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Abstract. This paper confirms the fascinating result that we can design chaotic
Neural Networks (NNs) that have a “small-world” or “scale-free” topology and that
these NNs can achieve chaotic Pattern Recognition (PR). What we imply by this is that
the NN yields a strong periodic or more frequent signal when a pattern is recognized,
and in between two consecutively recognized patterns, none of the trained patterns
are recalled. Finally, and most importantly, if an untrained pattern is presented, the
system yields a chaotic signal. The foundational NN that we employ for this is the
Adachi Neural Network (AdNN). The latter is a fascinating NN which has been shown
to possess chaotic properties, and to also demonstrate Associative Memory (AM) and
PR, while variants of the AdNN have also been used to obtain other PR phenomena,
and even blurring. The problem with the Adachi NN is that it is a fully-connected
network requiring quadratic computations for the training. Our aim in this paper is
to reduce the computations needed for the training significantly. In [1] we managed to
reduce the AdNN’s computational cost significantly by merely using a linear number of
computations by enforcing a Maximum Spanning Tree topology and a gradient search
method. However, from the perspective of a network’s structure, very few real-life
networks have a tree-shaped linearly-connected topology. The question we consider in
this paper is whether we can reduce the degree of connections of each node to mimic
the small-world or scale-free phenomena, more akin to “real” NNs. Simultaneously,
we shall also attempt to ensure that the newly-obtained network still possesses strong
PR characteristics. To achieve this, we first construct a small-world network by
means of the so-called N-W model. We then address the problem of computing the
weights for the new NN. This is done in such a manner that the modified small-world
connection-based NN has approximately the same input-output characteristics, and
thus the new weights are themselves calculated using a gradient-based algorithm.
By a detailed experimental analysis, we show that the new small-world AdNN-like
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network possesses PR properties for appropriate settings. As far as we know, such a
small-world AdNN has not been reported, and the results given here are novel.
Keywords: Chaotic Neural Networks, Chaotic Pattern Recognition, Adachi-like
Neural Networks, Small-world Networks.

1 Introduction

The goal of the field of Chaotic Pattern Recognition (PR) systems can be
expressed as follows: We do not intend a chaotic PR system to report the
identity of a testing pattern with a “proclamation” of the pattern’s class.
Rather, what we want to achieve, on one hand, is to have the chaotic PR
system give a strong periodic or more frequent signal when a pattern is to
be recognized. Further, between two consecutive recognized patterns, none of
the trained patterns must be recalled. Finally, and most importantly, if an
untrained pattern is presented, the system must give a chaotic signal. This is
analogous to how the brain works. Once a pattern is recalled from a memory
location, the brain is not “stuck” to it, it is also capable of recalling other
Associated Memory (AM) patterns. This ability to “jump” from one memory
state to another in the absence of a stimulus is one of the hallmarks of the
brain, and this is one phenomenon that a chaotic PR system has to emulate.

Adachi et al and Calitoiu et al have done a lot of ground-breaking work
in this area [2–4], and we have built on these results in various avenues [3–6],
including that of designing a NN that can yield ideal chaotic PR [7]. Generally
speaking, the computational burden of the original AdNN and its variants [2–4]
is quadratic, rendering them to be impractical machines.

This is also true of most of the current NNs which possess a regular topology,
e.g., a completely connected graph or a neighbor-coupled graph. In [1] we
managed to reduce the AdNN’s computational cost significantly by merely
using a linear number of computations by enforcing a Maximum Spanning Tree
topology and a gradient search method. In our previous paper [6], we succeeded
in creating a Random-AdNN by using the E-R model. Then we computed the
weights for the new network by means of gradient search. The newly obtained
network was shown to still possess PR and AM properties.

