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Abstract. We show that the fractional Laplacian (FL) −(−∆)
α
2 is the principal

characteristic operator of harmonic systems with self-similar interparticle interac-
tions. We demonstrate that the FL can be rigorously defined by Hamilton’s varia-
tional principle as “fractional continuum limit” of a spring model with self-similar, in
some cases fractal harmonic interactions which we introduced recently (Michelitsch
et al.[5]). We generalize that approach to the multi-dimensional physical space of
dimensions n = 1, 2, 3, ... In this way we demonstrate the interlink between fractal
discrete behavior (discrete self-similar Laplacian) and its fractional continuum field
counterpart (FL) and give the latter a physical justification. The dispersion rela-
tion of the discrete model is obtained as self-similar Weierstrass-Mandelbrot fractal
function which takes in the fractional continuum limit the form of a smooth self-
similar power law. The density of states (density of normal modes) takes the form
of a characteristic scaling law which depends only on the scaling exponent of the FL
and the dimension of the physical space. The approach has a wide range of interdis-
ciplinary applications of self-similar dynamic problems such as anomalous diffusion
(Levi flights), self-similar wave propagation, and may also be useful to model self-
similar chaotic processes and dynamics in turbulence.
Keywords: Fractional Laplacian, fractional continuum limit, linear chain, Fractals,
Weierstrass-Mandelbrot function, self-similarity, scaling laws.

1 Introduction

Despite fractional calculus has a long history, recently a new increasing interest
has emerged to employ fractional operators and the so called fractional Lapla-
cian (FL) (often also referred to as Riesz fractional derivative) −(−∆)

α
2 where

α indicates a fractional in general non-integer exponent. The reason for this
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new interest is the conclusion that the fractional approach is a highly pow-
erful mathematical tool to model complex and chaotic phenomena in various
disciplines.

The goal of this note is to demonstrate that the FL is the “natural” char-
acteristic linear operator, in a sense most basic operator that can be generated
from a physical “self-similar” spring model and its generalizations. Due to its
non-local “long tail” and self-similar invariant characteristics of the FL we raise
the question what is the interlink of the FL with fractal and chaotic features
often chosen in nature.

Recently many models where developed which employ the FL in various
physical contexts, among them the description of “complex” dynamic phe-
nomena including anomalous diffusion (Lévi flights) [1–3,8,10] and see also the
numerous references therein.

This note is organized as follows: As point of departure we introduce a 1D
harmonic spring model with harmonic elastic potential energy which describes
self-similar interparticle interactions which we developed recently [5]. This
discrete model leads to fractal dynamic vibrational characteristics such as a
dispersion relation of the form of Weierstrass-Mandelbrot fractal functions.
Application of Hamilton’s variational principle defines a discrete self-similar
Laplacian with all good properties of a Laplacian: The self-similar Laplacian
is self-adjoint, elliptic, negative (semi-) definite (indicating elastic stability),
and translational invariant. We introduce a fractional continuum limit which
yields in rigorous manner the FL. In this way the FL is physically justified
being a continuum description of a self-similar spring model. The approach is
generalized to n dimensions of the physical space.

2 Linear chain model with self-similar harmonic
interactions

We consider an infinite sequence of points {hp} generated by a non-linear in-
vertible mapping h→ N(h) with (initial value h = h0)

hp = N(hp−1), p ∈ Z0 (1)

where we exclude for convenience periodic orbits and fixed points. All points
of the sequence are assumed to fulfil hp 6= hq for p 6= q (−∞ < p <∞). Define
a function Φ for a arbitrary generated by the series

Φ(h) =

∞∑
s=−∞

a−δsf(hs) (2)

where the sum is performed over the infinite sequence of points hs of (1). Φ(h)
is defined (convergent) for sufficiently good functions f . Function Φ behaves
self-similar under the (in general non-linear) transformation h → N(h) of its
argument, namely

Φ(N(h)) = aδ
∞∑

s=−∞
a−δ(s+1)f(hs+1) = aδΦ(h) (3)
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For the sake of simplicity but without loss of generality let us consider here a
sequence generated by a linear mapping

N(h) = ah, a > 1 (4)

Then we introduce the self-similar elastic potential in the form of a self-similar
function (3), namely

W(x, h) =
1

4

∞∑
s=−∞

a−δs
{

(u(x+ has)− u(x))2 + (u(x− has)− u(x))2
}

(5)

which is self-similar in the sense of (3) with respect to h. The elastic potential
describes a homogeneous mass distribution where each material point x is con-
nected with other material points x±has by a self-similar distribution of linear
springs of spring constants ∼ a−δs. In general this potential can be defined
also for nonlinear sequence hs of (1). The notion of self-similarity at a point
was coined by Peitgen et al.[9].

