
Chaotic Modeling and Simulation (CMSIM) 4: 315–322, 2014

Extensions of the Verhulst Model, Order
Statistics and Products of Independent Uniform

Random Variables

Maria de Fátima Brilhante1, Maria Ivette Gomes2, and Dinis Pestana3

1 Universidade dos Açores, DM, and CEAUL — Centro de Estat́ıstica e Aplicações
da Universidade de Lisboa, Ponta Delgada, Portugal
(E-mail: fbrilhante@uac.pt )

2 Universidade de Lisboa, Faculdade de Ciências, DEIO, and CEAUL — Centro de
Estat́ıstica e Aplicações da Universidade de Lisboa; and Instituto de Investigação
Cient́ıfica Bento da Rocha Cabral, Lisboa, Portugal
(E-mail: ivette.gomes@fc.ul.pt)

3 Universidade de Lisboa, Faculdade de Ciências, DEIO, and CEAUL — Centro de
Estat́ıstica e Aplicações da Universidade de Lisboa; and Instituto de Investigação
Cient́ıfica Bento da Rocha Cabral, Lisboa, Portugal
(E-mail: dinis.pestana@fc.ul.pt)

Abstract. Several extensions of the Verhulst sustainable population growth model
exhibit different interesting characteristics more appropriate to deal with less con-
trolled population dynamics. As the logistic parabola x(1−x) arising in the Verhulst
differential equation is closely related to the Beta(2,2) probability density, and the
retroaction factor 1 − x is the linear truncation of MacLaurin series of − lnx (the
growth factor x is the linear truncation of − ln(1−x)), in previous papers the authors
introduced a more general four parameters family of probability density functions,
of which the classical Beta densities are special cases. Using differential equations
extending the original Verhulst, they have been able to identify combinations of pa-
rameters that lead to extreme value models, either for maxima or for minima, and
also remarked that the traditional logistic model is a (geometric) extreme value model
arising from geometric thinning of the original sequence. The observation that in the
support (0, 1) the logistic parabola x(1−x) is, up to a multiplicative factor, the prod-
uct of the densities of minimum and maximum of two standard independent uniform
random variables (and also the median of three independent standard uniforms), and
that on the other hand (− ln x)n−1 is, up to the multiplicative factor 1/Γ (n), the
density of the product of n independent uniforms, we reexamine the ties of products
and of order statistics of independent uniforms to dynamical properties of populations
arising in these extensions of the Verhulst model.
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1 Extensions of the Verhulst model

Extensions of the classical Verhulst differential equation for modeling popula-
tion dynamics

dN(t)

dt
= rN(t)(1−N(t)) , (1)

where N(t) denotes the size of the population at time t and r > 0 is the malthu-
sian reproduction rate, have recently been considered.

From the fact that the logistic parabola x(1−x) arising from equation (1) is,
in the support (0, 1), closely tied to the Beta(2,2) probability density function
(pdf), natural extensions of equation (1) using more general beta densities
have been investigated by Aleixo et al. [1] and Pestana et al. [5], namely by
considering the differential equation

dN(t)

dt
= r(N(t))p−1(1−N(t))q−1 . (2)

The normalized solution of equation (1) belongs to the family of logistic
functions, which are connected to extreme value models, more precisely to
max-geo-stable laws, and occurring in randomly stopped extremes schemes
with geometric subordinator. On the other hand, Aleixo et al. [1] showed that
the normalized solution of equation (2) also belongs to the class of max-geo-
stable laws if p = 2− α and q = 2 + α (the classical Verhulst model being the
special case α = 0).

By noticing that the retroaction factor 1− x in the logistic parabola is the
linear truncation of MacLaurin series of − lnx, and that the growth factor x
is the linear truncation of MacLaurin series of − ln(1− x), Brilhante et al. [2]
introduced a general four parameters family of densities, named the BeTaBoOp
family, which was used to further extend equation (2) in Brilhante et al. [2] and
[4].

