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Abstract: Using the classical tools of nonlinear dynamics, we study the process of self-

organization and the appearance of the chaos in the metabolic process in a cell with the 

help of a mathematical model of the transformation of steroids by a cell Arthrobacter 

globiformis. We constructed the phase-parametric diagrams obtained under a variation of 

the dissipation of the kinetic membrane potential. The oscillatory modes obtained are 

classified as regular and strange attractors. We calculated the bifurcations, by which the 

self-organization and the chaos occur in the system, and the transitions “chaos-order”, 

“order-chaos”, “order-order,” and “chaos-chaos” arise. Feigenbaum’s scenarios and the 

intermittences are found. For some selected modes, the projections of the phase portraits 

of attractors, Poincaré sections, and Poincaré maps are constructed. The total spectra of 

Lyapunov indices for the modes under study are calculated. The structural stability of the 

attractors is demonstrated. A general scenario of the formation of regular and strange 

attractors in the given metabolic process in a cell is found. The physical nature of their 

appearance in the metabolic process is studied. 

Keywords: Mathematical model, Metabolic process, Self-organization, Phase portrait, 

Deterministic chaos, Regular attractor, Strange attractor, Bifurcation, Poincaré section, 

Poincaré map, Lyapunov indices. 

 

1. Introduction 
In the present work, we continue the study of the mathematical model of the 

metabolic process in a cell Arthrobacter globiformis. It is based on the process 

of transformation of steroids in a bioreactor, which is well investigated in 

experiments [1]. The constructed mathematical model allows us to determine 

the internal and external parameters, with which the model describes the 

stationary modes of a bioreactor. The studies within the model showed that 

autooscillations must appear in the biochemical reaction under certain 

conditions [2-17]. These autooscillations predicted as early as in 1985 [2] were 

found experimentally in [18, 19]. 
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Analogous autooscillations are observed in the processes of photosynthesis, 

glycolysis, variations of the calcium concentration in a cell, oscillations in heart 

muscle, and other biochemical systems [20-24]. 

The study of such autooscillations will allow one to investigate the internal 

dynamics of metabolic processes in cells, to find the structural-functional 

connections in a cell, by which its vital activity runs, and to clarify the evolution 

of the formation of these connections. The application of the mathematical 

apparatus of nonlinear dynamics to the study of metabolic processes will allow 

one to develop the general methods of synergetics considering the physical laws 

of self-organization in the Nature. 

 

2. The Mathematical Model 
The mathematical model of the metabolic process running in a cell Arthrobacter 

globiformis at the transformation of steroids is constructed according to the 

general scheme of this process presented in Fig. 1. The model is based on the 

results of experimental studies of the process under flowing-through conditions 

with a fermenter in porious granules with immobilized cells Arthrobacter 

globiformis [3, 4]. 

 
 

Fig. 1. General scheme of the metabolic process in a cell Arthrobacter 

globiformis. 

 

The variation of the concentration of hydrocortisone ( G ) is described by the 

equation 
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=                           (1) 

 

Under the action of the diffusion and the flow into pores of a macroporous 

granule to cells, hydrocortisone comes to the region of localization of the 
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enzyme 3-ketosteroid- ∆ -dehydrogenase ( 1E ) (term 
ψγ 23

0

++GN

G
) and is 

transformed by this enzyme into prednisolone (term )()( 11 GVEVl ). A part of 

hydrocortisone is taken out from the biosystem by the flow (term G3α ). 

Here and below, the function )( XV  characterizes the adsorption of the enzyme 

in the region of local binding into active complexes; ).1/()( XXXV +=  

The variation of the concentration of prednisolone ( P ): 

 

.)()()()()( 42211 PPVNVEVlGVEVl
dt

dP
α−−=                    (2) 

 

Prednisolone formed in the process (term )()( 11 GVEVl ) is transformed by the 

enzyme β20 -oxysteroid-dehydrogenase ( 2E ) to its β20 -oxyderivative (term 

)()()( 22 PVNVEVl ). Under the action of a flow (term P4α ), a part of 

prednisolone goes out into the external solution. 