The total elastic energy of (5) is given by

V (h) =

∫ ∞
−∞
W(x, h) dx (6)

A self-similar Laplacian is then defined by Hamilton’s principle

∆δ,hu(x) = − δV

δu(x)
(7)

where δ(..)
δu stands for a functional derivative, and where

∆(δ,a,h)u(x) =

∞∑
s=−∞

a−δs (u(x+ has) + u(x− has)− 2u(x)) , 0 < δ < 2

(8)
fulfilling self-similarity condition ∆δ,ah = aδ∆δ,h. This Laplacian has all re-
quired good properties. The dispersion relation (negative eigenvalues) of this
Laplacian are obtained in the form of Weierstrass-Mandelbrot functions

ω2
(δ,a)(kh) = 4

∞∑
s=−∞

a−δs sin2 (
khas

2
), 0 < δ < 2 (9)

which are self-similar ω2
(δ,a)(kah) = aδω2

(δ,a)(kh) within its entire interval of

existence 0 < δ < 2. The dispersion relation (9) is within 0 < δ < 1 a nowhere
differentiable fractal function of estimated Hausdorff dimension 2 − δ [4,5].
In figures 1-3 cases of increasing fractal dimension (decreasing δ) are plotted.
Note that for 1 ≤ δ < 2 (9) is a non-fractal function of Hausdorff dimension
D = 1 (see figure 1). For increasing fractal dimension D (decreasing exponent
δ) fractal dispersion curves have increasingly erratic characteristics. For more
details we refer to our paper Michelitsch et al.[5].
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Fig. 1. Dispersion relation (9) for a fractal case.
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Fig. 2. Dispersion relation (9) for a non-fractal case.
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Fig. 3. Dispersion relation (9) for a fractal case.
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3 The FL as fractional continuum limit of the discrete
chain Laplacian and its generalization to n dimensions

Now we define the fractional continuum limit as follows [6,7]

Λa(h) = lim
a→1

∞∑
s=−∞

a−δsf(ash) ≈ hδ

ζ

∫ ∞
0

f(τ)

τ δ+1
dτ (10)

where a = 1 + ζ → 1 and 0 < ζ << 1. The fractional continuum limit of the
elastic potential (5) takes then the form

W(x, h) ≈ hδ

4ζ

∫ ∞
0

(u(x+ τ)− u(x))2 + (u(x− τ)− u(x))2

τ δ+1
dτ, 0 < δ < 2

(11)
which can be generalized to n dimensions as

W(x, h, α) ≈ hα

4ζ

∫ ∞
0

(u(x + r)− u(x))2 + (u(x− r)− u(x))2

τα+n
dnr (12)

where 0 < α < 2. Hamilton’s principle yields from (12) the fractional contin-
uum limit of the self-similar Laplacian in n dimensions

∆n,α,hu(x) =: − δV

δu(x)
=
hα

2ζ

∫ ∞
0

(u(x + r) + u(x− r)− 2u(x))

τα+n
dnr (13)

with 0 < α < 2. (13) recovers for n = 1 also the fractional continuum
limit of the self-similar Laplacian (8). The dispersion relation is obtained by
∆n,α,he

ikx = −ω2
n,α,h(kh)eikx and yields [8] a power-law of the form

ω2
n,α,h(kh) = An,αkα, 0 < α < 2 (14)

with the positive constant [8]

An,α =
hα

ζ

π
n
2

2α−1α

Γ (1− α
2 )

Γ (α+n2 )
> 0, 0 < α < 2 (15)

The positiveness of this constant is a consequence of the elastic stability.
The following observation is crucial: The fractional continuum limit Lapla-

cian (13) coincides (up to a normalization factor) with the FL which is defined,
e.g. [2,3,10]

∆n,α,h = −An,α (−∆)
α
2 (16)

where the constant (15) is consistent with the normalization factor given by in
the literature e.g. [2,3,8,10] and where (13) recovers with (16) and (15) the stan-
dard representation of the FL. Our self-similar chain model represents hence
a discrete lattice counterpart which corresponds in the fractional continuum
approximation the FL fractional approach.
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With (15) it is straight-forward to obtain the density of normal modes
(“density of states”) D(ω) where D(ω)dω measures the number of eigenmodes
of frequency ω. It is obtained as [8]

Dα,n(ω) = Bn,αω
2n
α −1, 0 < α < 2 (17)

with

Bn,α =
22−n

π
n
2 Γ (n2 )αA

n
α
n,α

(18)

We observe that the state density Dα,n(ω) scales as ∼ ω 2n
α −1 with a positive

exponent where 0 < n − 1 < 2n
α − 1 depending only on physical dimension n

and α. Because of 0 < α < 2 the scaling exponent of the self-similar density of
states (17) is always greater than the exponent n−1 of the standard Laplacian
which is asymptotically approached by (17) when α approaches the forbidden
value α→ 2.

4 Conclusions

We have demonstrated in this brief note that the fractional Laplacian can be
rigorously defined as the fractional continuum limit by a self-similar linear
spring model and its generalization to n = 1, 2, 3.. dimensions. In this way a
physical justification for the FL is introduced. The model also reveals the in-
terlink between fractal vibrational Weierstrass-Mandelbrot characteristics and
its smooth fractional continuum counterpart. The present approach allows to
develop a smooth fractional field theory of phenomena with fractal and erratic
- chaotic features [8]. Especially noteworthy is a vast potential of applications
which include dynamic processes such as anomalous diffusion (Lévi flights),
wave propagation and turbulence problems.
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