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Abstract. A new type of dissipative solitons is announced. The numerical simulations
based on the generalized nonlinear complex Ginzburg-Landau equation demonstrate
that this soliton (dissipative Raman soliton, DRS) develops in the normal dispersion
regime under effect of the stimulated Raman scattering (SRS). The SRS causes the
red-shift and re-shaping of a soliton spectrum as well as changes a soliton group
velocity. The main effects of SRS on a dissipative soliton are the chaotization of a
soliton dynamics, the automodulational fragmentation of a soliton envelope and the
enhancement of a tendency to multiple pulsing. As a result, a DRS becomes ”noisy”
and loses a property of energy scalability that troubles a high-energy pulse generation
from mode-locked ber lasers.
Keywords: dissipative solitons, stimulated Raman scattering, chaotic modeling,
generalized nonlinear complex Ginzburg-Landau equation.

1 Introduction

In the last decade, the concept of a dissipative soliton (DS), that is a strongly
localized and stable structure emergent in a nonlinear dissipative system far
from the thermodynamic equilibrium was actively developing and became well-
established. This concept is highly useful in very different fields of science
ranging from field theory and cosmology, optics and condensed-matter physics
to biology and medicine [1]. Non-equilibrium character of a system, where
the DSs emerge requires from them a well-organized energy exchange with an
environment. In an optical system, the resonant and nonlinear coupling with
such an environment causes a number of effects, in particular, the stimulated
Raman scattering (SRS). In the last case, a light (photons) propagating through
some medium (e.g., fiber) is scattered by oscillatory modes (phonons) of the
latter [2]. As was found, the SRS can affect the DSs dramatically [3].

In this work, the results of numerical analysis of the DS dynamics affected by
a strong SRS are presented. The testbed for such an analysis is the generalized
nonlinear complex Ginzburg-Landau equation (generalized NCGLE), which is a
common NCGLE (e.g., see [4]) supplemented with the SRS term in a general
form as well as with the term describing a white quantum noise. To the best of
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our knowledge, such a stochastic generalized NCGLE is considered for the first
time.

The analysis demonstrates that the DS stability changes drastically, when the
SRS becomes strong that is when the DS energy is large. The SRS destabilizes
a DS and causes chaotization of its dynamics. The most interesting result is
that a new type of DS develops in the presence of SRS. This DS can be named
“dissipative Raman soliton” (DRS) because it is i) frequency down-shifted and
ii) has a strongly inhomogeneous phase (i.e., “chirped”). The last property
indicates the strong coupling of a DRS with an environment (i.e., this soliton is
dissipative indeed). Also, it is found that the DRS dynamics is chaotic.

2 Generalized nonlinear complex Ginzburg-Landau
equation

Simplest and most studied models for nonequilibrium phenomena in nonlinear
systems are based on the different versions of NCGLE [1,5,6]. We will consider
the following generalized version of the cubic-quintic NCGLE:

∂a(z,t)
∂z = i

[
β
2
∂2

∂t2 − (1− fR) γ|a (z, t)|2
]
a (z, t) +

+
[
−σ + α ∂2

∂t2 + κ
(

1− ζ|a (z, t)|2
)
|a (z, t)|2

]
a (z, t)−

−ifRγa (z, t)
∞∫
−∞

dt′R (t′) |a (z, t− t′)|2 + χ (z, t) .

(1)

In particular, Eq. (1) can be interpreted in the following way. a(z, t)
is a slowly varying amplitude of light wave package, where z and t are a
longitudinal propagation distance and a “local time”, respectively. In a laser,
the propagation distance is simply resonator round-trip number in the framework
of the distributed model. The local time is associated with a group velocity
of wave package (e.g., see [7]). First row of Eq. (1) is a so-called nonlinear
Schrödinger equation and describes the nondissipative factors such as a group
velocity dispersion with the coefficient β and a self-phase modulation with
the coefficient γ. Second row generalizes the nonlinear Schrödinger equation
with taking into account the dissipative factors such as a saturable loss with
the coefficient σ, a spectral dissipation with the coefficient α and a nonlinear
gain with the coefficient κ. The nonlinear gain is saturable (the coefficient of
saturation is ζ). The saturable net-loss is supposed to be energy-dependent: σ =

ε

(
∞∫
−∞

dt′ |a (z, t′)|

/
Es − 1

)
, where ε = 0.05 and Es is a variable parameter

defining the energy inflow in a system. These two rows of Eq. (1) give the
cubic-quintic NCGLE, which is the basic model for analysis of an ultrashort
pulse generation in both solid-state and fiber lasers.