The variation of the concentration of β20 -oxyderivative of prednisolone ( B ): 

 

.)()()()()( 5122 BBVVkPVNVEVl
dt

dB
αψ −−=                       (3) 

 

The increase of the concentration of B  occurs as a result of the transformation 

of prednisolone (term )()()( 22 PVNVEVl ). Its decrease is due to the use of 

β20 -oxyderivative by cells in one of the possible modifications of the Krebs 

cycle (term )()(1 BVVk ψ ), which increases the level of HNAD ⋅ . Under the 

action of a flow (term B5α ), B  is washed out into the external solution. 

The variation of the concentration of the oxidized form of 3-ketosteroid- ∆ -

dehydrogenase ( 1E ): 
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The biosynthesis of the enzyme is described by the term 

)1(
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+β
, which is defined by the activation by the 

substrate G  and the inhibition by the reaction products P  and N . The 

decrease of the concentration of this form of the enzyme in the process of 

transformation of hydrocortisone is given by the term )()( 11 GVEVl , and its 

increase in the process of reduction of the respiratory chain corresponds to the 
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term )()( 14 QVeVl . The inactivation of the enzyme due to the proteolysis is 

described by the term 11Eα . 

The variation of the concentration of the reduced form of 3-ketosteroid- ∆ -

dehydrogenase ( 1e ): 

 

.)()()()( 111114
1 eGVEVlQVeVl

dt

de
α−+−=                       (5) 

 

Its level decreases in the process of reduction of the respiratory chain (term 

)()( 14 QVeVl− ) and due to the inactivation (term 11eα ) and increases at the 

transformation of hydrocortisone (term )()( 11 GVEVl ). 

The variation of the level of the oxidized form of the respiratory chain ( Q ) 

 

),()()()()()()2(6 7116
)1(

2 NVQVlQVeVlVOVQlV
dt

dQ
−−−= ψ        (6) 

 

where )1/(1)( 2)1( ψψ +=V . We accept that the concentration of menaquinone 

200 =+ qQ , where q  is the reduced form of the respiratory chain. 

The respiratory chain is oxidized by oxygen (term )()()2(6 )1(
2 ψVOVQlV − ) 

and is reduced with the help of 1e  (term )()( 16 QVeVl− ) and due to the high 

level of HNAD ⋅  (term )()(7 NVQVl− ). 

The variation of the concentration of oxygen ( 2O ): 
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Under the action of a flow (terms 
25

20

ON

O

+
 and 27Oα ), the level of aeration of 

a cell is changed. The concentration of oxygen decreases at the oxidation of the 

respiratory chain (term )()()2(
)1(

2 ψVOVQlV −− ). 

The variation of the concentration of β20 -oxysteroid-dehydrogenase ( 2E ): 
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The increase of the level of the given enzyme occurs due to the biosynthesis: 

)1(
2

2
2
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. Prednisolone and HNAD ⋅  are activators of 

this process, and β20 -oxyderivative is an inhibitor. The decrease of the level of 

the given enzyme occurs as a result of the inactivation ( 22Eα− ) and the process 

of transformation of prednisolone ( )()()( 210 PVNVEVl− ). 
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The level of the co-enzyme N  decreases in the process of transformation 

BP ⇒ , in the process of reduction of the respiratory chain ( )()(7 NVQVl− ), 

and due to a flow ( N6α− ). It increases at the use of B  by cells in the Krebs 

cycle as a substrate (
ψ

ψ

+10
2 )(

K
BVk ) and in the presence of endogenous 

substrates (
NN

N

+4

0 ) in the environment. 

The variation of the level of kinetic membrane potential (ψ ): 

 

αψ
ψ

−+= )()()()( 815 QVNVlGVEVl
dt

d
.                    (10) 

 

The kinetic membrane potential arises at the transformation of hydrocortisone 

( )()( 15 GVEVl ) and the reduction of the respiratory chain ( )()(8 QVNVl ) at a 

high level of HNAD ⋅  and decreases due to other metabolic processes ( αψ− ). 

The variation of the level of ψ  changes its regulatory role (1), (3), (6), (7), (9). 

If the potential is high, the respiratory chain is blocked and held in the reduced 

state. 

