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Abstract. Frequently when we refer to chaos and chaotic and complex systems to
describe the comportment of some natural phenomena, in fact we consider phenomena
of the type of a Brownian motion which is a more realistic model of such phenomena.
Thus one can talk about a passing from chaotic and complex systems to Brownian
motion. Some aspects regardind the Brownian motion and its Markovian nature will
be developed, in short, in this paper; we try also to emphasize their impact for some
practical problems.
Keywords: stochastic differential equations, stochastic calculus, Markov processes,
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1 Introduction

It is known that a chaotic perpetual motion of a Brownian particle is the result
of the collisions of particle with the molecules of the fluid in which there is.

But this particle is much bigger and also heavier than the molecules of the
fluid which it collide, and then each collision has a negligible effect, while the
superposition of many small interactions will produce an observable effect.

On the other hand, for a Brownian particle such molecular collisions ap-
pear in a very rapid succession, their number being enormous. For a so high
frequency, evidently, the small changes in the particle’s path, caused by each
single impact, are too fine to be observable. For this reason the exact path of
the particle can be described only by statistical methods.

We emphasize that L. Bachélier derived the law governing the position of
a single grain performing a 1-dimensional Brownian motion starting at a ∈ R
at time t = 0; and A. Einstein also derived the same law from statistical
mechanical considerations and applied it to the determination of molecular
diameters.

Also Paul Lévy found a construction of the Brownian motion and given
a profound description of the fine structure of the individual Brownian path.
D. Ray obtained some results in the case when the motion is strict Markov;
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and W. Feller obtained that the generator of a strict Markovian motion with
continuous paths (diffusion) can be expressed as a differential operator.

And in the last time we can speak about Markov processes from Kiyosi Itô’s
perspective (according to D.W. Stroock). The usual class of Markov processes
which we consider has many times some restrictions which do not cover many
interesting processes. This is the reason for which we try often to obtain some
extensions of this notion.

Researches in this direction are due especially to K. Itô and in this context
we shall refer below, in short, to some of them.

2 On Markov processes - an extended definition

We start with the concept of a random variable which encodes an experimental
outcome as a number, or a vector of real numbers in the multidimensional case.
When a random variable has a multidimensional state space, we emphasize that
fact by calling it a random space.

Let (E, ξ) be a measurable space and X : (Ω,K, P ) → (E, ξ) a random
variable (i.e. a measurable map).

The image µ of P under X is a probability measure on (E, ξ) called the
law of X and denoted by L(X). The events {ω |X(ω) ∈ A} for A ∈ ξ form a
sub-σ-field of K called the σ-field generated by X and denoted by σ(X).

More general, given a family Xα, α ∈ I, of random variables on (Ω,K, P )
taking values in measurable spaces (Eα, ξα), α ∈ I, respectively, the σ-field
generated by Xα, α ∈ I, denoted by σ(Xα, α ∈ I), is the smallest sub-σ-field
with respect to which they are all measurable.

They may be situations where it is preferable to view {Xα, α ∈ I} as a
single random variable taking values in the product space

∏
Eα endowed with

the product σ-field
∏
ξα.

If so, this definition reduces to the following:

Definition 21 Let (Ω,K, P ) be a probability space and let us denote by E a
subset of Rn. A ”random variable” X is a function from Ω into E.

E is referred to as the state space of the random variable.
Suppose we have n random variables X1(ω), · · · , Xn(ω) defined on a prob-

ability space.
The random variables X1, · · · , Xn are said to be independent if the fields

(σ-fields) KX1 , · · · , KXn generated by them are independent.

Definition 22 A ”stochastic process” is a family of real random variables

{Xt}t∈T

defined on a probability space (Ω,K, P ), indexed with a time parameter t and
assuming values in Rn.

