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Abstract. Proper orthogonal decomposition (POD) is a method for deriving re-
duced order models of dynamical systems. In this paper, the POD is applied to
the nonlinear Schrödinger equation (NLS). The NLS equation is discretized in space
by finite differences and is solved in time either by structure preserving symplectic
or energy preserving average vector field (AVF) integrators. Numerical results for
one dimensional NLS equation with soliton solutions show that the low-dimensional
approximations obtained by POD reproduce very well the characteristic dynamics
of the system, such as preservation of energy and phase space structure of the NLS
equation.
Keywords: Nonlinear Schrödinger equation, model order reduction, periodic solu-
tions .

1 Introduction

The nonlinear Schrödinger (NLS) equation arises as the model equation with
second order dispersion and cubic nonlinearity describing the dynamics of
slowly varying wave packets in nonlinear optics and fluid dynamics and it ap-
pears in Bose-Einstein condensate theory. We consider in this paper the NLS
equation

ψt = iψxx + iγ | ψ |2 ψ (1)

with the periodic boundary conditions ψ(x+ L, t) = ψ(x, t). Here ψ = ψ(x, t)
is a complex valued function, γ is a parameter and i2 = −1. The NLS equation
is called focusing if γ > 0 and defocusing if γ < 0; for γ = 0, it reduces to
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the linear Schrödinger equation. In last two decades various numerical meth-
ods were applied for solving NLS equation, among them are the well-known
symplectic and multisymplectic integrators, discontinuous Galerkin methods.

There is a strong need for model reduction techniques to reduce the com-
putational costs and storage requirements in large scale simulations. They
should yield low-dimensional approximations for the full high-dimensional dy-
namical system, which reproduce the characteristic dynamics of the system.
Among the model order reduction techniques the proper orthogonal decom-
position (POD) is one of the most widely used method. Surprisingly good
approximation properties are reported for POD based model order reduction
techniques in the literature. It has been successfully used in different fields
including signal analysis and pattern recognition Fukunaga[3], fluid dynamics
and coherent structures Berkooz et al.[2] and more recently in control theory
Kunisch and Volkwein[4]. The POD is applied mostly to linear and nonlin-
ear parabolic equations Kunisch and Volkwein[5]. In this paper, we apply the
POD to the NLS equation. To the best of our knowledge, there is only one
paper where POD is applied to NLS equation Schlizerman et al.[7], where the
authors use only one and two modes approximations of the NLS equation. In
this paper, the NLS equation is discretized in space and time by preserving
the symplectic structure and the energy. Then, from the snapshots of the fully
discretized dynamical system, the POD basis are computed using the singular
value decomposition (SVD). It turns out that most of the energy of the system
can be accurately approximated by using few POD modes. Numerical results
for a NLS equation with soliton solutions confirm the energy and phase space
preserving properties of the POD.

The paper is organized as follows. Section 2 and Section 3 are devoted
to reviewing the POD method and its application to semi-linear dynamical
systems. Numerical solution of the semi-discrete NLS equation and the POD
reduced form are described in Section 4. In the last section, Section 5, the
numerical results for the reduced order models of one-dimensional NLS equation
are presented.

2 The Proper Orthogonal Decomposition

Let X be a real Hilbert space endowed with inner product 〈·, ·〉X and norm
‖·‖X . For y1, . . . , yn ∈ X we set

V = span {y1, · · ·, yn} ,

and refer to V as the ensemble consisting of the snapshots {yj}nj=1. Let {ψk}dk=1

denote an orthonormal basis of V with d = dimV . Then each member of the
ensemble can be expressed as

yj =

d∑
k=1

〈yj , ψk〉X ψk, j = 1, . . . , n (2)
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The POD is constructed by choosing the orthonormal basis such that for
every l ∈ {1, . . . , d} the mean square error between the elements yj , 1 ≤ j ≤ n,
and the corresponding l − th partial sum of (2) is minimized on average:

min
{ψk}lk=1

1

n

n∑
j=1

∥∥∥∥∥yj −
l∑

k=1

〈yj , ψk〉X ψk

∥∥∥∥∥
2

X

(3)

〈ψi, ψj〉X = δij , 1 ≤ i ≤ l, 1 ≤ j ≤ i

A solution {ψk}lk=1 to (3) is called a POD-basis of rank l. We introduce the
correlation matrix K = {Kij} ∈ Rn×n corresponding to the snapshots {yj}nj=1
by

Kij =
1

n
〈yj , yi〉X

The matrix K is positive semi-definite and has rank d. Let λ1 ≥ . . . ≥
λd > 0 denote the positive eigenvalues of K and v1, . . . , vd ∈ Rn the associated
eigenvectors. Then a POD basis of rank l ≤ d is given by

ψk =
1√
λk

n∑
j=1

(vk)jyj

where (vk)j is the j − th component of the eigenvector vk. Moreover, we have
the error formula

1

n

n∑
j=1

∥∥∥∥∥yj −
l∑

k=1

〈yj , ψk〉X ψk

∥∥∥∥∥
2

X

=

d∑
j=l+1

λj

The choice of l is based on heuristic considerations combined with observing
the ratio of the modeled to the total energy contained in the system Y which
is expressed by

ε(l) =

∑l
i=1 λi∑d
i=1 λi

2.1 POD and SVD

There is a strong connection between POD and singular value decomposition
(SVD) for rectangular matrices.

