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Abstract. Many data have been useful to describe the growth of marine mammals,
invertebrates and reptiles, seabirds, sea turtles and fishes, using the logistic, the Gom-
pertz and von Bertalanffy’s growth models. A generalized family of von Bertalanffy’s
maps, which is proportional to the right hand side of von Bertalanffy’s growth equa-
tion, is studied and its dynamical approach is proposed. The system complexity is
measured using Lyapunov exponents, which depend on two biological parameters:
von Bertalanffy’s growth rate constant and the asymptotic weight.

Applications of synchronization in real world is of current interest. The behavior
of birds flocks, schools of fish and other animals is an important phenomenon char-
acterized by synchronized motion of individuals. In this work, we consider networks
having in each node a von Bertalanffy’s model and we study the synchronization in-
terval of these networks, as a function of those two biological parameters. Numerical
simulation are also presented to support our approaches.
Keywords: Von Bertalanffy’s models, synchronization, Lyapunov exponents.

1 Introduction and motivation

Several mathematical equations have been used to describe the growth of ma-
rine populations, namely fishes, seabirds, marine mammals, invertebrates, rep-
tiles and sea turtles. Among these equations, three of the most familiar are the
logistics, the Gompertz and the von Bertalanffy models, see [8] and references
therein. For a certain population, the growth of an individual, regarded as an
increase in its length or weight with increasing age, is commonly modeled by a
mathematical equation that represents the growth of an “average” individual
in the population. One of the most popular functions that have been used
to analyze the increase in average length or weight of fish is von Bertalanffy’s
model, see for example [2] and [5].

Synchronization is a fundamental nonlinear phenomenon, which can be ob-
served in many real systems, in physics, chemistry, mechanics, engineering,
secure communications or biology, see for example [1]. It can be observed in
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living beings, on the level of single cells, physiological subsystems, organisms
and even on the level of large populations. Sometimes, this phenomenon is
essential for a normal functioning of a system, e.g. for the performance of a
pacemaker, where the synchronization of many cells produce a macroscopic
rhythm that governs respiration and heart contraction. Sometimes, the syn-
chrony leads to a severe pathology, e.g. in case of the Parkinson’s disease, when
locking of many neurons leads to the tremor activity. Biological systems use
internal circadian clocks to efficiently organize physiological and behavioral ac-
tivity within the 24-hour time domain. For some species, social cues can serve
to synchronize biological rhythms. Social influences on circadian timing might
function to tightly organize the social group, thereby decreasing the chances of
predation and increasing the likelihood of mating, see [4]. Almost all seabirds
breed in colonies; colonial and synchronized breeding is hypothesized to reduce
predation risk and increases social interactions, thereby reducing the costs of
breeding . On the other hand, it is believed that synchronization may promote
extinctions of some species. Full synchronism may have a deleterious effect on
population survival because it may lead to the impossibility of a recoloniza-
tion in case of a large global disturbance, see [16]. Understand the aggregate
motions in the natural world, such as bird flocks, fish schools, animal herds,
or bee swarms, for instance, would greatly help in achieving desired collective
behaviors of artificial multi-agent systems, such as vehicles with distributed
cooperative control rules.

The layout of this paper is as follows. In Sec.2, we present a new dynamical
approach to von Bertalanffy’s growth equation, a family of unimodal maps,
designated by von Bertalanffy’s maps. In Sec.3, we present the network model
having in each node a von Bertalanffy’s model. The synchronization interval is
presented in terms of the network connection topology, expressed by its Lapla-
cian matrix and of the Lyapunov exponent of the network’s nodes. In Sec.4,
we give numerical simulations on some kinds of lattices, evaluating its synchro-
nization interval. We present some discussion on how this interval changes with
the increasing of the number of neighbors of each node, with the increasing of
the total number of nodes and with the intrinsic growth rate. We also observe
and discuss some desynchronization phenomenon.