The parameter space T may be the halfline [0,+∞), or it may also be an
interval [a, b], or the non-negative integers and even subsets of Rn, for n ≥ 1.
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Now, for each t ∈ T fixed, we have a random variable ω → Xt(ω), ω ∈ Ω.
A stochastic process will be denoted by X(t).
Now let S be a state space and consider a particle which moves in S. Also,

suppose that the particle starting at x at the present moment will move into
the set A ⊂ S with probability pt(x,A) after t units of time, “irrespectively of
its past motion”, that is to say, this motion is considered to have a Markovian
character.

The transition probabilities of this motion are {pt(x,A)}t,x,A and we con-
sidered that the time parameter t ∈ T = [0,+∞).

The state space S is assumed to be a compact Hausdorff space with a count-
able open base. The σ-field generated by the open sets (the topological σ-field
on S) is denoted by K(S). Therefore, a Borel set A is a set in K(S) (i.e.
A ∈ K(S)).

The mean value

m = M(µ) =

∫
R

xµ(dx)

is used for the center and the scattering degree of a one-dimensional probability
measure µ having the second order moment finite, and the variance of µ is
defined by

σ2 = σ2(µ) =

∫
R

(x−m)2µ(dx).

On the other hand, from the Tchebychev’s inequality, for any t > 0, we
have

µ(m− tσ,m+ tσ) ≤ 1

t2
,

so that several properties of 1-dimensional probability measures can be derived.

Remark 1. In the case when the considered probability measure has no finite
second order moment, σ becomes useless. In such a case one can introduce
the central value and the dispersion that will play similar roles as m and σ for
general 1-dimensional probability measures.

The dispersion δ is defined as follows

δ = δ(µ) = − log

∫ ∫
R2

e−|x−y|µ(dx)µ(dy).

Furthermore it is assumed that the following conditions are satisfied by the
transition probabilities {pt(x,A)}t∈T,x∈S,A∈K(S):

1 for t and A fixed,
a) the transition probabilities are Borel measurable in x;
b) pt(x,A) is a probability measure in A;

2 p0(x,A) = δx(A) (i.e. the δ-measure concentrated at x);

3 pt(x, ·)
weak−→ pt(x0, ·) as x→ x0 for any t fixed, that is

lim
x→x0

∫
f(y)pt(x, dy) =

∫
f(y)pt(x0, dy)

for all continuous functions f on S;
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4 pt(x, U(x)) −→ 1 as t↘ 0, for any neighborhood U(x) of x;
5 the Chapman-Kolmogorov equation holds:

ps+t(x,A) =

∫
S

pt(x, dy)ps(y,A).

Remark 2. The ”transition operators” can be defined in a similar manner. Con-
sider C = C(S) to be the space of all continuous functions (it is a separable
Banach space with the supremum norm).

The operators pt, defined by

(ptf)(x) =

∫
S

pt(x, dy)f(y), f ∈ C

are called ”transition operators”.

Remark 3. Let us consider R ∪ {∞} as the one-point compactification of R.
Then it can be observed that the conditions (1) – (5) above are satisfied for
the ”Brownian transition probabilities”. One can define

pt(x, dy) = 1
t
√
2π
e−

(y−x)2

2t2 dy in R

pt(∞, A) = δ∞A.

We can give now the definition of a Markov process as follows:

Definition 23 A ”Markov process” is a system of stochastic processes

{Xt(ω), t ∈ T, ω ∈ (Ω,K,Pa)}a∈S ,

that is for each a ∈ S, {Xt}t∈S is a stochastic process defined on the probability
space (Ω,K,Pa).

It can be observed that a definition as it is given above not correspond to many
processes that are of a real interest so that it is useful to obtain an extension
of this notion. An extended notion has been proposed by K. Itô and it is given
below.

Let E be a separable Banach space with real coefficients and norm || · || and
let also L(E,E) be the space of all bounded linear operators E −→ E. It can
be observed that L(E,E) is a linear space.

