2–4], and we have built on these results in various avenues [3–5], including
that of designing a NN that can yield ideal chaotic PR [8]. Generally speaking, the
computational burden of the family of AdNNs is excessive, rendering it impractical.
Besides this, most of current NNs have a regular topology, e.g., a completely
connected graph or a neighbor-coupled graph. This is in contrast with “real”
NNs which usually have irregular topologies, e.g., a random graph, a small-world
graph or even a scale-free graph. The contribution of this paper is to present a
novel NN which is connected in a randomized AdNN way, which we refer to as the
“Random-AdNN”.

3 Designing the Random-AdNN

3.1 The Topology of the Random-AdNN

To present the new characteristics of the Random-AdNN, we shall first arrive at a
topology with randomly-chosen edges. Such a modified random AdNN is obtained
in two steps. Firstly, we connect the neurons by using the E-R model. The second
step involves the computation of the weights associated with this new structure,
which we will address subsequently.



Chaotic Modeling and Simulation (CMSIM) 4: 583–590, 2013 585

Algorithm 1 Topology Random-AdNN

Input: N , the number of neurons in the network, and a set of P patterns which the
network has to “memorize”.
Output: The topology and initial weights of the Random-AdNN.
Method:

1: Create a fully-connected graph G with N vertexes which represents the AdNN.
2: For each edge, we delete it with a fixed probability, pd.
3: Continue this process for all the

(
N
2

)
edges.

4: Compute the initial weights of the edges of G, {wij} as follows:

wij = 1
P

∑P

s=1
(2xsi − 1)(2xsj − 1), where xsi is the ith component of the sth pattern.

5: If there is no edge between vertex i and j, wij = 0;

End Algorithm Topology Random-AdNN

3.2 The Weights of the Random-AdNN: Gradient Search

Since we have removed most of the “redundant” edges from the completely-
connected graph by using the E-R model, it is clear that the NN at hand will
not adequately compare with the original AdNN. Thus, our next task is to de-
termine a new set of weights so as to force the Random-AdNN to retain some of
its PR properties, namely those corresponding to the trained patterns. We briefly
explain below (the details are omitted in the interest of space, and one can refer
to [13] for more details) the process for achieving this.

The Random-AdNN is defined by the following equations:

xRi (t+ 1) = f(ηRi (t+ 1) + ξRi (t+ 1)), (1)

ηRi (t+ 1) = kfη
R
i (t) +

∑
eij∈T

wR∗

ij x
R
j (t), (2)

ξRi (t+ 1) = krξ
R
i (t)− αxRi (t) + ai. (3)

where {wR∗

ij }, xRi , ξRi and ηRi are the weights, outputs, and state variables of the
Random-AdNN respectively, and have similar meanings to {wij}, xi, ξi and ηi of
the AdNN.

In order to find the optimal values of {wR∗

ij }, we define the square error between

the original output of the AdNN and new output at the nth step as:

Ep =
1

2

N∑
i=1

(xA,p
i − xR,p

i (n))2, (4)

where xA,p
i and xR,p

i imply the outputs of the ith neuron when the pth pattern
is presented to the AdNN network and the Random-AdNN network respectively.
The overall global error is E =

∑P
p=1Ep, where there are P training patterns.

In order to adjust wR
ij to obtain the smallest global error E, we consider the

gradient, ∆wR
ij , and move wR

ij by an amount which equals ∆wR
ij in the direction

where the error is minimized. This can be formalized as follows:

∆wR
ij = −β ∂E

∂wR
ij

= −β
∂
∑P

p=1Ep

∂wR
ij

= −β
P∑

p=1

∂Ep

∂xR,p
i (n)

· ∂x
R,p
i (n)

∂wR
ij



586 Qin and Oommen

= β

P∑
p=1

(xA,p
i − xR,p

i (n)) · 1

ε
· xR,p

i (n) · (1− xR,p
i (n)) · xR,p

j (n), (5)

where β is the learning rate of the gradient search. The formal algorithm which
achieves the update can be found [14].