All of these must be contrasted with “real” NNs which usually have irregular
topology. In this paper we shall attempt to design and implement a NN (which
we shall refer to as “Smallworld-AdNN”) that demonstrates such chaotic PR
properties, even though this newly-designed network, in and of itself, is a “small-
world” or “scale-free” network. This is the primary contribution of this paper.
Briefly stated, this is achieved by using the N-W model followed by an effective
gradient search strategy, whence the computational burden can be significantly
reduced. Further, as we shall show presently, the Smallworld-AdNN is almost
as effective as the fully-connected AdNN with regard to its chaotic and PR
characteristics.
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2 Designing the Smallworld-AdNN

2.1 The Topology of the Smallworld-AdNN

To design the Smallworld-AdNN, we shall first arrive at a topology with edges
connected in a small-world manner. There are many ways to generate a
small-world NN, for example,by invoking the Watts-Strogts (W-S) [8] or the
Newman-Watts (N-W) models [9], and we shall use the former.

The general steps of the obtaining a W-S model are as follows:
1. Arrange the neurons in a cycle, and index them from 1 to N .
2. Create a neighbor-coupled network, where each neuron is connected with

k/2 neurons on both its sides. Thus, the degree for each neuron is k.
2. Re-connect each edge of the network with fixed probability pr. That

is, for each edge, delete it with a probability pr and connect it with another
randomly chosen neuron.

The reader will observe two special situations that arise from this W-S
model: The new network becomes a random network if pr = 1 while it remains
the same if pr = 0.

Obviously, the W-S model has the potential of causing some neurons to
become isolated. In [9], Watts and his coauthor improved the W-S model by
edge addition instead of deletion. Thus the second step is modified as follows:
Randomly connect two unconnected neurons with a fixed probability pr. Again,
one can then see that if pr = 1, the network becomes fully connected while it
remains the same if pr = 0. It is worth pointing out that the W-S and N-W are
essentially the same when pr is small and the number of neurons, N , is large.
In this paper, we shall use the N-W model to create a small-world network.
Consequently, we build the topology of the Smallworld-AdNN by invoking the
following algorithm.

Algorithm 1 Topology Smallworld-AdNN

Input: N , the number of neurons in the network, and a set of p patterns which the
network has to “memorize”.
Output: The topology and initial weights of the Smallworld-AdNN.
Method:

1: Create a neighbor-coupled graph, G, with N vertexes which is to represent the
AdNN.

2: Connect two randomly chosen unconnected neurons with a fixed probability pr.
3: Compute the initial weights of the edges of G, {wij}, by the following:
wij = 1

p

∑p
s=1(2xsi − 1)(2xsj − 1), where xsi is the ith component of the sth stored

pattern.
4: If there is no edge between vertex i and j, then let wij = 0;

End Algorithm Topology Smallworld-AdNN

Since the network topology has been changed and we want the Smallworld-
AdNN to maximally approximate the original AdNN, we thus invoke the second
step that involves the computation of the weights associated with this structure.
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2.2 The Weights of the Smallworld-AdNN: Gradient Search

Since we have successfully created the structure of the Smallworld-AdNN by
using the N-W model, our next task is to determine a new set of weights so as
to force the Smallworld-AdNN to retain some of its PR properties, namely those
corresponding to the trained patterns. We briefly explain below the process for
achieving this.

The Smallworld-AdNN is defined by following equations:

xSi (t+ 1) = f(ηSi (t+ 1) + ξSi (t+ 1)), (1)

ηSi (t+ 1) = kfη
S
i (t) +

∑
eij∈G

wS∗

ij x
S
j (t), (2)

ξSi (t+ 1) = krξ
S
i (t)− αxSi (t) + ai. (3)

where {wS∗

ij }, xSi , ξSi and ηSi are the weights, outputs, and state variables of
the Smallworld-AdNN respectively, and have similar meanings to {wij}, xi, ξi
and ηi of the AdNN .To find the optimal values of {wS∗

ij }, we define the square

error between the original output of the AdNN and new output at the nth step:

Ep =
1

2

N∑
i=1

(xA,p
i − xS,pi (n))2, (4)

where xA,p
i and xS,pi imply the outputs of the ith neuron when the pth pattern is

presented to the AdNN network and the Smallworld-AdNN network respectively.
The overall global error is defined by E =

∑P
p=1Ep where P is the number of

trained patterns. In order to adjust wS
ij to obtain the least global error E, we

consider the gradient, ∆wS
ij , and move wS

ij by an amount which equals ∆wS
ij in

the direction where the error is minimized. Formally:

∆wS
ij = −β ∂E

∂wS
ij

= −β
∂
∑P

p=1Ep

∂wS
ij

= −β
P∑

p=1

∂Ep

∂xS,pi (n)
· ∂x

S,p
i (n)

∂wS
ij

= β

P∑
p=1

(xA,p
i − xS,pi (n)) · 1

ε
· xS,pi (n) · (1− xS,pi (n)) · xS,pj (n), (5)

where β is the learning rate of the gradient search.
The formal algorithm which achieves the update is given in Algorithm 2. Its

Lyapunov analysis is found in [10].
The results of a typical numerical experiment which proceeds along the

above gradient search are shown in Fig. 1 and 2. Here, we have chosen the
learning rate β to be 0.05 and pr = 0.5. Specifically, we report our experiments
for three cases, i.e., when k/2 = 4, k/2 = 6 and k/2 = 10 respectively. If
k/2 = 4, the average value of ∆wS

ij does not converge at 0, as shown in Fig. 1.

As k/2 increases, e.g., k/2 = 6, ∆wS
ij converges to 0, as shown in Fig. 2

(a). If k/2 is even larger, ∆wS
ij also converges to 0 but at a faster rate. This

phenomenon can be easily explained: The larger the value of k/2, the more are
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Algorithm 2 Weights Smallworld-AdNN

Input: The number of neurons, N , a set of P patterns, and the initial weights {wS
ij} of

the Smallworld-AdNN. These initial weights are {wA
ij} for the edges in the smallworld

graph, and are set to zero otherwise. The parameters and the setting which we have
used are the learning rate β = 0.05, ε = 0.015, α = 10, kf = 0.2 and kr = 1.02.
Output: The weights {wS∗

ij } of the Smallworld-AdNN.
Method:

1: Compute the outputs of the Smallworld-AdNN corresponding to the P trained
inputs.

2: For all edges of the Smallworld-AdNN, compute ∆wS
ij as per Equation (5). Other-

wise, set ∆wS
ij = 0 .

3: wS
ij ← wS

ij +∆wS
ij .

4: Go to Step 1 until E is less than a given value or ∆wS
ij ≈ 0.

End Algorithm Weights Smallworld-AdNN
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Fig. 1. The figure on the left shows the variation of the average of ∆wS
ij (averaged

over all values of i and j) over the first 200 iterations of the gradient search scheme.
The average converges to a value arbitrarily close to zero after 70 time steps. The
figure on the right shows the variation of the global error over the same time frame.
Observe that this quantity does not converge to zero.

the edges that the Smallworld-AdNN has, leading to a better-fitting effect. In
practice, we have opted to choose k/2 = 6 to obtain a finer trade-off between
the effect of the fit and the associated computational cost.

3 Chaotic and PR Properties of the Smallworld-AdNN

We now briefly report the PR properties of the Smallworld-AdNN. These
properties have been gleaned as a result of examining the Hamming distance
between the input pattern and the patterns that appear in the output. In this
regard, we mention that the experiments were conducted using the Adachi data
set, as shown in Fig. 3.

In the ideal setting we would have preferred the Smallworld-AdNN to
be chaotic when exposed to untrained patterns, and the output to appear
periodically or more frequently when exposed to trained patterns. Besides
yielding this phenomenon, the Smallworld-AdNN also goes through a chaotic
phase and a PR phase as some of its parameters change.

By studying Fig. 1 and 2 we see that if k/2 = 6, the Smallworld-AdNN can
fit the original AdNN very well. Thus, we have set the parameters in Algorithm
1 to be pr = 0.5 and K = 6 so as to obtain a better trade-off effect. In this
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Fig. 2. The figures show the variation of the average of ∆wS
ij and the global error

over the same time frame. The degree of the connection is k = 12 (for (a) and (b))
and k = 20 (for (c) and (d)) respectively.
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Fig. 3. The 10× 10 patterns used by Adachi et al . The first four patterns are used
to train the network. The fifth patterns are obtained from the corresponding fourth
patterns by including 15% noise in (a) and (b) respectively. The sixth pattern is the
untrained pattern.