Definition 24 The collection of stochastic processes

X = {Xt(ω) ≡ ω(t) ∈ S, t ∈ T, ω ∈ (Ω,K,Pa)}a∈S

is called a ”Markov process” if the following conditions are satisfied:

1) the ”state space” S is a complete separable metric space and K(S) is a
topological σ-algebra on S;

2) the ”time internal” T = [0,∞);
3) the ”space of paths” Ω is the space of all right continuous functions T −→ S

and K is the σ-algebra K[Xt : t ∈ T ] on Ω;
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4) the probability law of the path starting at a, Pa(H), is a probability measure
on (Ω,K) for every a ∈ S which satisfy the following conditions:
4a) Pa(H) is K(S)-measurable in a for every H ∈ K;
4b) Pa(X0 = a) = 1;
4c) Pa(Xt1 ∈ E1, · · · , Xtn ∈ En) =∫

. . .

∫
ai∈Ei

Pa(Xt1 ∈ da1)Pa1(Xt2−t1 ∈ da2) . . .

. . . Pan−1
(Xtn−tn−1

∈ dan) for 0 < t1 < t2 < . . . < tn.

Remark 4. Evidently there are some differences between this definition and
Definition 23 of a Markov process. Thus

i. The space S is not necessary to be compact;
ii. it is not assumed the existence of the left limits of the path;

iii. the transition operator f −→ Gtf(·) = E.
(f(Xt)) do not necessarily carry C(S) into C(S) (C(S) being the space of
all real-valued bounded continuous functions on S).

3 The Markovian nature of the Brownian path

As we already emphasized the Brownian motion, used especially in Physics,
is of ever increasing importance not only in Probability theory but also in
classical Analysis. Its fascinating properties and its far-reaching extension of
the simplest normal limit theorems to functional limit distributions acted, and
continue to act, as a catalyst in random analysis.

It is probable the most important stochastic process.
As some authors remarks too, the Brownian motion reflects a perfection

that seems closer to a law of nature than to a human invention.
In 1828 the English botanist Robert Brown observed that pollen grauns

suspended in water perform a continual swarming motion. The chaotic motion
of such a particle is called Brownian motion and a particle performing such a
motion is called a Brownian particle.

He was not the first to mention this phenomenon and had many predeces-
sors, starting with Leeuwenhoek in the 17th century.

However, Brown’s investigation brought it to the attention of the scientific
community, hence Brownian.

Brownian motion was frequently explained as due to the fact that particles
were alive. Poincaré thought that it contradicted the second law of Thermo-
dynamics.

Today we know that this motion is due to the bombardament of the particles
by the molecules of the medium. In a liquid, under normal conditions, the order
of magnitude of the number of these impacts is of 1020 per second.

It is only in 1905 that kinetic molecular theory led Einstein to the first
mathematical model of Brownian motion. He began by deriving its possible
existence and then only learned that it had been observed.

Let us imagine a chaotic motion of a particle of colloidal size immersed
in a fluid. As we already emphasized such a chaotic motion of a particle is
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called, usually, Brownian motion and the particle which performs such a motion
is referred to as a Brownian particle. Such a chaotic perpetual motion of a
Brownian particle is the result of the collisions of particle with the molecules
of the fluid in which there is.

But this particle is much bigger and also heavier than the molecules of the
fluid which it collide, and then each collision has a negligible effect, while the
superposition of many small interactions will produce an observable effect.

On the other hand, for a Brownian particle such molecular collisions ap-
pear in a very rapid succession, their number being enormous. For a so high
frequency, evidently, the small changes in the particle’s path, caused by each
single impact, are too fine to be observable. For this reason the exact path of
the particle can be described only by statistical methods.

Thus, the influence of the fluid on the motion of a Brownian particle can
be described by the combination of two forces in the following way.

