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Abstract. The Hénon map, its higher iterates and generalizations as given in [1] are
studied in this work in the sense of stability and bifurcation analysis

xn+1 = 1 + yn − ax2
n

yn+1 = bxk
n. (1)

Instances of several forms bifurcations are observed. The second iteration of the gen-
eralized Hénon map is of interest since period doubling bifurcation is a prominent
mechanism as revealed by the bifurcation map. As we proceed to higher iterations,
the position of the bifurcations remain essentially unchanged, the nature of the bifur-
cations change to include saddle node, Hopf, period doubling bifurcations[1–4]. It is
also shown that the delayed version of the Hénon map can be reduced to the logistic
map if k = 1 and bifurcation scenarios in the one dimensional logistic map, such as
period doubling are also observed in the Hénon map.
Keywords: Hénon map, Chaos, Stability, Bifurcation.

1 Introduction

Both iterated maps and flows are used as models for chaotic behavior. It is
well known that flows have the same equilibrium points with the maps to which
they are related by discretization. The classical example is the logistic map.
As a differential equation it has a simpler behavior, however when converted
to a map it indicates period doubling bifurcation.
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Bifurcation analysis for both the generalized Hénon map and its higher it-
erations involving the 2n fold iteration gives rich structures[1]. The generalized
Hénon map and the higher iterates as first studied by Skiadas et al. are taken
into consideration in this work [2,5]. The relation between the original Hénon
map and the logistic map are also studied and the results given are consistent
with the bifurcation diagrams of the original Hénon map[5,6].

In our previous work continuous and discrete versions of predator prey mod-
els were studied[7,8]. A similar analysis is done in this work for the iterated
Hénon map, its higher iterates and the generalized form and bifurcation prop-
erties with rich properties [9,10].

The Hénon map and its generalization is given by the system 1 for k ≥ 1.
In the following sections we give explicit results of stability and bifurcation
analysis for various values of k and higher iterations of this dynamical system
which defines a generalized version of the Hénon map. For the special case that
k = 1 this system is known as the original Hénon map which sets an example as
a chaotic map for given parameter values. We further generalize the y update
formula to yn+1 = bxkn+1.

2 Stability and bifurcation properties of the first and
second iterations of the original Hénon map

The first iteration of the generalized Hénon map introduced in the previous
section for k = 1 is considered as the original Hénon map given by:

xn+1 = 1 + yn − ax2n
yn+1 = bxn. (2)

The equilibrium points of this system are

(x1, y1) = (
b− 1− β

2a
,
b(b− 1− β)

2a
)

(x2, y2) = (
b− 1 + β

2a
,
b(b− 1 + β)

2a
) (3)

and the eigenvalues at these equilibrium points are

λ1,2 = {1

2
(1− b+ β ∓

√
4β + (1 + b− β)2} (4)

and

λ3,4 = {1

2
(1− b− β ∓

√
−4β + (1 + b+ β)2}. (5)

where β =
√

4a+ (b− 1)2.
The original Hénon map can be considered as a quadratic map in one di-

mension if yn+1 is updated first, i.e.:

xn+1 = bxn + 1− ax2n. (6)
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This is an implied delay of one step. A quadratic map can be reduced to the
functional form of the logistic map by a linear transformation x = cy + d for
appropriate values of the parameters.[11–13]

The Hénon map has two equilibrium points

x1,2 =
b− 1±

√
(1− b)2 + 4a

2a
, (7)

Hence these equilibrium points are real if√
(1− b)2 + 4a > 0. (8)

It can also be shown that one of these equilibrium points is stable for the
positive sign before the radical, the other one is always unstable.

The parameter values known to exhibit chaotic behavior are a = 1.4 and
b = 0.3 and the two equilibrium points of the system for these parameter
values are (−1.13135,−0.339406) and (0.631354, 0.189406). The eigenvalues at
the first equilibrium point are {2.25982,−1.09203} and the eigenvalues at the
second equilibrium point are {−2.92374,−0.844054}. Hence the first one is a
saddle point and the second one is clearly a stable equilibrium point.

