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Abstract. In this work, the generalization of Lotka-Volterra model including the ad-
dition of symmetrically coupled quintic polynomial interaction is analyzed. Stability
and bifurcation properties of this model are studied. It is also shown that the model
has a family of limit cycles bifurcating from the Hopf points by using a numerical
method.
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1 Introduction

Predator-prey problem attempts to model the relationship between the popu-
lations of two or more species in interaction. The simplest model of predator-
prey interactions, called the classical Lotka-Volterra (LV) model, is given by
the following system of differential equations [1]:

ẋ = x(a− by), ẏ = −y(c− dx), (1)

where the parameters a, b, c and d characterize the predator-prey environment,
dots denote the time derivatives, x(t) and y(t) are the prey and predator pop-
ulations, respectively. Due to its unrealistic stability characteristics, the LV
model serves as a starting point of many generalized models which should pre-
dict a single closed orbit, or perhaps finitely many, but not a continuous family
of neutrally stable cycles. Among many ways to improve stability in the LV
model, a simple approach is to add polynomial interactions. One of the general-
izations considered by Nutku has been to suggest a cubic self-interaction term,
instead of a quadratic self-interaction [2]. The Nutku generalization introduces
additional stability in a simple way; beside a further generalization involving
coupling of the form xky, where k is a positive integer and k ≤ 2, provides
a rich spectrum of equilibrium points leading to Hopf, pitchfork, saddle node
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and cusp bifurcations [3]. Moreover, the limit cycles of the Hopf bifurcation
point tend to a specific solution of an equation in [3]. Meanwhile, it is shown
that the Gause type predator-prey model with holling type III functional re-
sponse and allee effect on prey, which is another type generalization of the LV
model, topologically equivalent to the differential equations, are given by a fifth
order polynomial system in [4,5]. On the other hand, Giné and Romanovski
have obtained necessary and sufficient integrability co! nditions at the origin
for a complex generalization of the LV model where a quintic nonlinearity is
introduced [6]. By the help of this motivation, we will examine stability and
bifurcation properties of this model with the symmetrically coupled interaction
by using approximate techniques near equilibrium points.

2 The Model, Stability and Bifurcation Scenarios

The quintic Lotka-Volterra model with symmetrically coupled interaction is
given as,

ẋ = x(1−Ax4 −Bx3y − Cx2y2 −Dxy3 − Ey4)

ẏ = −y(1−Ay4 −Bxy3 − Cx2y2 −Dx3y − Ex4), (2)

where parameters A, B, C, D and E are positive. System (2) with A(−B +
3D) = E(3B−D) has an integrating factor of the form V = (xy)(−4B+2D)/(B−D)

which allows us to find the algebraic integral

(xy)
r1
r2

(
r2
r1

+
r2
2
xy(x2 + y2) +

Cr2
r3

x2y2 − Ar2
r1

(x4 + y4)

)
= constant, (3)

where r1 = −3B +D, r2 = B −D and r3 = B +D.
System (2) has 13 trivial equilibrium points, which are (0,0), (A−1/4, 0),

(−A−1/4, 0), (iA−1/4, 0), (−iA−1/4, 0), (0, A−1/4), (0,−A−1/4), (0, iA−1/4),

(0,−iA−1/4), (T
−1/4
1 , T

−1/4
1 ), (−T−1/4

1 ,−T−1/4
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−1/4
1 , iT

−1/4
1 ) and

(−iT−1/4
1 ,−iT−1/4

1 ) with T1 = A+B+C+D+E; and nontrivial ones depending
on the values of the coefficients, which are summarized below.

(i) If T2 = A − B + C −D + E > 0 then (T
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2 ,−T−1/4

2 ), (−T−1/4
2 , T

−1/4
2 ),

(iT
−1/4
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2 ) and (−iT−1/4
2 , iT

−1/4
2 ) are also equilibrium points.

(ii) If T2 = A − B + C − D + E < 0 then there are four complex
equilibrium points: (

√
2 (1 + i) (−T2)−1/4/2,−

√
2 (1 + i) (−T2)−1/4/2),

(
√

2 (−1 + i) (−T2)−1/4/2,
√

2 (1− i) (−T2)−1/4/2) and their complex con-
jugates.

(iii) If A = E and B = D then there are infinitely many equilibrium points.

(iv) If A 6= E, B = D and T3 = A − C + E > 0 then (T
−1/4
3 , iT

−1/4
3 ),

(−T−1/4
3 ,−iT−1/4

3 ), (iT
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3 ), (−iT−1/4
3 , T
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conjugates are also equilibrium points.
(v) If A 6= E, B = D and T3 = A − C + E < 0 then there are eight complex

equilibrium points: (
√

2 (1 + i) (−T3)−1/4/2,
√

2 (−1 + i) (−T3)−1/4/2),
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(
√

2 (1+i) (−T3)−1/4/2,
√

2 (1−i) (−T3)−1/4/2), (
√

2 (−1+i) (−T3)−1/4/2,√
2 (−1−i) (−T3)−1/4/2), (

√
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√
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and their complex conjugates.