1. The considered particle is much larger than the particle of the fluid so that
the cumulated effect of the interaction between the Brownian particle and
the fluid may be taken as having a hydrodynamical character. Thus, the
first of the forces acting on the Brownian particle may be considered to
be the forces of dynamical friction. It is known that the frictional force
exerted by the fluid on a small sphere immersed in it is determined from
the Stockes’s law: the drag force per unit mass acting on a spherical particle

of radius a is given by −βv, with β =
6πaη

m
, where m is the mass of the

particle, η is the coefficient of dynamical viscosity of the fluid, and v is the
velocity of particle.

2. The other force acting on the Brownian particle is caused by the individ-
ual collisions with the particles of the fluid in which there is. This force
produces instantaneous changes in the acceleration of the particle. Fur-
thermore, this force is random both in direction and in magnitude, and one
can say that it is a fluctuating force. It will be denoted by f(t). For f(t)
the following assumptions are made:

i The function f(t) is statistically independent of v(t).

ii f(t) has variations much more frequent than the variations in v(t).

iii f(t) has the average equal to zero.

A completely different origin of mathematical Brownian motion is a game the-
oretic model for fluctuations of stock prices due to L. Bachélier from 1900.

In his doctoral thesis L. Bachélier hinted that it could apply to physical
Brownian motion.

Therein, and in his subsequent works, he used the heat equation and, pro-
ceeding by analogy with heat propagation he found, albeit formally, distribu-
tions of various functionals of mathematical Brownian motion.

Heat equations and related parabolic type equations have been used rigor-
ously by Kolmogorov, Petrovsky, Khintchine.

Bachélier, L. Théorie de la spéculation. Ann. Sci. École Norm. Sup., 17, 1900, 21-86.
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L. Bachélier derived the law governing the position of a single grain per-
forming a 1-dimensional Brownian motion starting at a ∈ R1 at time t = 0:

Pa[x(t) ∈ db] = g(t, a, b)db (t, a, b) ∈ (0,+∞)×R2, (1)

where g is the source (Green) function

g(t, a, b) =
e−

(b−a)2

2t

√
2πt

(2)

of the problem of heat flow:

∂u

∂t
=

1

2

∂2u

∂a2
(t > 0). (3)

Bachélier also pointed out the Markovian nature of the Brownian path
expressed in

Pa[a1 ≤ x(t1) < b1, a2 ≤ x(t2) < b2, · · · , an ≤ x(tn) < bn] =

=

b1∫
a1

b2∫
a2

· · ·
bn∫
an

g(t1, a, ξ1) g(t2 − t1, ξ1, ξ2) · · ·

· · · g(tn − tn−1, ξn−1, ξn) dξ1 dξ2 · · · dξn, 0 < t1 < t2 < · · · tn (4)

and used it to establish the law of maximum displacement

P0

[
max
s≤t

x(s) ≤ b
]

= 2

b∫
0

e−
a2

2t

√
2πt

da t > 0, b ≥ 0. (5)

It is very interesting that A. Einstein, in 1905, also derived (1) from statisti-
cal mechanical considerations and applied it to the determination of molecular
diameters.

We emphasize again that a rigorous definition and study of Brownian mo-
tion requires measure theory.

But as soon as the ideas of Borel, Lebesgue and Daniell appeared, it was
possible to put the Brownian motion on a firm mathematical foundation and
this was achived in 1923 by N. Wiener.

Consider the space of continuous path w : t ∈ [0,+∞) → R with coordi-
nates x(t) = w(t) and let B be the smallest Borel algebra of subsets B of this
path space which includes all the simple events B = (w : a ≤ x(t) < b), (t ≥
0, a < b). Wiener established the existence of nonnegative Borel measures
Pa(B), (a ∈ R, B ∈ B) for which (4) holds. Among other things, this result
attaches a precise meaning to Bachélier’s statement that the Brownian path is
continuous.

As we already emphasized at the beginning, Paul Lévy found another con-
struction of the Brownian motion and gives a profound description of the fine
structure of the individual Brownian path.

The standard Brownian motion can be now defined.

