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Abstract. We use Lyapunov spectrum analysis to characterize the dynamics of a
single convection roll between two differentially heated plates. 3D numerical simu-
lation is carried out in a highly confined periodic domain. As the Rayleigh number
increases, the intensity of the convection roll displays chaotic features while the roll
remains stationary. For still higher values of the Rayleigh number, the roll intermit-
tently moves between two positions separated by half a wavelength. We use Lyapunov
spectrum analysis to help determine the characteristics of the flow in both regimes.
We show that although the largest Lyapunov exponent is positive on average, the
most probable value of the short-time Lyapunov exponent is negative. We compute
the flow eigenvectors associated with the strongest variations in the exponent in the
chaotic and the intermittent case and identify the corresponding hydrodynamic modes
of instability.
Keywords: Natural convection, Period-doubling bifurcations, crisis-induced inter-
mittency, Lyapunov spectrum.

1 Introduction

Natural convection between two vertical plates maintained at different tem-
peratures is an important prototype to model heat transfer in industrial ap-
plications, such as plate heat exchangers or solar panels. The properties of
heat transfer are deeply influenced by the nature of the flow, which is typically
turbulent. It is therefore of interest to study the onset of chaotic dynamics
in these flows. The development of instabilities in a differentially heated cavi-
ties with adiabatic walls has been studied numerically for a few decades [1,2].
Earlier studies are mostly limited to 2D geometries and relatively low Rayleigh
numbers regimes (steady, periodis, quasi-periodic) with a focus on primary in-
stabilities. Recent studies focus on the fully turbulent nature of the natural

Received: 20 December 2014 / Accepted: 6 October 2015
c© 2015 CMSIM ISSN 2241-0503



254 Gao et al.

convection flow at high Rayleigh numbers [3], which remains a challenge owing
to the double kinetic and thermal origin of the fluctuations.

Our studies attempt to bridge the gap between the relatively ordered flow
observed at low Rayleigh numbers and the fully turbulent flow at high Rayleigh
numbers. To this end, we carried out the three-dimensional direct numerical
simulation (DNS) of a fluid layer between two vertical, infinite, differentially
heated plates and determined the different stages leading to chaos [4]. The flow
is characterized by co-rotating convection rolls which grow and shrink over time
and interact with each other in a complex fashion. Similar rolls have also been
observed in tall cavities of high aspect ratio [5]. A useful model of the problem
can be obtained by limiting the dimensions of the plates in order to study the
dynamics of a single convection roll. A cascade of period-doubling bifurcations
and a crisis-induced intermittency have been observed in the vertically confined
domain [6]. The goal of this paper is examine how Lyanunov exponent analysis
can help characterize the chaotic dynamics of the flow in such a configuration.

2 Configuration

We consider the flow of air between two infinite vertical plates maintained
at different temperatures. The configuration is represented in Figure 1. The
distance between the two plates is D, and the periodic height and depth of the
plates are Lz and Ly respectively. The temperature difference between the two
plates is ∆T . The direction x is normal to the plates, the transverse direction
is y, and the gravity g is opposite to the vertical direction z.

Fig. 1. (Color online) The simulation domain is constituted by two vertical plates,
separated by a distance D and maintained at different temperatures. Periodic bound-
ary conditions for the plates are enforced in both transverse and vertical directions
(y and z). The aspect ratios of the periodic dimensions are Ay = Ly/D = 1 and
Az = Lz/D = 2.5. The temperature of the back plate at x = 0 (in red) is ∆T

2
, while

that of the front plate at x = 1 (in blue) is −∆T
2

. The distance between the plates is
D.

The fluid properties of air, such as the kinetic viscosity ν, thermal diffusivity
κ, and thermal expansion coefficient β, are supposed to be constant. Four
nondimensional parameters characterizing the flow are chosen in the following
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way: the Prandtl number Pr =
ν

κ
, the Rayleigh number based on the width of

the gap between the two plates Ra = gβ∆TD3

νκ , and the transverse and vertical
aspect ratio Ay = Ly/D and Az = Lz/D, respectively. Only the Rayleigh
number is varied in the present study. The Prandtl number of air is taken
equal to 0.71. The transverse aspect ratio is set to be Ay = 1, the vertical
aspect ratio is set to Az = 2.5, which corresponds to the critical wavelength
λzc = 2.513 obtained by the stability analysis [4].

The flow is governed by the Navier-Stokes equations within the Boussinesq
approximation. The nondimensional equations are:

∇ · −→u = 0 (1)

∂−→u
∂t

+−→u · ∇−→u = −∇p+
Pr√
Ra

∆−→u + Prθ−→z (2)

∂θ

∂t
+−→u · ∇θ =

1√
Ra

∆θ (3)

with Dirichlet boundary conditions at the plates

−→u (0, y, z, t) = −→u (1, y, z, t) = 0, θ(0, y, z, t) = 0.5, θ(1, y, z, t) = −0.5 (4)

and periodic conditions in the y and z directions. The equations (1)-(4) admit
an O(2)×O(2) symmetry. One O(2) symmetry corresponds to the translation
in the transverse direction y and the reflection y → −y, while the other corre-
sponds to the translations in the vertical direction z and a reflection that com-
bines centrosymmetry and Boussinesq symmetry: (x, z, θ)→ (1− x,−z,−θ).