The main parameters of the system, with which we fit the relevant experimental 

data, are as follows: ;2.011 === kll  ;27.0102 == ll  6.05 =l ; ;5.0ll 64 ==  

;2.17 =l  ;4.28 =l  ;5.12 =k  ;310 =E  ;21 =β  ;03.01 =N  ;5.2=m  033.0=α ; 

;007.01 =a  0068.01 =α ; ;2.120 =E  ;01.0=β  ;12 =β  ;03.02 =N  ;02.02 =α  

;019.00 =G  ;23 =N  ;2.02 =γ  ;014.05 =α  ;001.07643 ==== αααα  

;015.020 =O  ;1.05 =N  003.00 =N ; ;14 =N  7.010 =K . 

The study of solutions of the given mathematical model was carried out with the 

help of the theory of nonlinear differential equations [25-27]. 
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In the numerical solution of this autonomous system of nonlinear differential 

equations, we used the Runge--Kutta--Merson method. The accuracy of 

calculations was set to be 810− . To attain the reliability of a solution, when the 

system passes from the initial transient phase onto the asymptotic solution with 

an attractor, the duration of calculations was taken to be 610 . For this time 

interval, the trajectory “sticks” onto the appropriate attractor. 

The various types of autooscillatory modes are studied with the help of the 

construction of exact phase-parametric diagrams. We found the scenarios of 

appearance of bifurcations at the transition of the dynamical process from one 

type of an attractor to another one. For the most characteristic modes, we 

calculated the total spectra of Lyapunov indices (Table 1). 

To construct a phase-parametric diagram, we used the method of section. In the 

phase space of trajectories of the system, we place a cutting plane with P = 0.2. 

Such choice is explained by the symmetry of oscillations relative to this point of 

this variable in multiple modes. If the trajectory P(t) crosses this plane in a 

certain direction, we mark the value of chosen variable (e.g., G) on the phase-

parametric diagram. In such way, we have the point corresponding to the section 

of a trajectory by the two-dimensional plane. If the multiple periodic limiting 

cycle appears, we obtain a number of points, which will be coincide in a period. 

If a deterministic chaos arises, the points of intersection of trajectories by the 

plane will be placed chaotically. 

In order to uniquely identify the form of an attractor for the chosen points, we 

calculated the total spectrum of Lyapunov indices and determined their sum 

∑=Λ
10

j

jλ  (see Table 1). The calculation was carried out by Benettin’s 

algorithm with orthogonalization of the vectors of perturbation by the Gram--

Schmidt method [26, 28, 29]. 

 

3. Results of Studies 
We now consider the dynamics of modes within the mathematical model (1)-

(10) under a variation of the dissipation of a kinetic membrane potential α  (10) 

[16, 17]. We found the autooscillatory and chaotic modes with various 

multiplicities. The projections of their phase portraits have a characteristic form 

shown in Fig. 2,a,b. 
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Fig. 2. Projections of the phase portraits of regular attractors: a – autoperiodic 

cycle 0214 ⋅  for 0.033=α ; b – quasiperiodic cycle 0231⋅≈  for  

0.0321375=α . 

 

Let us consider a part of the bifurcation diagram not studied earlier. In Fig. 3, 

we show the bifurcation diagram for 0.32166) (0.032159,∈α . 

 

 
Fig. 3. Bifurcation diagram of the system for 0.32166) (0.032159,∈α . 

 

For )0.03215960 ,(0.0321590∈α , the regular attractor of the 14-fold period 

0214 ⋅  is kept in the system. For 0.03215961=α  , we observe the appearance 

of the period doubling bifurcation with the generation of the regular attractor 
1214 ⋅  (Table 1). Then for 0.03215962=α , there arises the bifurcation of the 

generation of a two-dimensional torus (the Neimark bifurcation). The 

configuration of kinetic curves is instantly changed, and the quasiperiodic 
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attractor with n-fold period is established on the toroidal surface 02⋅≈ n (t) 

(Figs. 4,a and 5,a). 

 

 

a - regular attractor of the quasiperiodic cycle ≈ n*
02  on the toroidal surface 

for 0.03215962=α . 