Let Y be a real-valued m× n matrix of rank d ≤ min {m,n} with columns
yj ∈ Rm, 1 ≤ j ≤ n. In the context of POD, it will be useful to think of
the columns {Y·,j}nj=1 of Y as the spatial coordinates vectors of a dynamical

system at time tj . Similarly, we consider the rows {Yi,·}mi=1 of Y as the time
trajectories of the dynamical system evaluated at the locations xi.

SVD guarantees the existence of real numbers σ1 ≥ σ2 ≥ . . . ≥ σd > 0
and orthogonal matrices U ∈ Rm×m with columns {ui}mi=1 and V ∈ Rn×n with
columns {vi}ni=1 such that
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UTY V =

(
D 0
0 0

)
:= Σ ∈ Rm×n (4)

where D = diag(σ1, σ2, . . . , σd) ∈ Rd×d and the zeros in (4) denote the matrices

of appropriate dimensions. Moreover, the vectors {ui}di=1 and {vi}di=1 satisfy

Y vi = σiui, Y Tui = σivi, i = 1, · · · , d.

One of the central issues of POD is the reduction of the data expressing
their essential information by means of a few basis vectors. Let us now inter-
pret SVD in terms of POD by the following theorem.

Theorem : (Kunisch and Volkwein[5]) Let Y = [y1, . . . , yn] ∈ Rm×n be a
given matrix with rank d ≤ min {m,n}. Further, let Y = UΣV T be the
SVD of Y , where U = [u1, . . . , um] ∈ Rm×m, V = [v1, . . . , vn] ∈ Rn×n are
orthogonal matrices and the matrix Σ ∈ Rm×n has the form (4). Then, for
any l ∈ {1, . . . , d} the solution to

max
ũ1,...,ũl∈Rm

l∑
i=1

n∑
j=1

∣∣〈yj , ũi〉Rm

∣∣2 , 〈ũi, ũj〉Rm = δij , 1 ≤ i, j ≤ l (5)

is given by the singular vectors {ui}li=1. A necessary optimality condition for
(5) is given by the eigenvalue problem Y Y Tui = λiui.

3 Application to Semi-linear Time Dependent Systems

We consider the semi-linear initial value problem

ẏ(t) = Ay(t) + f(t, y(t)), t ∈ [0, T ], y(0) = y0, (6)

where f : [0, T ] × Rm → Rm is continuous in both arguments and locally
Lipschitz-continuous with respect to the second argument. The NLS equation
(1) is a semi-linear equation, where the cubic nonlinear part is locally Lipschitz
continuous.

Suppose that we have determined a POD basis {uj}lj=1 of rank l ∈ {1, . . . ,m}
in Rm. Then we make the ansatz

yl(t) =

l∑
j=1

〈
yl(t), uj

〉︸ ︷︷ ︸
=:ylj(t)

uj , t ∈ [0, T ], (7)

where the Fourier coefficients ylj , 1 ≤ j ≤ l, are functions mapping [0, T ] into
Rm, and the inner product 〈·, ·〉 represents the Euclidean inner product 〈·, ·〉Rm

to make the notation simple. Since

y(t) =

m∑
j=1

〈y(t), uj〉uj , t ∈ [0, T ]
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holds, yl(t) is an approximation for y(t) provided l < m. Inserting (7) into (6)
yields

l∑
j=1

ẏlj(t)uj =

l∑
j=1

ylj(t)Auj + f(t, yl(t)), t ∈ [0, T ],

l∑
j=1

ylj(0)uj = y0 (8)

Note that (8) is an initial-value problem in Rm for l ≤ m coefficient functions
ylj(t), 1 ≤ j ≤ l and t ∈ [0, T ], so that the coefficients are overdetermined.
Therefore, we assume that (8) holds after projection on the l dimensional sub-

space V l = span {uj}lj=1. From (8) and 〈uj , ui〉 = δij we infer that

ẏli(t) =

l∑
j=1

ylj(t) 〈Auj , ui〉+
〈
f(t, yl(t)), ui

〉
(9)

for 1 ≤ i ≤ l and t ∈ (0, T ]. Let us introduce the matrix

B = {bij} ∈ Rl×l, bij = 〈Auj , ui〉

and the non-linearity F = (F1, · · · , Fl)T : [0, T ]× Rl → Rl by

Fi(t, y) =

〈
f(t,

l∑
j=1

yjuj), ui

〉
, t ∈ [0, T ], y = (y1, · · · , yl) ∈ Rl

Then, (9) can be expressed as

ẏl(t) = Byl(t) + F (t, yl(t)), t ∈ (0, T ] (10)

For initial condition, we derive yl(0) = y0 where

y0 = (〈y0, u1〉 , . . . , 〈y0, ul〉 )
T ∈ Rl

This system is called the POD-Galerkin projection for (6). In case of
l << m the l−dimensional system is a low-dimensional approximation for (6).
Therefore, it is the reduced-order model for (6).