We invent two physically relevant sophistication of the common cubic-
quintic NCGLE (third row in Eq. (1)). 1) Since both amplification and
dissipation in a laser produce inevitably the quantum fluctuations, Eq. (1)
has to be stochastic that is provided by inclusion of the stochastic term
χ. This term describes a complex white noise with the correlation function
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〈χ (z′, t′)χ∗ (z, t)〉 = Γδ (z′ − z) δ (t′ − t) (the noise “power” is Γ = 10−10
/
γ in

our case). 2) At the high energy levels, the SRS becomes strong in fiber lasers
[3]. Its influence is taken into account by the first term in third row of Eq.
(1). We do not use the common approximation for this term in the form of the
Taylor series expansion (e.g., see [8]). That allows the adequate description of
an frequency conversion and energy flows for a DS affected by SRS.

In Eq. (1), the SRS is characterized by the response function [2]

R (t) =
T 2
1 + T 2

2

T1T 2
2

e−t/T2 sin

(
t

T1

)
, (2)

where T1 = 12.2 fs defines the Stokes frequency and T2 = 32 fs defines the width
of a Stokes line. The parameter fR = 0.22 is defined by the Raman gain. All
these numerical values correspond to a fused silica.

Eq. (1) was solved numerically by the symmetrized Fourier split-step method.
The integral in Eq. (1) was evaluated in the Fourier domain on the basis of the
convolution theorem. The size of temporal window and the propagation step
were varied, the local time step was equal to 1 fs.

3 Results and discussion

The Raman lines in a fiber form a broad joined line that corresponds to a
comparatively large T2. Since the DS developing in the normal dispersion
regime (β >0 in Eq. (1)) is stretched due to a large chirp, its width T � T2
and one may expect that the SRS will play a substantial role in the dynamics
of such solitons. The reason is that the group velocities of a Raman pulse and
an ordinary DS differ due to dispersion. As a result, a Raman pulse must have
an ample time for amplification during a time period, when it and a DS are
overlapping [9]. On the other hand, the Raman frequency shift in a fiber is
comparatively large (small T1). But the DS spectral width is large as well
(again due to a large chirp). Therefore one may expect an effective interpulse
Raman scattering [2] in this case.

The calculations demonstrate that the SRS begins to contribute nontrivially
into the DS dynamics and properties, when the DS energy E ≡

∫∞
−∞ |a (z, t′)|2dt′

exceeds some threshold value (≈20 nJ in an all-fiber laser [9]). In the model
under consideration, the DS energy is defined mainly by the parameter Es. As
was demonstrated in Ref. [10], the DS parametric space of the cubic-quintic
NCGLE is two-dimensional and the relevant coordinates of this space are: E′ ≡
Esκ

3/2
√
ζ
/
γ
√
α and C ≡ 2αγ/βκ. Below, this dimensionless representation of

the DS parametric space will be used.
For some fixed energy Es, the multiple DSs appear when the dispersion

β is relatively small (Fig. 1). These DSs redistribute an overall energy so
that the energy of individual soliton becomes relatively small. As a result, the
SRS does not affect their dynamics: there are no an extra group-delay and a
transformation of spectrum.

The dispersion growth suppresses multipulsing so that a sole DS develops.
Further growth of dispersion increases the difference of velocities between the
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Fig. 1. Evolution of multiple DSs for E′ =111 and C =0.732.

red and blue spectral components of a chirped pulse (remind that the DS phase
is inhomogeneous) that stretches a DS. If the energy is sufficiently large, such a
pulse becomes flat-top that corresponds to the energy scalable regime, when
the peak power is fixed (≈ 1/ζ). An energy scalable DS with the fixed peak
power can remain stable if the energy growth, provided by energy inflow from
an environment is compensated by the DS broadening [11].

For a comparatively small dispersions, i.e. in the vicinity of multipulsing
threshold, the SRS causes i) pulse acceleration (i.e., growth of the group velocity
in comparison with that of ordinary DS), ii) irregular perturbations at pulse
traveling edge (where the blue spectral components are located), iii) chaotical
evolution of the DS peak power, and iv) DS spectrum splitting (Fig. 2).
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Fig. 2. Left: DS profile |a(z = const, t)|2. Right: DS spectral power vs. frequency
deviation from the central frequency corresponding to zero spectral dissipation (see
second term of second row in Eq. (1)). E′ =111 and C =0.59. Physically, the
parameters correspond to an Yb-all-fiber laser with a 40 nm gain bandwidth.
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Further dispersion growth enhances the DS acceleration. The pulse becomes
noisy that is its envelope is strongly and irregularly perturbed and resembles a
glass of boiling water (Fig. 3, left). As a consequence, the peak power evolves
chaotically. Simultaneously, the regular (“solitonic”) part of the spectrum shifts
into red-domain while the blue spike becomes intensive and irregular (Fig. 3,
right).
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Fig. 3. Left: evolution of the DS profile |a(z, t)|2. Right: logarithm of the averaged
DS spectral power vs. frequency deviation. Averaging is performed over the interval
∆z =2000 with the step δz =10. E′ =111 and C =0.244.