regard, we comment that using the values of pr = 0.5 and k/2 = 6 are good
enough for PR, which also significantly minimizes the computational burden.
Indeed, as one can see, the distribution for the degree of each vertex of the
Smallworld-AdNN has the form:

p(k) =

(
N
k − 6

)(
3
N

)k−6(
1− 3

N

)N−k+6
(6)

which is approximately a Poisson distribution, as shown in Fig. 4.
We summarize the results for the Smallworld-AdNN by using different

settings of pr. The others parameters are: kf = 0.2, kr = 1.02, α = 10,
ε = 0.015, β = 0.05. The results are tabultaed in Tables 1, 2 and 3.

Consider Table 1. From this table we clearly see that the Smallworld-AdNN
is able to “resonate” the input patterns with corresponding output patterns. If
P1 is the input, then the network outputs P1 accordingly, while at the same
time, no other trained patterns appear in the output sequence. Even when a
noisy pattern is presented to the system, e.g., P5, which is a noisy pattern of
P4 with 15% noise, the network still “resonates” P4 instead of P5 in the output
sequence. Furthermore, if the input is an untrained pattern, e.g., P6, none of
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Fig. 4. The degree of each neuron obeys the Poisson distribution. From this figure
we can see that most of the neurons have degree 8 or 9, which means that the
computational load has been significantly reduced when compared to the original
AdNN, which we know has a vertex degree of 99.

Table 1. The frequency of the Hamming distance between the input and the output
patterns for the Smallworld-AdNN. The probability pr = 0.5 and k/2 = 6.

Input Patterns
pr = 0.5, k/2 = 6 P1 P2 P3 P4 P5 P6

P1 96 0 0 0 0 0
P2 0 376 0 0 0 0

Retrieved P3 0 0 108 0 0 0
Patterns P4 0 0 0 93 136 0

P5 0 0 0 9 2 0
P6 0 0 0 0 0 28

Table 2. The frequency of the Hamming distance between the input and the output
patterns for the Smallworld-AdNN. The probability pr = 0.1 and k/2 = 6.

Input Patterns
pr = 0.5, k/2 = 6 P1 P2 P3 P4 P5 P6

P1 49 0 0 0 0 0
P2 0 126 0 0 0 0

Retrieved P3 0 0 53 0 0 0
Patterns P4 0 0 0 68 78 0

P5 0 0 0 3 1 0
P6 0 0 0 0 0 3

Table 3. The frequency of the Hamming distance between the input and the output
patterns for the Smallworld-AdNN. The probability pr = 0.9 and k/2 = 6.

Input Patterns
pr = 0.5, k/2 = 6 P1 P2 P3 P4 P5 P6

P1 578 0 0 0 0 0
P2 0 685 0 0 0 0

Retrieved P3 0 0 309 0 0 0
Patterns P4 0 0 0 412 389 0

P5 0 0 0 11 8 0
P6 0 0 0 0 0 15
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the trained patterns will be recalled. In this case, even the input pattern P6
itself, will be retrieved only a few times, as one can see is much less than the
other diagonal numbers obtained when input is P1 – P4.

4 Conclusions

In this paper we have concentrated on the field of Chaotic Pattern Recognition
(PR), which is a relatively new sub-field of PR. Such systems, which have
only recently been investigated, demonstrate chaotic behavior under normal
conditions. The system would, however resonate (or produce a single pattern
more frequently) when it is presented with a pattern that it is trained with.
The network which we have investigated is the Adachi Neural Network (AdNN)
[2–4], based on which we have, ourselves, developed results in various avenues
[3–6], including that of designing a NN that can yield ideal chaotic PR [7]. In
this paper we have considered how the topology can be modified so as to render
the network to be much closer to “real” neural networks. To achieve this, we
have changed the network structure to be that of a Small-world graph, and
then computed the best weights for the new graph by using a gradient-based
algorithm. Apart from a Lyapunov analysis, by a detailed experimental suite, we
have shown that the new Smallworld-AdNN possesses chaotic and PR properties
for different settings.
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