2 Von Bertalanffy’s growth dynamics approach

An usual form of von Bertalanffy’s growth function, one of the most frequently
used to describe chick growth in marine birds and in general marine growths,
is given by

Wt = W∞

(
1− e−K3 (t−t0)

)3

, (1)

where Wt is the weight at age t, W∞ is the asymptotic weight, K is von Berta-

lanffy’s growth rate constant and t0 is the theoretical age the chick would have
at weight zero. The growth function, Eq.(1), is solution of the von Bertalanffy’s



Chaotic Modeling and Simulation (CMSIM) 4: 519–528, 2013 521

(a) (b)

x

fr�x�

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Fig. 1. (a) Graphics of von Bertalanffy’s maps fr(x), Eq.(4), for several values of intrinsic growth
rate r (0.5 (magenta), 1.5, 3.5, 5.5 and 6.75 (orange)); (b) Bifurcation diagram of von Bertalanffy’s
maps fr (x) in the (K,W∞) parameter plane. The blue region is the stability region. The period
doubling and chaotic regions correspond to the cycles shown on top of figure. The gray region is
the non admissible region.

growth equation,

g (Wt) =
dWt

dt
=
K

3
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Wt
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3

)
, (2)

introduced by von Bertalanffy to model fish weight growth, see [17] and [18].

The per capita growth rate, associated to this growth model, is given by

h (Wt) =
g (Wt)

Wt
=
K

3
W
− 1

3
t

(
1−

(
Wt

W∞

) 1
3

)
. (3)

In this paper, we consider a family of unimodal maps, the von Bertalanffy
maps, which is proportional to the right hand side of von Bertalanffy’s equation,
Eq.(2), fr : [0, 1]→ [0, 1], defined by

fr (x) = r x
2
3

(
1− x 1

3

)
, (4)

with x = Wt

W∞
∈ [0, 1] the normalized weight and r = r(K,W∞) = K

3 ×W
2
3∞ > 0

an intrinsic growth rate of the individual weight, see Fig.1(a).
Remark that, the family of maps that we will study depends on two biolog-

ical parameters: von Bertalanffy’s growth rate constant K and the asymptotic
weight W∞. The following conditions are satisfied:

(A1) fr is continuous on [0, 1];
(A2) fr has an unique critical point c = (2/3)3 ∈ ]0, 1[;
(A3) f ′r(x) 6= 0,∀x ∈ ]0, 1[ \{c}, f ′r(c) = 0 and f ′′r (c) < 0;
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(A4) fr ∈ C3 (]0, 1[) and the Schwarzian derivative of fr, denoted by S (fr(x)),
verifies S (fr(x)) < 0,∀x ∈ ]0, 1[ \{c} and S (fr(c)) = −∞.
Conditions (A1)−(A4) are essential to prove the stability of the only positive

fixed point, [15]. In particular, the negative Schwarzian derivative ensures a
“good” dynamic behavior of the models. In general, the growth models studied
have negative Schwarzian derivative and the use of unimodal maps is usual, see
for example [12] and [13].

The dynamical complexity of the proposed models is displayed at (K,W∞)
parameter plane, depending on the variation of the intrinsic growth rate r. The
analysis of their bifurcations structure is done based on the bifurcation diagram,
see Fig.1(b). For these models, the extinction region and the semistability
curve have no expressive meaning. Because it is difficult to identify per capita
growth rates, Eq.(3), less than one for all densities, to the extinction case, and
per capita growth rates strictly less than one for all densities, except at one
population density, to the semistability case, except at most a set of measure
zero. We verify that, lim

x→0+
f
′

r (x) > 1 and the origin’s basin of attraction is

empty, except at most a set of measure zero. The fixed point 0 is unstable.
A behavior of stability is defined when a population persists for intermediate

initial densities and otherwise goes extinct. The per capita growth rate of the
population, Eq.(3), is greater than one for an interval of population densities.
The lower bound of these densities correspond to the positive fixed point

AK,W∞ ≡ Ar =

(
r

r + 1

)3

,

of each function fr, Eq.(4), see Fig.1(a). Furthermore, attending to (A2) and
(A3) we have that f2

r (c) > 0, then there is a linearly stable fixed point Ar ∈
]0, 1[, whose basin of attraction is ]0, 1[. For more details see [15].