Definition. A random variable X is said to have a BeTaBoOp(p, q, P,Q)
distribution, with p, q, P,Q > 0, if its pdf is

f(x) = kxp−1(1− x)q−1(− ln(1− x))P−1(− lnx)Q−1I(0,1)(x) , (3)

where k−1 =
∫ 1

0
tp−1(1−t)q−1(− ln(1−t))P−1(− ln t)Q−1dt (Hölder’s inequality

guarantees that k−1 <∞).

Observe that the Beta(p, q) density is the BeTaBoOp(p, q, 1, 1) density. On
the other hand, if in (3) q = P = 1, the Betinha(p,Q) density introduced by

Brilhante et al. [3] is obtained, where k = pQ

Γ (Q) and Γ (α) =
∫∞
0
tα−1e−tdt is

the gamma function.

1A random variable X is said to have a Beta(p, q) distribution, with p, q > 0, if its

pdf is f(x) = xp−1(1−x)q−1

B(p,q)
I(0,1)(x), where B(p, q) =

∫ 1

0
tp−1(1 − t)q−1dt is the Beta

function.
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Hence, for a general discussion of growth models, it seems interesting to
investigate the general differential equation

dN(t)

dt
= r(N(t))p−1(1−N(t))q−1(− ln(1−N(t)))P−1(− lnN(t))Q−1 , (4)

specially for the case when some of the parameters take the value 1.
Note that exact solutions exist for equation (4) for some special combina-

tions of the parameters. However, when solving the related difference equation

xt+1 = c (xt)
p−1(1− xt)q−1(− ln(1− xt))P−1(− lnxt)

Q−1

by the fixed point method, bifurcation and chaos behavior is observed (see
Brilhante et al. [2] and [4]).

2 Understanding population dynamics through order
statistics and products of powers of uniform random
variables

In section 1 we saw that the Verhulst differential equation and extensions are
linked to BeTaBoOp densities. Using the fact that these densities can be ex-
pressed as functions of densities of order statistics and/or products of inde-
pendent standard uniform random variables, we reexamine in this section the
dynamical properties of populations described by the Verhulst model and ex-
tensions.

Let U1, . . . , Un be independent and identically distributed (iid) standard

uniform random variables, and let U
(∗)

n denote their product, whose pdf is

f
U

(∗)
n

(u) =
(− lnu)n−1

Γ (n)
I(0,1)(u) .

More generally, since −δ lnUi = − lnUδi _ Exponential(δ), i = 1, . . . , n,
δ > 0, it follows that V = −

∑n
i=1 lnUδi = − ln

∏n
i=1 U

δ
i _ Gamma(n, δ).

Therefore, U δ
(∗)

n =
∏n
i=1 U

δ
i = exp(−V ) has pdf

f
Uδ

(∗)
n

(u) =
u1/δ−1(− lnu)n−1

δnΓ (n)
I(0,1)(u)

and distribution function

F
Uδ

(∗)
n

(u) =
Γ (n,− lnu

δ )

Γ (n)
= u1/δ

n−1∑
k=0

(− lnu)k

δkk!
, u ∈ (0, 1).

On the other hand, let Uk:n denote the k-th ascending order statistic, whose
pdf is

fUk:n(u) =
uk−1(1− u)n−k

B(k, n+ 1− k)
I(0,1)(u) ,
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i.e. Uk:n _ Beta(k, n + 1 − k). In particular, the pdf of the minimum U1:n is
fU1:n

(u) = n(1−u)n−1 I(0,1)(u) , and the pdf of the maximum Un:n is fUn:n
(u) =

nun−1 I(0,1)(u) .

For the special case n = 2, it is obvious that U1U2 = U1:2U2:2 � U1:2 � U2:2,
and a similar result holds true for all n ∈ IN, 2 ≤ n.