 

b - regular attractor 0236 ⋅  for 0.032162=α . 

Fig. 4. Kinetic curve of the variable )t(e1 . 
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Fig. 5. Projections of phase portraits: a – regular attractor of the quasiperiodic 

cycle 02⋅≈ n  on the toroidal surface for 0.03215962=α ; b – strange attractor 
x27 ⋅  for 0.032164=α . 

 

As α  increases, the given attractor loses the stability, by passing periodically to 

the 14-fold limiting cycle ( 0.032160=α ), which corresponds to the gaps in 

Fig. 3,a. In addition, other various multiple modes arise. For example, for α = 

0.032161, 0.0321615, and 0.032162, the regular attractors 0229 ⋅ , 027 ⋅ , and 
0236⋅  appear, respectively (Fig. 4,b). As α  increases, we see the appearance of 

bifurcations of the limiting cycle. Moreover, the instant structural rearrangement 

of the type “order-order” occurs; i.e., as a result of the self-organization, the 

regular attractor of some form is replaced instantly by a regular attractor of 

some other form. In this case, the trajectories leave the region of attraction of 

the attractor and are drawn in the region of attraction of another regular 

attractor. 

The interesting scenario of the metabolic process is observed in the interval 

0.032164) ,(0.0321626∈α . In Fig. 6, we present a magnified part of the 

bifurcation diagram in Fig. 3. 

 

 
Fig. 6. Phase-parametric diagram of the system for 0.32164) ,(0.0321626∈α , 

where Feigenbaum’s scenario is observed. 

 

At the beginning of the interval at α = 0.0321626, the regular attractor 027 ⋅  is 

formed on the toroidal surface. For 0.03216276=jα , the bifurcation yields the 

doubling of the period, and the regular attractor 127 ⋅  arises on the toroidal 

surface. For 0.032163461 =+jα  and 0.032163612 =+jα , we see the attractors 
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227 ⋅  and 427 ⋅ , respectively. This sequence of bifurcations satisfies the 

relation 

4.667lim
12

1
≈

−

−

++

+

∞→
jj

jj

t αα

αα
. 

 

This number is very close to Feigenbaum’s universal constant δ = 

4.669211660910… characterizing the infinite cascade of bifurcations at the 

transition to a deterministic chaos. Thus, as the coefficient of dissipation α  

increases in this region, the period of a complicated regular attractor on the torus 

is doubled by Feigenbaum’s scenario [37-40]. 

The further increase in α  causes a deviation from the given scenario and the 

formation of the strange attractor x27 ⋅  ( 0.032164=α , Fig. 5,b) as a result of 

the intermittency. But then, for 0.032174=α , the strange attractor x214 ⋅  

appears (Fig. 7,b). In the interval 0.032174) (0.032164,∈α  as a result of the 

intermittency of these chaotic cycles, we observe the transition between them: 
x2)147( ⋅↔ . In Fig. 7,a for 0.032165=α , we show a projection of the phase 

portrait of a mutual transition of the given strange attractors. Figure 8 presents 

the kinetic curve for the variable )(1 te  for tis mode. We observe the transition 

“chaos-chaos”: x2)147( ⋅↔ . Moreover, the strange attractor x27 ⋅  on the left 

and the strange attractor x214 ⋅  on the right move toward each other. Since 

there are no other attractors of the system in this region, the trajectory is 

chaotically kept in the region of attraction of the strange attractor x214 ⋅  or the 

strange attractor x27 ⋅  Under the effect of bifurcations, the trajectory is 

aperiodically drawn in one of the regions of the given strange attractors after the 

transient process. According to the values of higher Lyapunov indices (Table 1), 

the formed limiting set is unstable by Lyapunov. 

 

 
Fig. 7. Projections of the phase portraits: a – strange attractor of the mutual 

transition x2)147( ⋅↔  for 0.032165=α ; b – strange attractor x214 ⋅  for 

0.032174=α . 

 



Chaotic Modeling and Simulation (CMSIM)  4:  539-552, 2013 549 

 

 
Fig. 8. Kinetic curve of the variable )(1 te  of the mutual transition of the strange 

attractors x2)147( ⋅↔  for 0.032165=α . 