The results of a typical numerical experiment which proceeds along the above
gradient search on the Adachi data set (shown in Fig. 5) are displayed in Fig. 1
and 3. In these, we have chosen the learning rate β to be 0.05. To clarify issues,
we catalogue our experiments for three specific cases, namely when the probability
pd for deleting an edge is 0.9, 0.5 and 0.1 respectively.

If pd is 0.9, the total error E and average values of ∆wR
ij do not converge to 0,

as shown in Fig. 1. However, as pd decreases, e.g., 0.5, then E and ∆wR
ij converge

to 0, as shown in Fig. 3 (a) and (b). If pd is even less, E and ∆wR
ij also converge to

0 but with a faster rate, as shown in Fig. 3 (c) and (d). This phenomenon can be
easily explained: The larger the value of pd, the smaller is the number of edges and
vice versa. Thus, if pd = 0, it means that the Random-AdNN is exactly the same
as the original AdNN. On the other hand, if pd = 1, it means that all the vertexes
are isolated and remain as disconnected units. Of course, the “fitting” effect that
we obtain by the approximate graph, the Random-AdNN, is more precise as the
number of edges increases.

The experimental results obtained for the LOVE data set (also shown in Fig.
5) are quite similar, and are displayed in Fig. 2 and 4.

0 10 20 30 40 50
−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

A
ve

ra
ge

 V
al

ue
 o

f ∆
 w

ij

0 10 20 30 40 50
30

35

40

45

50

55

60

T
ot

al
 E

rr
or

 E

Time

Fig. 1. For the Adachi data set: The figure on the left shows the variation of the average
of ∆wL

ij (averaged over all values of i and j) over the first 50 iterations of the gradient
search scheme. The average converges to a value arbitrarily close to zero after 12 time
steps. The figure on the right shows the variation of the global error over the same time
frame. Observe that this quantity does not converge to zero.

The Lyapunov analysis of the Random-AdNN is also available, but omitted
here in the interest of space. It can be found in [13].

4 Chaotic and PR Properties of the Random-AdNN

We now briefly report the PR properties of the Random-AdNN. These properties
have been discovered as a result of examining the Hamming distance between the
input pattern and the patterns that appear in the output. The experiments were
conducted using two data sets described below.



Chaotic Modeling and Simulation (CMSIM) 4: 583–590, 2013 587

Fig. 2. For the LOVE data set: The figure on the left shows the variation of the average
of ∆wL

ij over the first 400 iterations of the gradient search scheme. The average converges
to a value arbitrarily close to zero after 50 time steps. The figure on the right shows the
variation of the global error over the same time frame, which does not converge to zero
either.

0 10 20 30 40 50
−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

A
ve

ra
ge

 V
al

ue
 o

f ∆
 w

ij

0 10 20 30 40 50
0

1

2

3

4

5

6

7

8

T
ot

al
 E

rr
or

 E

Time

(a) (b)

0 10 20 30 40 50
−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

A
ve

ra
ge

 V
al

ue
 o

f ∆
 w

ij

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T
ot

al
 E

rr
or

 E

Time

(c) (d)

Fig. 3. For the Adachi data set: The figures show the variation of the average of ∆wL
ij and

the global error over the same time frame. The probability of edge deletion is pd = 0.5
(for (a) and (b)) and pd = 0.1 (for (c) and (d)) respectively.

In the ideal setting we would have preferred the Random-AdNN to be chaotic
when exposed to untrained patterns, and the output to appear periodically or more
frequently when exposed to trained patterns. Besides yielding this phenomenon,
the Random-AdNN also goes through a chaotic phase and a PR phase as some of
its parameters change.

We summarize the results for the Random-AdNN, obtained by using different
settings of pd. The others parameters are: kf = 0.2, kr = 1.02, α = 10, ε = 0.015,
β = 0.05.