4 Numerical solution of NLS equation

One dimensional NLS equation (1) can be written by decomposing ψ = p+ iq
in real and imaginary components

pt = −qxx − γ(p2 + q2)q, qt = pxx + γ(p2 + q2)p (11)

as an infinite dimensional Hamiltonian pde in the phase space u = (p, q)T

u̇ = D δH
δu

, H =

∫
1

2

(
p2x + q2x −

γ

2
(p2 + q2)2

)
dx, D =

(
0 1
−1 0

)
.
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After discretizing the Hamiltonian in space

H =
1

2∆x2

n∑
j=1

((pj+1 − pj)2 + (qj+1 − qj)2)− γ

4

n∑
j=1

(p2j + q2j )2.

we obtain the semi-discretized Hamiltonian ode’s

pt = −Aq − γq(p2 + q2), qt = Ap+ γp(p2 + q2), (12)

where A is a circulant matrix.
To solve (12) we apply the second order Strang split-step method by adapt-

ing the linear, non-linear splitting

ut = Nu+ Lu, Lu = iuxx, Nu = iγ|u|2u.

4.1 POD Basis for NLS equation

Suppose that we have determined POD bases {uj}lj=1 and {vj}lj=1 of rank

l = {1, . . . ,m} in Rm. Then we make the ansatz

pl =

l∑
j=1

αjuj(x), ql =

l∑
j=1

βjvj(x) (13)

where αj =< pl, uj >, βj =< ql, vj > and pl, ql are approximations for p
and q, respectively. Inserting (13) into (12), and using that 〈ui, uj〉 = δij and
〈vi, vj〉 = δij , i, j = 1, · · · , l, we obtain

α̇i = −
l∑

j=1

βj 〈Avj , ui〉 − γ

〈 l∑
j=1

βjvj

 l∑
j=1

αjuj

2

, ui

〉
− γ

〈 l∑
j=1

βjvj

3

, ui

〉

β̇i =

l∑
j=1

αj 〈Auj , vi〉+ γ

〈 l∑
j=1

αjuj

 l∑
j=1

βjvj

2

, vi

〉
+ γ

〈 l∑
j=1

αjuj

3

, vi

〉

As defining V = [v1, v2, · · · , vl] ∈ Rm×l, β ∈ Rl, U = [u1, u2, · · · , ul] ∈
Rm×l, α ∈ Rl, B = {bij}, bij = 〈Avj , ui〉 , BT = {cij}, cij = 〈Auj , vi〉,
we obtain

α̇ = −Bβ − γUT
(
(V β) · (Uα)2

)
− γUT

(
(V β)3

)
β̇ = BTα+ γV T

(
(Uα) · (V β)2

)
+ γV T

(
(Uα)3

)
(14)

with both the operation ’·’ and the powers are hold elementwise.
The reduced order system (14) is solved, as the unreduced one (1), with

the energy preserving AVF method and symplectic midpoint method applying
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linear-nonlinear Strang spliting Weideman and Herbst[8]. The nonlinear parts
of the equations are solved by Newton-Raphson method. For solving the linear
system of equations, we have used the Matlab toolbox smt Redivo-Zaglia and
Rodriguez[6], which is designed for solving linear systems with a structured co-
efficient matrix like the circulant and Toepltiz matrices. It reduces the number
of floating point operations for matrix factorization to O (n log n).

5 Numerical Results

For the one dimensional NLS equation we have taken the example in Celle-
doni et al.[1] with γ = 1, and the periodic boundary conditions in the in-
terval [−20, 20]. The initial conditions are given as p(x, 0) = exp(−(x −
1)2/2), q(x, 0) = exp(−x2/2). As mesh sizes in space and time we have used
dx = 40/20 and dt = 0.1, respectively.

We compare the energy error and the norm error with ROM-AVF and ROM-
MID using with and without difference quotients in Table 1. With increasing
number of POD basis l, the errors in the energy and discrete solutions of the
fully discretized NLS equation and the reduced order model decreases. The
singular values of the snapshot matrix are rapidly decaying (Figure 4) so that
the only few POD modes would be sufficient to approximate the fully discetized
NLS equation. For POD basis with l = 3 (Figure 3), hence, the energy is
well preserved as for the fully discretized form (Figure 2) and more accurate
solutions are obtained with increasing number of POD modes (Figure 4).

Table 1. L∞-errors of the energy and solutions

POD Energy Energy Solution Solution
(ROM-AVF) (ROM-MID) (ROM-AVF) (ROM-MID)

2 6.125e-002 6.107e-002 2.164e-001 2.159e-001
3 5.529e-002 5.528e-002 2.010e-001 2.011e-001
4 4.612e-002 4.609e-002 1.847e-001 1.835e-001
5 4.100e-002 4.095e-002 1.838e-001 1.817e-001
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Fig. 1. Singular values: left: mid-point, right: AVF
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Fig. 2. Energy (full discretization): left: mid-point, right: AVF
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Fig. 3. Energy (POD, l=3) : left: mid-point, right: AVF

Fig. 4. ROM solutions with 3 POD modes: left: mid-point, right: AVF
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