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Abstract. We study exotic patterns appearing in a network of coupled Chen chaotic
oscillators. Our network consists of two rings coupled through a ‘buffer’ cell, with
Z3 × Z5 symmetry group. Numerical simulations of the network reveal steady-states,
rotating waves, and quasiperiodic and chaotic states. The different patterns arise
through a sequence of Hopf bifurcations. The network architecture explains certain
observed features, whereas the properties of the cells’ internal dynamics, the Chen
chaotic oscillator, may explain others.
Keywords: chaos, quasiperiodic states, symmetry, Hopf bifurcation.

1 Introduction

Stewart, Golubitsky and Pivato [16] and Golubitsky, Stewart and Török [10]
have developed a theory concerning coupled dynamical systems, or coupled
cell networks. A cell is a system of ordinary differential equations. Issues like
synchronization plase-relations synchronized chaos, amongst others [5,8] [14,12]
have been particularly focused.

General coupled cell networks may be characterized in two main groups in
what concerns symmetry. One group consists of the coupled cells systems that
possess some degree of symmetry, the other group gathers the coupled cells
systems with no symmetry. The networks with exact symmetry are included in
the first group.

The common representation of networks of coupled cells is done by directed
graphs. The graphs’ nodes correspond to individual cells and the edges to
the couplings between them. A ‘cell’ means a nonlinear dynamical system of
ordinary differential equations. In Figure 3, the cells are represented by circles
and squares and the couplings between them by arrows. Distinct cells/arrows
mean distinct dynamics/couplings.

In this paper we are interested in the dynamical features occurring in a
coupled system of two unidirectional rings with Z3 × Z5 exact symmetry. In
Section 2, we provide a review of the coupled cells networks formalism. In
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Section 3, we simulate the coupled cells systems associated to the networks of
two coupled rings of cells in Fig. 1. In Section 4, we conclude this work and
shed some light on future research directions.

Fig. 1. Network of two coupled unidirectional rings, one with three cells and the
other with five, connected through a buffer cell b. The network has Z3 ×Z5 symmetry
group.

2 Coupled cells and symmetry

A coupled cells system consists of a finite set of nodes (or cells) C, and a finite
set of edges E . An equivalence relation on cells in C is defined, where the
equivalence class of c is the type of cell c, an input set of cells I(c), that consists
of cells whose edges have cell c as head. Moreover, an equivalence relation on
the edges (or arrows), is also defined, where the equivalence class of e is the type
of edge e, and it satisfies the condition that ‘equivalent edges have equivalent
tails and edges’. The last condition means that equivalent edges must have tails
and edges of the same equivalence class.

For each cell c an internal phase space Pc is defined. The total phase space
of the network is the product P =

∏n
i=1 Pc. The coordinates on Pc are denoted

by xc, the coordinates on P are thus (x1, x2, . . . , xn). At time t, the system is
at state (x1(t), x2(t), . . . , xn(t)).

A vector field f on P that is compatible with the network architecture is
said to be admissible for that network, and satisfies two conditions: (1) the
domain - each component fi corresponding to cell ci must be a function of the
cells in the I(c); (2) the pull-back condition - the components fi and fj of cells
ci and cj are identical, up to a suitable permutation of the relevant variables, if
the two cells have isomorphic input cells [9].

A symmetry is a transformation of the phase space that sends solutions to
solutions. It consists of the group of permutations of the cells (and arrows) that
preserves the network structure (including cell-types and arrow-types) and its
action on P is by permutation of cell coordinates. The network in Figure 1 is
an example of a network with Z3 × Z5 symmetry.
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3 Numerical simulations

The coupled cells system, associated with the network depicted in Fig. 1, is
simulated. We use XPPAUT [7] and MATLAB [18] to compute numerically the
relevant states. We consider the Chen oscillator as the phase space for each cell
of the two rings and an unidimensional phase space for the ‘buffer cell’. The
total phase space is thus twenty-fifth dimensional. The dynamics of a singular
ring cell is given by [6,13]:

u̇ = a(v − u)
v̇ = (c− a)u− uw + cv
ẇ = uv − bw

(1)

where a = 35, b = 3, c are real parameters.
The unidimensional dynamics of the ‘buffer cell’ is given by [8,3]:

f(u) = µu− 1

10
u2 − u3 (2)

where µ = −1.0 is a real parameter.
The coupled cells system of equations associated to the network in Fig. 1 is

given by:
ẋj = g(xj) + k (xj − xj+1) + d b j = 1, . . . , 3

ḃ = f(b)
ẏj = g(yj) + k (yj − yj+1) + d b j = 1, . . . , 5

(3)

where g(u) represents the dynamics of each Chen oscillator, k = −5.0, d = 0.2,
and the indexing assumes x4 ≡ x1 and y6 ≡ y1. We assume that the coupling
between all cells is linear and is done only in the first variable of each Chen
oscillator.