From these tables we see clearly that, the Random-AdNN is able to “resonate”
the input patterns with the corresponding output patterns. Consider Table 1 (a)
as an example. If the input is P1, then the network outputs P1 accordingly, and



588 Qin and Oommen

(a) (b)

(c) (d)

Fig. 4. For the LOVE data set: The figures show the variation of the average of ∆wL
ij

and the global error over the same time frame. The probability is pd = 0.5 (for (a) and
(b)) and pd = 0.1 (for (c) and (d)) respectively.

2 4 6 8 10

2

4

6

8

10
2 4 6 8 10

2

4

6

8

10
2 4 6 8 10

2

4

6

8

10
2 4 6 8 10

2

4

6

8

10
2 4 6 8 10

2

4

6

8

10
2 4 6 8 10

2

4

6

8

10

2 4 6 8

2

4

6

8
2 4 6 8

2

4

6

8
2 4 6 8

2

4

6

8
2 4 6 8

2

4

6

8
2 4 6 8

2

4

6

8

(a) (b)

Fig. 5. The patterns used by Adachi et al (a) and Inoue et al (b). The first four
patterns in (a) and (b) are used to train the network. The fifth pattern in (a) is obtained
from the fourth pattern by including 15% noise. The sixth pattern in (a) and the fifth
pattern in (b) are the untrained patterns.

at the same time, no other trained patterns appear in the output sequence. Even
when a noisy pattern is presented to the system, e.g., P5, which is a noisy pattern
of P4 with 15% noise, the network still “resonates” P4 instead of P5 in the output
sequence. Furthermore, if the input is an untrained pattern, e.g., P6, then none
of the trained patterns will be recalled. Observe that even the input pattern P6,
will itself be retrieved only a few times, which is much less than the other diagonal
entries in the table, i.e., when the inputs are P1 – P4. The difference between
(a) – (c) is that in Table (c), the network “resonates” the input patterns more
frequently than in (a) and (b). This is because when pd = 0.1, the Random-AdNN
is almost the same as the original AdNN since the Random-AdNN has most of
the edges of the AdNN. However, in this case, the Random-AdNN also needs a
quadratic number of computations, which is computationally much more intensive
than for the case when pd = 0.9. In this regard, we comment that pd = 0.9 is
good enough for PR, which has only a very small computational burden. By a
simple computation we can see that the expected degree for each vertex of the
Random-AdNN is only N(1−pd) = 10 for the Adachi data set, which implies that



Chaotic Modeling and Simulation (CMSIM) 4: 583–590, 2013 589

Table 1. The frequency of the Hamming distance between the input and the output
patterns for the Random-AdNN. The probability pd is 0.9, 0.5, 0.1 for (a), (b), (c)
respectively.

Input Patterns
pd = 0.9 P1 P2 P3 P4 P5 P6

P1 151 0 0 0 0 0
P2 0 422 0 0 0 0

Retrieved P3 0 0 161 0 0 0
Patterns P4 0 0 0 106 177 0

P5 0 0 0 10 2 0
P6 0 0 0 0 0 46

Input Patterns
pd = 0.5 P1 P2 P3 P4 P5 P6

P1 202 0 0 0 0 0
P2 0 285 0 0 0 0

Retrieved P3 0 0 234 0 0 0
Patterns P4 0 0 0 211 206 0

P5 0 0 0 4 3 0
P6 0 0 0 0 0 33

(a) (b)

Input Patterns
pd = 0.1 P1 P2 P3 P4 P5 P6

P1 238 0 0 0 0 0
P2 0 331 0 0 0 0

Retrieved P3 0 0 258 0 0 0
Patterns P4 0 0 0 237 189 0

P5 0 0 0 9 20 0
P6 0 0 0 0 0 34

(c)

the computational load has been greatly reduced when compared to the original
AdNN, which has a vertex degree of 99.