Thus, when p, q, P,Q ∈ IN, the pdf of the BeTaBoOp(p, q, P,Q) random
variable is, up to a multiplicative factor, the product of the densities of the
maximum Up:p of p independent standard uniforms, of the minimum U1:q of

q independent standard uniform random variables, of the product U
(∗)

Q of Q

independent standard uniform random variables, and of 1−U (∗)

P . Observe also
that in the long-standing established jargon of population dynamics, the xp−1

and (− ln(1− x))P−1 are growing factors, and (1− x)q−1 and (− lnx)Q−1 are
retroaction factors, curbing down population growth. In view of the above
remarks on the connection to ascending order statistics and products of inde-
pendent standard uniform random variables, we shall say that (− lnx)ν−1 is a
lighter retroaction factor than (1−x)ν−1, and that (− ln(1−x))µ−1 is a heavier
growth factor than xµ−1.

In this perspective, it is expectable that the normalized solution of the
differential equation linked to the Betinha(2,2) ≡ BeTaBoOp(2,1,1,2) density,
which can be obtained by replacing in (1) the retroaction factor 1 − N(t) by
the lighter one − lnN(t), will correspond to less sustainable growth.

In fact, the solution of that differential equation is the Gompertz function,
that up to a multiplicative factor is the extreme value Gumbel distribution.
Observe that while the logistic distribution, which is a stable limit law for
suitably linearly modified maxima of geometrically thinned sequences of iid
random variables in its domain of attraction, is known to be appropriate to
model sustainable growth, the Gumbel distribution arises as stable limit law
of suitably normalized maxima of all the random variables in its domain of
attraction, and therefore stochastically dominates the logistic solution, and is
a suitable model for uncontrolled growth, such as the one observed for cells of
cancer tumours.

More generally, Brilhante et al. [2] have shown that the normalized solution
of the differential equation tied to the more general BeTaBoOp(2, 1, 1, 2 + α)
density, i.e.

dN(t)

dt
= rN(t)(− lnN(t))1+α , (5)

belongs to the class of extreme value laws for maxima, more precisely Gumbel
if α = 0, Fréchet if α > 0 and Weibull for maxima if α < 0. Therefore, equa-
tion (5) reveals to be more appropriate then (1) to deal with less controlled
population dynamics.

2 Note that Rachev and Resnick [6] established a connection between extreme stable
laws and geometrically thinned extreme value laws, which implies, in particular, that
when they have the same index — 0 in case of the Gumbel and of the logistic stable
limits — they share the same domain of attraction.
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On the other hand, if the growth factor N(t) in (1) is replaced by (− ln(1−
N(t)))1+α, we get a differential equation linked to the BeTaBoOp(1, 2, 2 +
α, 1) density, whose normalized solution now belongs to the class of extreme
value laws for minima. From the fact that if X _ BeTaBoOp(p, q, P,Q),
then 1 − X _ BeTaBoOp(q, p,Q, P ), simplifies the investigations concerning
the structural properties of the BeTaBoOp family, namely those related to
products of uniform random variables.

Therefore, equations (1), (2) and (5) can be viewed as special cases of the
more general differential equation (4) for modeling population dynamics, which
embodies simultaneously two different growth patterns depicted in the growing
terms (N(t))p−1 and (− ln(1 − N(t)))P−1, and two different environmental
resources control of the growth behavior, depicted in the retroaction terms
(1−N(t))q−1 and (− lnN(t))Q−1.

We obtained explicit solutions for (4), using Mathematica, for a few special
combinations of parameters, but so far only the ones connected with some form
of stability and of extreme value models — either in the iid setting or in the
geometrically thinned setting — seem to be suitable to characterize growth.
In the sequel we shall comment on growth characteristics, in general, in terms
of the order relation among parameters, and specially when all the parameters
are integers.