We vary parameter c ∈ [15, 22], going from lower to higher values, and start
from a steady state of the whole system.

In Figure 2, we plot (top) the time series solution of the coupled cell
system (3) and (bottom) we represent the phase plane of oscillator y1 of the
5-ring. The solution is a rotating wave state in the 5-ring, obtained by a Hopf
bifurcation (HB1), from the trivial equilibrium branch. Cells in the 3-ring are
at equilibrium. These solutions can be explained using the Equivariant Hopf
Theorem for coupled cell systems in the symmetric case [11]. The bifurcation
has occurred in the 5-ring.

We increase c again, and another Hopf bifurcation occurs (HB2). In Figure 3,
we plot (top) the time series solution of the coupled cell system (3), (center)
we show the phase planes for the oscillator x1 of the 3-ring (center, left) and
of the oscillator y1 of the 5-ring (center, right). The solution is a rotating Z3

wave in the 3-ring and a rotating Z5 wave in the other ring. The full solution is
quasiperiodic (Fig. 3, bottom).

Figure 4 shows the time series further away from the tertiary Hopf bifurcation
(HB3) in the coupled cell system (3). Unlike the previous cases (Figures 2-3), the
amplitude of the solution is higher and the wave form is qualitatively different,
displaying typical relaxation oscillatory features. Relaxation oscillations are
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Fig. 2. Simulation of the coupled system (3) with Z3 × Z5 symmetry. Time series
from the nine cells after the first Hopf bifurcation point (HB1). (Top, left) Cells in
the 3-ring are at equilibrium and cells in the 5-ring display a Z5 rotating wave (top,
right). (Bottom) Phase plane of oscillator y1 of the 5-ring.

Fig. 3. Simulation of the coupled system (3) with Z3×Z5 symmetry, after the second
Hopf bifurcation point (HB2). The cells in the 3-ring exhibit a rotating Z3 wave (top,
left), and the cells in the other ring show a rotating Z5 wave (top, right). Phase planes
of the oscillator x1 (center, left) and of the oscillator y1 (center, right). Cell x1 vs cell
y1 (bottom). For more information see text.

solutions characterized by long periods of quasi-static behaviour interspersed
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with short periods of rapid transition. These solutions are studied in the context
of the canard phenomenon [17] in fast-slow systems.

Fig. 4. Simulation of the coupled system (3) with Z3 × Z5 symmetry, after the third
Hopf bifurcation point (HB3). The cells in the 3-ring exhibit a Z3 rotating wave (top,
left), whereas cells in the other ring depict a relaxation oscillation (top, right). Phase
planes of the oscillator x1 (center, left) and of the oscillator y1 (center, right). Cell x1

vs cell y1 (bottom). For more information see text.

Further away of this third Hopf bifurcation point, ‘unusual’ and complex
behaviors start to appear. In Fig. 5, the cells in the 3-ring appear to show a
quasiperiodic motion and the cells in the 5-ring seem to depict a chaotic state.
The full solution is quasiperiodic or chaotic (see Figure 5, bottom).

Thus, from the numerical results, we conclude that there is a richness of
dynamic features produced by the network of two coupled rings with Z3 × Z5

symmetry. The dynamical behavior is much more complex than the one found
in [3,4,2,15], for the same network of two coupled rings with Z3 ×Z5 symmetry,
but with simpler internal dynamics for each cell. This suggests that the network
structure is important for these patterns to be observed but it seems not to be
able to explain them fully.
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Fig. 5. Simulation of the coupled system (3) with Z3 ×Z5 symmetry, further away of
the third Hopf bifurcation point (HB3). The cells in the 3-ring exhibit a quasiperiodic
motion (top, left), whereas the cells in the other ring show a chaotic state (top, right).
Phase planes of the oscillator x1 (center, left) and of the oscillator y1 (center, right).
Cell x1 vs cell y1 (bottom). For more information, see text.

4 Conclusions

In this paper we study the dynamical behavior of a network consisting of two
rings of chaotic Chen oscillators, that admit Z3×Z5 exact symmetry group. We
find interesting patterns, some of them explained by local bifurcation theorems
and some probably by the properties of the cells’ internal dynamics, in this case,
the Chen chaotic attractor. More work is needed to explain thoroughly these
features.
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