Theorem 1. A quadratic map where the coefficient of the quadratic term is
negative can always be reduced to the functional form of the logistic map yn+1 =
λyn(1 − yn) by a linear transformation of the form x = cy + d, c 6= 0. It
should be noted that the linear transformation does not respect the unit interval
condition of the logistic map, however the Hénon map itself does not stay in
0 < x < 1, 0 < y < 1.

Proof. After substitution of the linear transformation x = cy+d in the system
the constant term should vanish. We have:

y2n(ac2) + yn(2acd− bc) + ad2 − bd+ cyn+1 + d− 1 = 0. (9)

The condition for vanishing constant term coincides with the condition that
gives the equilibrium points, namely:

d1,2 =
b− 1±

√
(1− b)2 + 4a

2a
. (10)

Hence yn+1 = λyn(1−yn) is obtained where λ = ±
√

(1− b)2 + 4a+1 for both
solutions of d.

This theorem is important since it shows that a quadratic map can be converted
to the logistic map provided that the logistic map variable remains in the unit
interval. Furthermore a quadratic map can also be converted to a tent map
where the codimension is incremented by one since the logistic map is reduced
to tent map for λ = 4.

An iterated map and differential equation can be converted to one another
by using a specific discretization. However the differential equation obtained by
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any discretization is invertible by the implicit function theorem while the cor-
responding map is usually non-invertible. This of course implies codimension
is decreased by one upon conversion to map[14,15].

The formula for xn+1 with yn = bxn substituted in the same way as the
step leading to xn+1 = 1 + bxn − ax2n of the first iteration can be factorized as
follows

xn − f2(xn) = (xn − f(xn))(a2x2n − abxn − axn − a+ 1) (11)

as expected where f2(xn) = f(f(xn)). Theorem 1 then guarantees that both
factors can be transformed into either the logistic map or its version with the
reversed sign xn+1 = λ(x2n − xn).

In the numerical analysis literature, one of the possible variations for suc-
cessive iteration is the commonly known Jacobi iteration, and the second one
is the Gauss-Seidel iteration. The difference lies in the fact that whether all
variables are updated at the end of an iteration or the newer values for a
variable are immediately used in later equations of the same iteration. The
two-dimensional map

xn+1 = f(xn, yn)

yn+1 = g(xn, yn) (12)

is an instance of the Jacobi variant. The Gauss-Seidel variant uses yn+1 =
g(xn+1, yn+1) for the second term.

According to the Jacobi variant the second iteration of the original Hénon
map is given by:

xn+1 = −a3x4n + 2a2x2nyn + 2a2x2n − ay2n − 2ayn − a+ bxn + 1

yn+1 = b(−ax2n + yn + 1). (13)

The system has four equilibrium points two of which are inherited from the
original Hénon map and the other equilibrium points are

(−(
b− 1

2a
)±

√
(
1

a
− 3(

b− 1

2a
)2), −b(b− 1

2a
±
√

(
1

a
− 3(

b− 1

2a
)2))). (14)

The eigenvalues that are inherited from the original Hénon map are

{±β(b− 1)±
√

2α+ 2a+ b2 − b+ 1}, (15)

and the eigenvalues of the third and fourth equilibrium points are

{±2
√
a2 − 2ab2 + 3ab− 2a+ b4 − 3b3 + 4b2 − 3b+ 1− 2a+ 2b2 − 3b+ 2}

where β =
√

4a+ (b− 1)2 and

α = ((2ab−2a+b3−2b2+2b−1)β+2a2+4ab2−6ab+4a+b4−3b3+4b2−3b+1).

We proceed by giving the detailed stability results for the original Hénon
map. We recall that the original Hénon map has two real equilibrium points

for a > − (b−1)2
4 [3,4].