(vi) If A 6= E, B 6= D and |B −D| > 2 |A− E| then there are 4 real and 4
complex, or 2 real and 6 complex equilibrium points. One can find these
points by solving the system of the equations x = (−α±

√
α2 − 1)y, 2α =

(B −D)/(A− E), and Ax4 +Bx3y + Cx2y2 +Dxy3 + Ey4 = 1.

(vii) If A 6= E, B 6= D and |B −D| < 2 |A− E| then one can find equilibrium
points by solving the system of the equations x = (−α ± i

√
1− α2)y and

Ax4 +Bx3y + Cx2y2 +Dxy3 + Ey4 = 1.

On the other hand, system (2) is Lyapunov unstable for the chosen values of
the parameters, which can be very easily demonstrated using the Lyapunov
function V = (E −A)(x2 + y2) + 2Bxy which is positive definite if and only if
E > A and E −A > B. Therefore, we obtain

V̇ = 2(x2 − y2) [βA(x4 + y4) + ((A+ E)2 +B(D −B) + βC)x2y2 − β], (4)

where β = A − E < 0. Although the second factor has negative definite
dominant term, the first factor changes sign as |x| = |y|. Hence there is a regime
where the system is Lyapunov unstable so that we can limit our discussion to
local stability. At this stage, we focus on trivial equilibrium points to examine
stability. Nontrivial ones will be taken into account for a spacial case.

Linearized eigenvalues about the first real trivial equilibrium point (0, 0) are
{±1}; thus the origin is a saddle point. Eigenvalues for the points (A−1/4, 0)
and (−A−1/4, 0) are {−4, −1 +E/A}, so these points are saddle when A < E,
and stable nodes when A > E. Eigenvalues associated with points (0, A−1/4)
and (0,−A−1/4) are {4, 1 − E/A}. If A < E, these equilibrium points are
saddle, otherwise they are unstable nodes. On the other hand the eigenval-

ues for both of equilibrium points (T
−1/4
1 , T

−1/4
1 ) and (−T−1/4

1 ,−T−1/4
1 ) are

{±i
√

8[2(E −A) + (D −B)]/T1}, a pair of purely imaginary eigenvalues, if

2(E − A) + (D − B) > 0 and {±
√

8[2(A− E) + (B −D)]/T1} if 2(E − A) +
(D−B) < 0. Thus the first purely imaginary values satisfy the resonance con-
ditions and the system can be expanded into a resonant normal form, which
gives Hopf bifurcation under the condition 2(E − A) + (D − B) > 0. For the
other condition, these points are also saddle.

Let A = 1 and B = C = D = E = 2. In this special case, the real equilib-
rium points of the system are (0,0), (1,0), (-1,0), (0,1), (0,-1), A1(1/

√
3, 1/
√

3),
A2(−1/

√
3,−1/

√
3), A3(1,−1), A4(−1, 1); and there are 16 complex equilib-

rium points. Trivial equilibrium point at the origin is a saddle point with the
eigenvalues {±1}. (1,0) and (-1,0) are also saddle points with the eigenval-
ues {−4, 1}. Similarly (0,1) and (0,-1) are saddle points with the eigenval-
ues {4, −1}. On the other hand, the points A1 and A2 with the eigenvalues
{±i4/3}; and also the points A3 and A4 with the eigenvalues {±i4} are also
Hopf points. The third order normal form about the point A1 is

u̇ = 4iu(1− 14uv)/3, v̇ = −4iv(1− 14uv)/3, (5)
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where u and v refer to the variables in the near identity transformation. This
normal form indicates Hopf bifurcation. From the linearized eigenvalues of sys-
tem (5), it is clear that the normal form will be u̇ = iαuf(uv), v̇ = −iαvf(uv)
which admits the solution uv =constant. Hence the inclusion of higher order
terms in the normal form will only change the purely imaginary eigenvalues,
since the only change will be the constant value of f(uv) to the normal form
approximation. This implies that the character of the local bifurcation will
not change by including further terms. Normal form analysis for the other
equilibrium points is omitted for brevity.
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Fig. 1. Family of limit cycles of the system (2) when A is varied

The bifurcation analysis when A is varied is given in Figure 1. In this special
case, two supercritical Hopf bifurcation points, A1 and A2, and two subcritical
Hopf bifurcation points, A3 and A4, are observed. All of the limit cycles lie
between the coordinate axes and the curve in one of quadrants. They also form
a double throw-and-catch mechanism around a pitchfork bifurcation point in
the middle.
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3 Conclusion

In this work, a special case of the quintic generalization of the LV model has
been studied. The model is globally Lyapunov unstable, however local stability
indicates several instances of Hopf bifurcation to a family of bounded orbits.
It is also numerically observed that there is a discontinuous family of stable
cycles in the same way as in the cubic nonlinear intersection.
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