The symbolic dynamics techniques prove to be a good method to determine
a numerical approximation to the stability region (in blue), see Fig.1(b). For
more details about symbolic dynamics techniques see for example [12]. In the
(K,W∞) parameter plane, this region is characterized by the critical point
iterates that are always attracted to the fixed point sufficiently near of the
super stable or super attractive point Ãr, defined by fr (c) = c. Let Ār ∈ ]0, 1[
be the fixed points sufficiently near of Ãr, then

lim
n→∞

fnr (c) = Ār, for
(

3K−1A
1
3
r

(
1−A

1
3
r

)) 3
2

< W∞(K) < Ŵ∞(K)

where Ŵ∞(K) represents the super stable curve of the cycle of order 2, given in
implicit form by f2

r (c) = c. In this parameter plane, the set of the super stable
or super attractive points Ãr defines the super stable curve of the fixed point.
In the region before reaching the super stable curve, the symbolic sequences
associated to the critical points orbits are of the type CL∞. After this super
stable curve, the symbolic sequences are of the type CR∞. In this parameter
region, the topological entropy is null, [10].

The period doubling region corresponds to the parameters values, to which
the population weight oscillates asymptotically between 2n states, with n ∈ N.
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In period-doubling cascade, the symbolic sequences correspondent to the iter-
ates of the critical points are determined by the iterations f2n

r (c) = c. Ana-
lytically, these equations define the super-stability curves of the cycle of order
2n. The period doubling region is bounded below by the curve of the intrinsic
growth rate values where the period doubling starts, Ŵ∞(K), correspondent
to the 2-period symbolic sequences (CR)∞. Usually, the upper bound of this
region is determined using values of intrinsic growth rate r, corresponding to
the first symbolic sequence with non null topological entropy. Commonly, the
symbolic sequence that identifies the beginning of chaos is

(
CRLR3

)∞
, a 6-

periodic orbit, see for example [12] and [13]. The unimodal maps in this region,
also have null topological entropy, [10].

In the chaotic region of the (K,W∞) parameter plane, the evolution of
the population size is a priori unpredictable. The maps are continuous on
the interval with positive topological entropy whence they are chaotic and
the Sharkovsky ordering is verified. The symbolic dynamics are characterized
by iterates of the functions fr that originate orbits of several types, which
already present chaotic patterns of behavior. The topological entropy is a non-
decreasing function in order to the parameter r, until reaches the maximum
value ln 2 (consequence of the negative Schwartzian derivative). In [12] and
[13] can be seen a topological order with several symbolic sequences and their
topological entropies, which confirm this result to others growth models. This
region is bounded below by the curve of the intrinsic growth rate values where
the chaos starts. The upper bound is the fullshift curve or chaotic semistability
curve, defined by fr (c) = 1. This curve characterizes the transition between
the chaotic region and the non admissible region. In the non admissible region,
the graphic of any function fr is no longer totally in the invariant set [0, 1]. The
maps under these conditions no longer belong to the studied family functions
and are not good models for populations dynamics.

The above explanations are summarized in the next result:

Lemma 1. Let fr(x) be von Bertalanffy’s maps, Eq.(4), with r ∈ R+ and
satisfying (A1)− (A4).

(i) (Stability region of the fixed point Ar) If 0 < r < 5, then there is a linearly
stable fixed point Ar ∈ ]0, 1[ whose basin of attraction is ]0, 1[;

(ii) (Period doubling and chaotic regions) If 5 < r < 33

22 , then the interval
[f2
r (c), fr(c)] is forward invariant with basin of attraction ]0, 1[;

(iii) (Chaotic semistability curve) If r = 33

22 , then [0, 1] is invariant and verifies
that ⋃

n≥0

fnr (x) = [0, 1] and lim
n→∞

1

n
|Dfnr (x)| > 0,

for Lebesgue almost every x ∈ [0, 1].

For more analytical details of the proof see [14] and [15].
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3 Synchronization and Lyapunov exponents

Consider a general network ofN identical coupled dynamical systems, described
by a connected, undirected graph, with no loops and no multiple edges. In each
node the dynamics of the system is defined by the maps fr given by Eq.(4).
The state equations of this network, in the discretized form, are

xi(k + 1) = fr(xi(k)) + c

N∑
j=1

lijxj(k), with i = 1, 2, ..., N (5)

where c is the coupling parameter and L = (lij) is the Laplacian matrix or
coupling configuration of the network. The Laplacian matrix is given by L =
D − A, where A is the adjacency matrix and D = (dij) is a diagonal matrix,
with dii = ki, being ki the degree of node i. The eigenvalues of L are all real
and non negatives and are contained in the interval [0,min {N, 2∆}], where ∆ is
the maximum degree of the vertices. The spectrum of L may be ordered, λ1 =
0 ≤ λ2 ≤ · · · ≤ λN . The network (5) achieves asymptotical synchronization if

x1(t) = x2(t) = ... = xN (t) →
t→∞

e(t),

where e(t) is a solution of an isolated node (equilibrium point, periodic orbit
or chaotic attractor), satisfying ė(t) = f(e(t)).