Chaotic Modeling and Simulation (CMSIM) 4: 529–538, 2013 533

Lemma 1. For a = − (b−1)2
4 and β = 0 the original Hénon map has a unique

equilibrium point at ( −2b−1 ,
−2b
b−1 ) with the eigenvalues {1,−b} indicating saddle

node bifurcation[3,4].

Proof. By substituting a = − (b−1)2
4 and β = 0 in Equation 3 the two equilib-

rium points are found to overlap each other at ( −2b−1 ,
−2b
b−1 ). The Jacobian of

the system at the equilibrium point is(
1− b 1
b 0

)
and hence the eigenvalues are {1,−b}.

We consider the saddle node bifurcation with a numerical example. For
b = 0.3 and a = −0.1225 the equilibrium point of the system is (2.8571, 0.8571)
indicating a saddle node bifurcation with a stable and an unstable branch shown
in Figure 1. The range for a along the stable branch is between −0.1225 ≤ a ≤
0.3675.

Fig. 1. Bifurcation diagram of the original Hénon map for −0.15 ≤ a ≤ 0.4 and
b = 0.3.

For the special case that a = 3(b−1)2
4 period doubling bifurcation is ob-

served for the original Hénon map. At this period doubling point the orig-
inal Hénon map and the second iteration of the original Hénon map have
completely overlapped equilibrium points at ( 2

b−1 ,
2b
b−1 ). The eigenvalues

for the original Hénon map are {−1, b} and {±
√
9b2−14b+9−3(b−1)

2 } and the
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eigenvalues for the second iteration of the original Hénon map are {1, b2} and

{±3
√
9b2−14b+9|b−1|+9b2−16b+9

2 }.

Lemma 2. The first and second iterations of the original Hénon map show
Hopf bifurcation for a = −0.982051 and a = 2.48205 while b = −1.

Proof. For b = −1 and a = −0.982051 the equilibrium points of the original
Hénon map are (1.1546,−1.1546) and (0.88185,−0.88185) and the eigenvalues

are {1.6686, 0.5992} and {
√
3
2 ±

i
2}. The equilibrium points of the second iter-

ation of the original Hénon map are the same of those of the original Hénon

map and the eigenvalues are {0.35913, 2.7844} and { 12 ±
i
√
3

2 }.
For b = −1 and a = 2.48205 the equilibrium points of the original Hénon

map are (0.3489,−0.3489) and (−1.1547,−1.1547) and the eigenvalues are

{0.18011, 5.5519} and {−
√
3

2 ± i
2}. The equilibrium points of the second it-

eration of the original Hénon map are the same of those of the original Hénon

map and the eigenvalues are {0.03244, 30.8239} and { 12 ±
i
√
3

2 }.

Fig. 2. Bifurcation diagram of the original Hénon map for 0.2 ≤ a ≤ 1.2 and b = 0.3.

The first iteration of the original Hénon map exhibits a period doubling bifur-
cation and transition to chaos about a = 0.2 as shown in Figure 2 demon-
strating an example of stable branch.Further stability analysis for the pa-
rameter value a = 0.2 gives the two equilibrium points (1.08945, 0.326836)
and (−4.58945,−1.376836) and the eigenvalues {0.371580,−0.80736213} and
{1.986779,−0.1509981} respectively. The first equilibrium point is a stable sink
and the second equilibrium point is a saddle point. For the same parameter val-
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Fig. 3. Bifurcation diagram of the second iteration of the original Hénon map for
0.2 ≤ a ≤ 1.2 and b = 0.3 for both x and y.

ues the second iteration of the original Hénon map has four equilibrium points,
two of them are complex conjugates, i.e. (1.75±2.046338i, 0.525∓0.6139i) and
the others are inherited from the original Hénon map respectively. The eigen-
values of the complex conjugate equilibrium points are {1.7072, 0.05271}, the
eigenvalues of the third equilibrium point are {0.138072, 0.6518336} and the
eigenvalues of the fourth equilibrium point are {0.0228, 3.9472}. The complex
conjugate equilibrium points are saddles, the third equilibrium point is a stable
sink and the fourth equilibrium point is a saddle as expected and the bifurca-
tion diagram is shown in Figure 3. When a approaches 0.3675, a period-2 orbit
is observed. The equilibrium points at a = 0.3675 are (0.95238, 0.285714) and
(−2.857142,−0.857142) and the eigenvalues corresponding to these equilibrium
points are {0.3, -1} and {2.234271, -0.134271}. Hence the first equilibrium
point gives the beginning of the period doubling bifurcation and the second
equilibrium point is a saddle point[16].