3 Further comments for the special case of integer
parameters

The Verhulst model is usually associated with the idea of sustainable growth.
This is the case since the retroaction term 1 − N(t) slows down the growth
impetus rN(t), an equilibrium often interpreted as sustainability. Another
way of seeing this is to observe that the logistic parabola x(1 − x) tied to the
Verhulst model is, up to a multiplicative factor, the product of the densities of
the order statistics U2:2 and U1:2 — respectively, maximum and minimum of
U1 and U2. Therefore, the growth term ruled by U2:2 has an “equal” opposite
effect, exerted by the retroaction term ruled by U1:2, which is curbing down the
population growth to sustainable levels. On the other hand, we also observe
that the logistic parabola is proportional to the density of U2:3, i.e. the median
of U1, U2 and U3, thus reinforcing the idea of equilibrium.

We now amplify the above remarks to other interesting cases of the gener-
alized Verhulst growth theory:

1. The logistic parabola generalization xp−1(1− x)q−1, which is linked to the
BeTaBoOp(p, q, 1, 1) ≡ Beta(p, q) density, is:

– Proportional to the product of the densities of Up:p and U1:q:

Since U1:q � Up:p, for all p, q ∈ IN, and Up:p is associated with the
growth term xp−1, population growth is observed. However, if p = q,
the retroaction term ruled by U1:p will curb down the population growth
to sustainable levels, because U1:p and Up:p are equally distant order
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statistics, in the sense that they are of the type Uk:n and Un−k+1:n.
Therefore, when p = q, we may think that U1:p and Up:p are exerting
equal opposite effects, ensuring this way a sustainable growth. On the
other hand, if p 6= q, uncontrolled population dynamics is observed.

– Proportional to the density of Up:p+q−1:

If p = q, then Up:2p−1 is the median of 2p−1 iid standard uniform ran-
dom variables, thus reinforcing the idea of sustainable growth, i.e. pop-
ulation equilibrium, as seen above. But if p 6= q, we are dealing with un-
controlled population dynamics, since Up:p+q−1 � Ub(p+q−1)/2c+1:p+q−1
for p < q, and Up:p+q−1 � Ub(p+q−1)/2c+1:p+q−1 for p > q, where
Ub(p+q−1)/2c+1:p+q−1 is the median of p + q − 1 iid standard uniform
random variables.

2. The expression xp−1(− lnx)Q−1, which is linked to the
BeTaBoOp(p, 1, 1, Q) ≡ Betinha(p,Q) density, is:

– Proportional to the product of the densities of Up:p and U
(∗)

Q :

From the fact that U
(∗)

Q � Up:p, for all p,Q ∈ IN, the growth term is
again the dominant one, and consequently population growth is also
observed in this setting. Now the question is whether it is possible
to have in this case sustainable growth. The answer is no, because
if we compare the two retroaction terms (1 − x)Q−1 and (− lnx)Q−1,

which are proportional to the densities of U1:Q and U
(∗)

Q , respectively,

we have U
(∗)
Q � U1:Q. Therefore, U

(∗)
Q is exerting a weaker control

effect on population growth than U1:Q would, which leads necessarily
to unsustained population growth, even if Q = p.

– Proportional to the density of U
1/p(∗)
Q , which applies to the more general

case p > 0:

By noting that U
1/p(∗)
Q =

(
U

(∗)
Q

)1/p
, it follows that U

1/p(∗)
Q � U (∗)

Q if

p > 1, and U
(∗)
Q � U1/p(∗)

Q if p < 1. Comparing U
1/p(∗)
Q and U

(∗)
Q with

U1:Q, associated with the retroaction factor (1 − x)Q−1, we conclude
that:

(i) if p > 1, U
(∗)
Q � U1:Q, thus revealing that U

1/p(∗)
Q has a weaker

control effect on population growth, as already unveiled above;

(ii) if p < 1, U1:Q � U
1/p(∗)
Q , therefore showing that U

1/p(∗)
Q has a

stronger control effect on population growth.

Both cases are suitable to model unsustainable population growth.
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3. The expression (1−x)q−1(− ln(1−x))P−1, tied to the BeTaBoOp(1, q, P, 1)

density, is proportional to the product of the densities of U1:q and 1−U (∗)
P ,

associated with the retroaction and growth terms (1−x)q−1 and (− ln(1−
x))P−1, respectively.