One of the most important properties of a chaotic system is the sensitivity
to initial conditions. A way to measure the sensitivity with respect to initial
conditions is to compute the average rate at which nearby trajectories diverge
from each other. Consider the trajectories xk and yk, starting, respectively,
at x0 and y0. If both trajectories are, until time k, always in the same linear
region, we can write

|xk − xk| = eλk|x0 − y0|, where λ =
1

k

k−1∑
j=0

ln |f ′r(xj)|.

The Lyapunov exponents of a trajectory xk is defined by

hmax = lim
k→+∞

1

k

k−1∑
j=0

ln |f ′r(xj)| (6)

whenever it exists. The computation of the Lyapunov exponent hmax gives the
average rate of divergence (if hmax > 0), or convergence (if hmax < 0) of the two
trajectories from each other, during the time interval [0, k], see for example [6].
We note that, the Lyapunov exponents depend on two biological parameters:
von Bertalanffy’s growth rate constant and the asymptotic weight. See in Fig.2
the Lyapunov exponents estimate for von Bertalanffy’s maps Eq.(4).

If the coupling parameter c belongs to the synchronization interval]
1− e−hmax

λ2
,

1 + e−hmax

λN

[
(7)

then the synchronized states xi(t), (i = 1, ...N) are exponentially stable, [9].
The second eigenvalue λ2 is know as the algebraic connectivity or Fiedler value
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Fig. 2. Lypunov exponents estimates for von Bertalanffy’s maps Eq.(4), as a function of the
intrinsic growth rate r.

and plays a special role in the graph theory. As bigger is λ2, more easily the
network synchronizes. As much larger λ2 is, more difficult is to separate the
graph in disconnected parts. The graph is connected if and only if λ2 6= 0.
In fact, the multiplicity of the null eigenvalue λ1 is equal to the number of
connected components of the graph. Fixing the topology of the network, the
eigenvalues of the Laplacian λ2 and λN are fixed, so the synchronization only
depends on the Lyapunov exponent of each node, hmax, which in turn depends
on the two biological parameters: von Bertalanffy’s growth rate constant and
the asymptotic weight.

4 Numerical simulation and conclusions

To support our approaches, we consider a regular ring lattice, a graph with N
nodes, each one connected to k neighbors, k2 on each side, having in each node
the same model, the von Bertalanffy maps fr given by Eq.(4). See in Fig.3
some example of lattices. If, for instance, N = 6 and K = 4, see Fig.3c), the
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Fig. 3. Lattices. In a) with N = 4 nodes and k = 2, in b) with N = 6 nodes and k = 2 and in c)
with N = 6 nodes and k = 4. From (a) to (b) the total number of vertices of the network increases
maintaining the number of neighbors of each node, and from (b) to (c) increases the number of
neighbors of each node, but the total number of vertices of the network remains the same.
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adjacency matrix A and the Laplacian matrix L are

A =


0 1 1 0 1 1
1 0 1 1 0 1
1 1 0 1 1 0
0 1 1 0 1 1
1 0 1 1 0 1
1 1 0 1 1 0

 and L = D −A =


4 −1 −1 0 −1 −1
−1 4 −1 −1 0 −1
−1 −1 4 −1 −1 0
0 −1 −1 4 −1 −1
−1 0 −1 −1 4 −1
−1 −1 0 −1 −1 4

 .

So, the network correspondent to the graph in Fig.3 c) is defined by the system,

ẋ1 = fr(x1) + c(4x1 − x2 − x3 − x5 − x6)
ẋ2 = fr(x2) + c(−x1 + 4x2 − x3 − x4 − x6)
ẋ3 = fr(x3) + c(−x1 − x2 + 4x3 − x4 − x5)
ẋ4 = fr(x4) + c(−x2 − x3 + 4x4 − x5 − x6)
ẋ5 = fr(x5) + c(−x1 − x3 − x4 + 4x5 − x6)
ẋ6 = fr(x6) + c(−x1 − x2 − x4 − x5 + 4x6)

.