In the second iteration period doubling bifurcation occurs when the equi-
librium points of the first iterate f(xn) lose their stability but the second it-
eration f2(xn) develops a pair of new stable equilibrium points xn± such that
f2(xn±) = xn± while f forms a period-2 attractor f(xn±) = xn∓. The sec-
ond iteration can not move xn± to xn∓ hence one of the branches for f(xn)
becomes invisible for f2(xn). Furthermore the special form of the Hénon map
where yn is calculated as the iterated value of xn causes xn and yn to switch
branches for f2. This fact applies for 0.3625 ≤ a ≤ 0.9125. At a = 0.9125 a
period-4 attractor occurs as shown in Figure 3.
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For a = 1 the equilibrium points are (0.70948, 0.21284) and (-1.40948, -
0.42284) and the eigenvalues are {0.186824, -1.60578} and {2.921643, -0.102681}
respectively. Both of the equilibrium points are saddle points. The bifurcation

Fig. 4. Bifurcation diagram of the first and second iterations of the original Hénon
map for −0.5 ≤ b ≤ 0.42 and a = 1.2 for x.

diagram of the first and second iterations of the original Hénon map for −0.5 ≤
b ≤ 0.419 and a = 1.2 is given in Figures 4 and 5. For a = 1.2 and b = −0.1 the
equilibrium points are (0.563137,−0.0563137) and (−1.4798, 0.14798) and the
eigenvalues are {−0.0785562,−1.2729739} and {0.0283838, 3.523146} respec-
tively. Both of the equilibrium points are saddles. About the first equilibrium
point period-2 orbit is observed. Considering the second iteration of the original
Hénon map with same conditions there are four equilibrium points of which two
are the same as the first iteration. The eigenvalues are {1.620462, 0.0061710}
and {12.41256, 0.000805}. Again both equilibrium points are saddle points.
The system hides its periodic behavior that is observed for the first iteration
and the increase in the iteration of the system makes the system a more chaotic
and complex one instead of a multiperiodic one.

3 Conclusion

In this paper we investigated the bifurcation analysis and stability structure
of the generalized Hénon map and its higher iterations[17,18]. The second
iteration of the generalized Hénon map is of interest since period doubling bi-
furcation is a prominent mechanism as revealed by the bifurcation map. The
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Fig. 5. Bifurcation diagram of the first and second iterations of the original Hénon
map for −0.5 ≤ b ≤ 0.42 and a = 1.2 for y.

second iteration can either be done on the original Hénon map or on the de-
layed version as proposed by Skiadas[2]. The two options correspond to the
Jacobi and Gauss-Seidel iterations in numerical analysis where all variables are
either updated following a complete iteration or each updated value is used
for the subsequent equations in the same iterations. As we proceed to higher
iterations, the position of the bifurcations remain essentially unchanged, the
nature of the bifurcations change to include virtually all kinds of bifurcations.
The generalization of the yn updating formula to the form x2n does not qualita-
tively change the nature. The bifurcation scenario is not sensitive to k. When
we increase the value of k, we notice that the bifurcation diagrams do not
change their general properties. The stability analysis related to these results
are also investigated. Generally magnitude of one eigenvalue is less than 1
and the other is greater than 1. Therefore we have a saddle for these kinds of
equilibrium points. On the other hand, we have stable sinks for other type of
eigenvalues. As we look generally, we do not observe any bifurcation out of the
range 0.2 ≤ a ≤ 1.875 so that we can obtain similar results according to the
Gauss-Seidel iteration.
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