A. Einstein, Investigations on the theory of the Brownian movement, New York, 1956.
N. Wiener, Differential space. J. Math. Phys. 2, 1923, 131-174.
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Definition 31 A continuous-time stochastic process {Bt | 0 ≤ t ≤ T} is called
a ”standard Brownian motion” on [0, T ) if it has the following four properties:

i B0 = 0.
ii The increments of Bt are independent; that is, for any finite set of times

0 ≤ t1 < t2 < · · · < tn < T, the random variables

Bt2 −Bt1 , Bt3 −Bt2 , · · · , Btn −Btn−1

are independent.
iii For any 0 ≤ s ≤ t < T the increment Bt −Bs has the normal distribution

with mean 0 and variance t− s.
iv For all ω in a set of probability one, Bt(ω) is a continuous function of t.

The Brownian motion can be represented as a random sum of integrals of
orthogonal functions. Such a representation satisfies the theoretician’s need to
prove the existence of a process with the four defining properties of Brownian
motion, but it also serves more concrete demands. Especially, the series re-
presentation can be used to derive almost all of the most important analytical
properties of Brownian motion. It can also give a powerful numerical method
for generating the Brownian motion paths that are required in computer sim-
ulation.

Remark 5. Let us consider R ∪ {∞}. Then one can define

pt(x, dy) =
1

t
√

2π
e−

(y−x)2

2t2 dy in R

pt(∞, A) = δ∞A.

Let us observe that the conditions 1b) and 2-5 assumed on the transition
probabilities {pt(x,A)}t∈T,x∈S,A∈K(S), given in Section 2, are satisfied in this
case for ”Brownian transition probabilities” where R ∪ {∞} is considered as
the one-point compactification of R.

Finally we shall give an interesting result regarding to a 3-dimensional Brow-
nian motion.

Let X be a Markov process in a generalized sense as it is given in Definition
24. Let us denote by B(S) the space of all bounded real K(S)-measurable
functions and let us consider a function f ∈ B(S).

It is supposed that

Ea

( ∞∫
0

|f(Xt)|dt
)

(6)

is bounded in a. Then, the following

Uf(a) = Ea

( ∞∫
0

f(Xt)dt

)
(7)
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is well-defined and is a bounded K(S)-measurable function of a ∈ S.
The Uf is called the potential of f with respect to X. Having in view that

Uf = limα↓0Rαf , it is reasonable to write R0 instead of U . Based on this fact,
Rαf will be called the potential of order α of f .

Remark 6. It is useful to retain that Rαf ∈ B(S) for α > 0; and generally
f ∈ B(S) while R0f(= Uf) ∈ B(S) under the condition (6).

Now the name potential is justified by the following theorem on the 3-
dimensional Brownian motion

Theorem 31 (K. Itô). Let X be the 3-dimensional Brownian motion. If f ∈
B(S) has compact support, then f satisfies (6) and

Uf(a) =
1

2π

∫
R3

f(b)db

|b− a|
=

1

2π
×Newtonian potential of t. (8)

Remark 7. Many other details, proofs and related problems can be found in
[1], [2], [3], [4], [14], [6], [13], [12], [9].

Conclusion 31 The Brownian motion can be represented as a random sum of
integrals of orthogonal functions. Such a representation satisfies the theoreti-
cian’s need to prove the existence of a process with the four defining properties
of Brownian motion, but it also serves more concrete demands, one of the most
important being the ”chaotic and complex systems analysis”.

Especially, the series representation can be used to derive almost all of the
most important analytical properties of Brownian motion.

It can also give a powerful numerical method for generating the Brownian
motion paths that are required in computer simulation.

At the same time, as we have said at the beginning, we think that when, in
various problems, we say ”chaos” or ”chaotic and complex systems” or we use
another similar expression to define the comportment of some natural phenom-
ena, in fact we imagine phenomena similarly to a Brownian motion which is
a more realistic model of such phenomena. And this opinion lie at the basis of
this paper.
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