For this lattice the eigenvalues of the Laplacian matrix are λ1 = 0, λ2 =
λ3 = λ4 = 4 and λ5 = λ6 = 6. If we consider, for instance, r = 6.60, the
Lyapunov exponent of fr(x) is 0.377, Eq.(6). Then, attending to Eq.(7), this

lattice synchronizes if 1−e−0.377

4 < c < 1+e−0.377

6 ⇔ 0.079 < c < 0.281 and the
amplitude of the synchronization interval is 0.202. For more examples see Table
1. The lattice correspondent to the Fig.3 b) has eigenvalues of the Laplacian
matrix λ1 = 0, λ2 = λ3 = 1, λ4 = λ5 = 3 and λ6 = 4. Thus, for the same
r = 6.60, the lattice synchronizes if 0.313 < c < 0.421 and the amplitude of
this interval is 0.107. Moreover, to the lattice in Fig.3 a), the eigenvalues of the
Laplacian matrix are λ1 = 0, λ2 = λ3 = 2 and λ4 = 4. For the same r = 6.60,
the lattice synchronizes if 0.157 < c < 0.421 and the amplitude of this interval
is 0.264. In Table 1 are presented more examples, where we computed the
synchronization interval for several values of the intrinsic growth rate r, for all
these lattices a), b) and c) of Fig.3. The results of Table 1 allow us to claim:

(C1) From the lattice a) to lattice b) in Fig.3, the total number of vertices of
the network increases maintaining the number of neighbors of each node.
We verify that the synchronization is worse, not only because it begins to
synchronize at a higher value of the coupling parameter c, but also, because
the synchronization interval is shorter.

(C2) Comparing the results for the lattices b) and c) in Fig.3, we may conclude
that maintaining the total number of vertices of the network, but increas-
ing the number of neighbors of each node, the synchronization is better,
not only because it begins to synchronize at a lower value of the coupling
parameter c, but also, because the synchronization interval is larger.

(C3) Observing the columns of Table 1, we verify that, as the intrinsic growth
rate r increases, the synchronization is worse, not just because it begins to
synchronize at a higher value of the coupling parameter c, but also, because
the synchronization interval is shorter.

(C4) Note that, for the intrinsic growth rate r = 6.74 and r = 6.75, for the lattice
b), the upper bound of the synchronization interval is lower than the lower
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Synchronization Interval Amplitude
r hmax

Lattice a) Lattice b) Lattice c) Lattice a) Lattice b) Lattice c)

6.50 0.297 ]0.128, 0.436[ ]0.257, 0.436[ ]0.064, 0.291[ 0.308 0.179 0.226

6.55 0.347 ]0.147, 0.427[ ]0.293, 0.427[ ]0.073, 0.285[ 0.280 0.134 0.211

6.60 0.377 ]0.157, 0.421[ ]0.313, 0.421[ ]0.079, 0.281[ 0.264 0.107 0.202

6.65 0.406 ]0.167, 0.417[ ]0.334, 0.417[ ]0.083, 0.278[ 0.250 0.083 0.194

6.70 0.463 ]0.185, 0.407[ ]0.371, 0.407[ ]0.093, 0.272[ 0.222 0.037 0.179

6.73 0.506 ]0.199, 0.401[ ]0.397, 0.401[ ]0.099, 0.267[ 0.202 0.003 0.168

6.74 0.533 ]0.207, 0.397[ (*) ]0.103, 0.265[ 0.190 (*) 0.161

6.75 0.598 ]0.225, 0.388[ (*) ]0.112, 0.258[ 0.163 (*) 0.146

Table 1. Lyapunov exponent, hmax, synchronization interval,
]

1−e−hmax

λ2
, 1+e−hmax

λN

[
, and

amplitude of this interval, 1+e−hmax

λN
− 1−e−hmax

λ2
, for several intrinsic growth rates r, for the

lattices a), b) and c) of Fig.3.(*) In this case, the desynchronization phenomenon occurs, see (C4).

bound. This means that, there is no synchronization for any value of the
coupling parameter c. This desynchronization phenomenon was expected
because the network (5) synchronizes only if hmax < ln(2R+1), where R =
λ1−λ2

λ2−λN , see [9]. In the case of lattice b), we have ln(2R+1) = 0.511, so there
is synchronization only if hmax < 0.511, which do not happens for r = 6.74
and r = 6.75. In all the other studied cases, the Lyapunov exponent verifies
hmax < ln(2R+ 1), so we have a non empty synchronization interval.
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