5 Conclusions

In this paper we have concentrated on the field of Chaotic Pattern Recognition
(PR), which is a relatively new sub-field of PR. Such systems, which have only
recently been investigated, demonstrate chaotic behavior under normal conditions,
and resonate when it is presented with a pattern that it is trained with. The
network that we have investigated is the Adachi Neural Network (AdNN) [2], which
has been shown to possess chaotic properties, and to also demonstrate Associative
Memory (AM) and Pattern Recognition (PR) characteristics. In this paper we
have considered how the topology can be modified so as to render the network
much closer to “real” neural networks. To achieve this, we have changed the
network structure to be a random graph, and then computed the best weights for
the new graph by using a gradient-based algorithm. By a detailed experimental
suite, we showed that the new Random-AdNN possesses chaotic and PR properties
for different settings.

Acknowledgements: The authors are grateful for the National Natural Sci-
ence Foundation of China (grant No.61300093) and the Natural Sciences and En-
gineering Research Council of Canada.

References

1.Qin, K., Oommen, B.J.: Adachi-like chaotic neural networks requiring linear-time
computations by enforcing a tree-shaped topology. IEEE Transactions on Neural



590 Qin and Oommen

Networks 20(11) (2009) 1797–1809
2.Adachi, M., Aihara, K.: Associative dynamics in a chaotic neural network. Neural

Networks 10(1) (1997) 83–98
3.Calitoiu, D., Oommen, B.J., Nussbaum, D.: Desynchronizing a chaotic pattern recogni-

tion neural network to model inaccurate perception. IEEE Transactions on Systems
Man and Cybernetics Part B-Cybernetics 37(3) (2007) 692–704

4.Calitoiu, D., Oommen, B.J., Nussbaum, D.: Periodicity and stability issues of a chaotic
pattern recognition neural network. Pattern Analysis and Applications 10(3) (2007)
175–188

5.Qin, K., Oommen, B.J.: Chaotic pattern recognition: The spectrum of properties of
the Adachi neural network. In: Lecuture Notes in Computer Science. Volume 5342.,
Florida, USA (2008) 540–550

6.Chen, L., Aihara, K.: Global searching ability of chaotic neural networks. IEEE
Transactions on Circuits and Systems I: Fundamental Theory and Applications 46(8)
(1999) 974–993

7.Qin, K., Oommen, B.J.: An enhanced tree-shaped adachi-like chaotic neural network
requiring linear-time computations. In: Proceedings of CHAOS’09, the 2009 Chaotic
Modeling and Simulation International Conference, Chania, Greece (2009) 284–293

8.Qin, K., Oommen, B.J.: Ideal chaotic pattern recognition is achievable: The Ideal-M-
AdNN - its design and properties. In: Transactions on Computational Collective
Intelligence (2013) 22–51

9.Luo, G.C., Ren, J.S., Qin, K.: Dynamical associative memory: The properties of the
new weighted chaotic Adachi neural network. IEICE Transactions on Information
and Systems E95d(8) (2012) 2158–2162

10.Qin, K., Oommen, B.J.: Networking logistic neurons can yield chaotic and pattern
recognition properties. In: IEEE International Conference on Computational Intel-
ligence for Measure Systems and Applications, Ottawa, Canada (2011) 134–139

11.Hiura, E., Tanaka, T.: A chaotic neural network with Duffing’s equation. In: Pro-
ceedings of International Joint Conference on Neural Networks, Orlando, Florida,
USA (2007) 997–1001

12.Qin, K., Oommen, B.J.: The entire range of chaotic pattern recognition properties
possessed by the Adachi neural network. Intelligent Decision Technologies 6(1)
(2012) 27–41

13.Qin, K.: Generic Analysis of Chaotic Neural Networks and Their Applications in Pat-
tern Recognition and Crypto-systems. PhD thesis. (2010) University of Electronic
Science and Technology of China, Chengdu, China.

14.Qin, K., Oommen, B.J.: Chaotic pattern recognition using the Adachi neural network
modified in a random manner. In: Proceedings of CHAOS’13, the 2013 Chaotic
Modeling and Simulation International Conference, Istanbul, Turkey (2013) 540–
550.