Since U1:q � 1 − U (∗)
P for all q, P ∈ IN, the growth factor is the dominant

one, and therefore population growth will also happen. On the other hand,

the fact that UP :P � 1− U (∗)
P , where UP :P is associated with the (absent)

growth term xP−1, shows that in this case we have a strong growth impe-
tus, counteracted by growth control mechanisms influenced by U1:q. Note

that U1:q exerts a stronger control effect than U
(∗)
q would on population

growth. Hence, this case is also suitable for modeling populations with
unsustainable growth, as the previous one, but where a more uncontrolled
population growth is observed.

Also note that Brilhante et al. [2] showed that the normalized solution
for the differential equation linked to the BeTaBoOp(1, 2, 2 + α, 1) density
belongs to the class of extreme value laws for minima, which seems to be
the consequence of the higher control forces needed to refrain the more
uncontrolled population growth through the influence of U1:q.

4. The expression xp−1(− ln(1−x))P−1, tied to the BeTaBoOp(p, 1, P, 1) den-

sity, is proportional to the product of the densities of Up:p and 1 − U (∗)
P ,

with Up:p � 1 − U (∗)
P only if p ≤ P . Thus, the growth pattern which is

linked with the factor xp−1 is the dominant one, whenever p ≤ P .

On the other hand, since the growth control mechanisms are absent in this
setting, the associated differential equation is ideal for modeling popula-
tions that almost surely grows to infinity, extinction being almost impossi-
ble.

5. The expression (1 − x)q−1(− lnx)Q−1, linked to the BeTaBoOp(1, q, 1, Q)

density, is proportional to the product of densities of U1:q and U
(∗)
Q , where

U
(∗)
Q � U1:q if q ≤ Q. Therefore, the retroaction term tied to (1− x)q−1 is

the dominant one, whenever q ≤ Q.

Given that we only have growth control factors in this case, the correspond-
ing differential equation is useful for modeling populations that are almost
surely doomed to extinction.

6. The expression xp−1(1−x)q−1(− lnx)Q−1, tied to the BeTaBoOp(p, q, 1, Q)

density, is proportional to the product of the densities of Up:p, U1:q and U
(∗)
Q ,

with U
(∗)
Q � U1:q � Up:p if q ≤ Q. Again population growth is noticed since

the dominant term is the growth term.

However, when p = q = Q, U1:p manages to “compensate” the growth
effect of Up:p by curbing down the population growth to sustainable levels.
This action is reinforced by the other retroaction term (− lnx)p−1 ruled by

U
(∗)
p . A more interesting case occurs when the growing parameter p and
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the retroaction parameters q and Q meet an equilibrium, in the sense that
p = q +Q.

7. The expression xp−1(1 − x)q−1(− ln(1 − x))P−1, which is linked to the
BeTaBoOp(p, q, P, 1) density, is proportional to the product of the densities

of Up:p, U1:q and 1− U (∗)
P , with U1:q � Up:p � 1− U (∗)

P for p ≤ P .

Uncontrolled population growth is the case again even if p = q = P . This is
so because although U1:p “compensates” the effect of Up:p, it does not do the

same for the growth term ruled by 1−U (∗)
p , whose influence is stronger than

Up:p. However, equilibrium is observed whenever the growing parameter p
and P and the retroaction parameter q verify the relation p+ P = q.

8. The expression xp−1(1−x)q−1(− ln(1−x))P−1(− lnx)Q−1, which is linked
to the BeTaBoOp(p, q, P,Q) density, is proportional to the product of the

densities of Up:p, U1:q, 1 − U
(∗)
P and U

(∗)
Q , where U

(∗)
Q � U1:q � Up:p �

1− U (∗)
P if p ≤ P and q ≤ Q.

In this setting equilibrium is observed when p+ P = q +Q.
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