 

For the given strange attractor, we constructed a projection of the section by the 

plane P = 0.2 and the Poincaré map in Fig. 9,a,b. The choice of a cutting surface 

was made to attain the maximum number of intersections of the given 

component and the phase trajectory P(t), as the former decreases, without 

contacts. 

 

 
Fig. 9. Projection of the section by the plane P = 0.2 (a) and Poincaré map (b) of 

the strange attractor formed during the mutual transition x2)147( ⋅↔  for 

0.032165=α . 

 

The obtained points of intersections and the Poincaré maps are grouped along 

several curves that form a geometric self-similarity. On the projection, we see 

clearly the fractality of this strange attractor. In addition, these curves do not 

create a quasistrip structure. Their number increases permanently with the 

duration of numerical integration of the system. This testifies to the 

impossibility of any reduction of the given complicated mathematical model to 

some one-dimensional discrete approximation without loss of the information 

about the dynamics of the metabolic process in a cell. We note that the general 
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scheme (Fig. 2) includes only the main parts of the metabolic process running in 

any cell with substrate-enzyme reactions and in the respiratory chain. Therefore, 

the model gives a rather general qualitative representation of the dynamics of 

the internal self-organization of the metabolic process in a cell. 

 

Table 1. Total spectra of Lyapunov indices for attractors of the system under 

study ( 4λ - 10λ  are not important for our investigation). 

α  Attractor 
1λ  2λ  3λ  Λ  

0.0321590 0214 ⋅  .000056 -.000214 -.003250 -.898509 

0.0321596 0214 ⋅  .000040 -.000142 -.003306 -.898550 

0.03215961 1214 ⋅  .000078 -.000150 -.003394 -.899865 

0.03215962 )(20 tn ⋅≈  .000063 .000026 -.000274 -.905553 

0.032160 0214 ⋅  .000040 -.000146 -.003365 -.899368 

0.032161 0229 ⋅  .000051 -.000142 -.000123 -.905352 

0.0321615 027 ⋅  .000062 -.000596 -.000576 -.902277 

0.032162 0236 ⋅  .000064 -.000171 -.000155 -.905320 

0.0321626 )(27 0 t⋅  .000063 -.000097 -.001180 -.902078 

0.03216276 )(27 1 t⋅  .000062 -.000005 -.001267 -.902189 

0.03216346 )(27 2 t⋅  .000047 .000025 -.001252 -.902056 

0.03216361 )(27 3 t⋅  .000048 -.000023 -.001265 -.902267 

0.032164 x27 ⋅  .000367 .000018 -.001641 -.902164 

0.032165 x2)147( ⋅↔  .000363 -.000004 -.001598 -.904005 

0.032174 x214 ⋅  .000693 .000020 -.003534 -.901422 

 

4. Conclusions 
We have constructed a mathematical model of the metabolic process in a cell 

Arthrobacter globiformis at the transformation of steroids. With the help of the 

given model, we have found the autooscillations in agreement with experiment, 

which show the complicated internal dynamics in a cell. The model is optimized 

by the number of variables of the system required for a qualitative description of 

the metabolic process under study. The given model involves the general 

regularities characteristic of any cell consuming a substrate, on the whole. The 

autooscillations arise on the level of the substrate-enzyme interaction with 

participation of the redox process in the respiratory chain and characterize the 

times of such interactions. At the synchronization of the given processes, the 

autooscillations characterizing the self-organization of the metabolic process on 

the whole are observed. At the desynchronization of the given processes, we see 

the adaptation of the metabolic process in a cell to varying external conditions in 

the environment with conservation of its functionality. The scenario of the 
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transitions “order-chaos”, “chaos-order”, “order-order”, and “chaos-chaos” is 

studied with the help of Poincaré sections and maps. The total spectra of 

Lyapunov indices are calculated, and the structural stability of the obtained 

attractors is studied. Feigenbaum’s scenario and the Neimark bifurcation are 

found. The results will allow one to carry on the search for metabolic 

oscillations in a cell and to clarify the physical laws of self-organization. 
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