Unlike the regime without SRS, larger dispersions cause the multipulsing
yet again (Fig. 4, left) so that the domain of single pulse generation becomes
confined along C−dimension. The chaotization of the peak power evolution
and the perturbations of the DS traveling edge increase in parallel with the
dispersion growth. The red part of the spectrum rises and shifts to lower
frequencies.
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Fig. 4. Contour plot of the DS power evolution with (left) and without (right) SRS.
Left: E′ =111, C =0.22 and F =0.22. Right: E′ =111, C =0.0366 and F =0.

Further increase of dispersion leads to a generation of DRS complexes. The
example of such complex is shown in Fig. 5. Again, the traveling DRS edge is
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perturbed that causes chaotic changes in the peak power evolution (Fig. 6, left).
The chaotic character of evolution can be identified by the continuum-like RF
spectrum of peak power set (Fig. 6, right). The spectrum splits in two separated
parts shifted in opposite sides relatively the central frequency. Both parts have
truncated edges (see inset in Fig. 5, right) that is the typical property of a
chirped DS. The main part of the spectrum is red-shifted and modulated due
to interference between DRSs.
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Fig. 5. Left: DS profile |a(z = const, t)|2. Right: averaged DS spectral power vs.
frequency deviation. Averaging is performed over the interval ∆z =1000 with the step
δz =10. Inset shows the spectrum on a logarithmic scale. E′ =111 and C =0.0366.
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Fig. 6. Left: Evolution of DRS peak power. Right: RF spectrum of the peak power
set over last interval ∆z =750. E′ =111 and C =0.0366.

Why do we name the entity in Fig. 5 as a “dissipative Raman soliton”?
First of all, one has to note that the spectrum in Fig. 5, right is a sum of almost
identical spectra of individual pulses in Fig. 5, left. That is each pulse has a
spectrum with both Stokes- and anti-Stokes “steep hills”. Such a spectrum is
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not possible in an ordinary dissipative system with only self-phase modulation,
second-order dispersion and spectral dissipation terms. Moreover, the main part
of energy is concentrated in the lower frequency domain. All these observations
suggest that the SRS contributes substantially into the pulse properties, both
temporal and spectral. At last, truncated shape of the spectrum (inset in Fig.
5, right) suggests that the pulse is strongly chirped, i.e. it has a substantially
inhomogeneous phase [10]. But the last fact testifies the nontrivial energy flows
inside a pulse as well as between a pulse and environment [4]. Also, one has
to add that there exists no DS without SRS for the parametrical set of Figs.
5, 6. The dynamics becomes completely chaotic without SRS in this case (Fig.
4, right). It is clear, that the SRS plays a crucial role in the DS stabilization
for the large dispersions due to some “negative passive feedback” provided by
spectral shift from the minimum of the frequency dissipation. Thus, one may
conclude that the SRS is a formative factor for the DS considered so that such
a soliton can be named a “dissipative Raman soliton”.

A passive negative feedback produced by the combined action of SRS and
spectral dissipation enhances the tendency to multipulsing. The energy of
individual DS in the multiple pulse complex is lower than that of single DS.
Therefore, the frequency shift due to SRS is lower, as well. As a result, the
spectral loss is lower too. Thus, the multipulsing becomes more advantageous en-
ergetically. This tendency to multipulsing in combination with the chaotization
of DS dynamics in the presence of SRS confine the DS energy scalability.

4 Conclusion

For the first time to our knowledge, a new type of dissipative solitons of the
generalized cubic-quintic nonlinear complex Ginzburg-Landau equation was
described and analyzed. Such solitons emerge under action of stimulated Raman
scattering in the presence of white quantum noise and can be named “dissipative
Raman solitons”. Changes in the DRS characteristics with the dispersion growth
were traced and a complicated structure of the region, where DRS exists, was
established. It was found that the dynamics of DRS is chaotic due to irregular
perturbation at the soliton traveling edge. A two-compound character of the
DRS spectrum was revealed so that the soliton spectrum consists of Stokes-
and anti-Stokes spices with truncated edges. The last fact suggests that the
DRS considered is strongly chirped. It was demonstrated that the DRS can
exist in the regions of large dispersion where an ordinary DS does not emerge.
Simultaneously, the SRS leads to an additional spectral loss in a system with
the spectral dissipation. This confines a DS energy scalability.
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