A spectral code [7] developed at LIMSI is used to carry out the simulations.
The spatial domain is discretized by the Chebyshev-Fourier collocation method.
The projection-correction method is used to enforce the incompressibility of the
flow. The equations are integrated in time with a second-order mixed explicit-
implicit scheme. A Chebyshev discretization with 40 modes is applied in the
direction x, while the Fourier discretization is used in the transverse and vertical
directions. 30 Fourier modes are used in the transverse direction y for Ay = 1,
while 60 Fourier modes are used in the vertical direction z for Az = 2.5.

2.1 Description

For low Rayleigh numbers, the flow solution is laminar. A cubic velocity and
linear temperature profile, which depend only on the normal distance from
the plates are observed. The flow presents similar features to those of a con-
fined mixing layer [9,4]. As the Rayleigh number Ra is increased, steady two-
dimensional convection rolls appear at Ra = 5708, which then at Ra = 9980 be-
come steady three-dimensional convection rolls linked together through braids
of vorticity (see Figure 2). For still higher Rayleigh numbers, the flow becomes
periodic at Ra = 11500. The convection roll essentially grows and shrinks with
a characteristic period of T = 28 convective time units, which is in good agree-
ment with the natural excitation frequency of a mixing layer [9].
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As the Rayleigh number increases, a series of period-doubling bifurcations
appears, as illustrated in Figure 3. More details can be found in [6]. The onset
of chaos was predicted to occur at Ra ∼ 12320, in agreement with numerical
observations. The variations of the roll size become more disorganized and in-
tense, but the position of the roll remains quasi-stationary. When Ra = 12546,
the variations in the intensity of the roll become so large that the roll breaks
down and reforms at another location, separated by half a vertical wavelength
from the original one. In terms of dynamics this corresponds to crisis-induced
intermittency, which can be seen in Figure 3(b). The difference between the
chaotic and the intermittent regimes in terms of phase portraits is illustrated
in Figure 4 for two Rayleigh numbers taken in each regime.

Fig. 2. (Color online) Q-criterion visualization of flow structures colored by the verti-
cal vorticityΩz. Bi-periodic domain at Ra = 12380, Q = 0.25 in the present numerical
configuration from Figure 1, i.e. with periodic boundary conditions in both y and z
directions (Ay = Az = 1);

3 Lyapunov spectrum

3.1 Definition

Several methods exist to distinguish between regular and chaotic dynamics
in a deterministic system. The largest Lyapunov exponent, which measures
the divergence rate of two nearby trajectories, is considered as a useful in-
dicator to answer this question. Similarly, the n first Lyapunov exponents
λ1 > λ2 > λ3 > ... > λn characterize the deformation rates of a n-sphere
of nearby initial conditions. We applied the numerical technique proposed by
Benettin et al. [8] to compute the Lyapunov spectrum of our fluid system, by
parallelizing the DNS code described above with MPI library. On each proces-
sor, the flows are advanced independently in time. The flow on the processor-0
is the reference solution, which is obtained by numerical integration of the non-
linear equations. On the other processors, the randomly initiated perturbations
δX are integrated in time by solving the linearized DNS code. The modified
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Fig. 3. (Color online) Bifurcation diagram obtained by using the local maxima θn of
the temperature time series at the point (0.038 0.097 0.983).Note: the vertical line
in the figure corresponds the largest Rayleigh number in Figure 3 (a) 12000 < Ra <
12500 (b) 12400 < Ra < 12600.
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(a) Ra = 12380 (b) Ra = 12600

Fig. 4. (Color online) Phase portraits. Abscissa: real part of the the Fourier
transform (in y and z) of the vertical velocity ŵ01(x) calculated on vertical plane
x = 0.0381; ordinate: real part of the Fourier transform of the vertical velocity ŵ10.
(a) Ra = 12380, (b) Ra = 12600.

Gram-Schmidt procedure is applied every 20 time-steps of dt to renormalize
the perturbations. At each renormalisation step, the instantaneous Lyapunov
exponents were computed as

λinsti =
1

∆t
ln
‖δX(j∆t)‖i
‖δX(0)‖i

(5)

Their asymptotic mean values form the long-time Lyapunov spectrum:

λi = lim
N→+∞

1

N∆t

∑
j∈N

ln
‖δX(j∆t)‖i
‖δX(0)‖i

(6)

where λi is the i-th Lyapunov exponent and the norm mesuring the distance be-

tween two nearby trajectories is chosen as ‖δX(t)‖ =
√∫

V
[δ−→u (t)2 + δθ(t)2]dV .
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3.2 Long-time Lyapunov exponents

The computation of Lyapunov spectrum for our fluid system was carried out
at different Rayleigh numbers between Ra = 12360 and Ra = 12900. Errorbars
for the Lyapunov exponent are estimated from the standard error of the mean
assuming a Gaussian distribution and a 95% confidence interval. We note that
the error on the exponent may be somewhat underestimated, as we do not take
into account other sources of error, such as the distance to the attractor.

In all that follows, we focus on two Rayleigh numbers: one corresponds
to the chaotic, non-intermittent system Ra = 12380. The other Ra = 12600
corresponds to a chaotic, intermittent case. Convergence tests were run for
these two Rayleigh numbers Ra = 12380 and Ra = 12600 and two different
time-discretizations dt = 1×10−3 and dt = 1×10−2. The 15 leading Lyapunov
exponents are computed, among which the first 8 ones are listed in Table 1.
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Fig. 5. (Color online) (a) The largest Lyapunov exponent λ1 for different Rayleigh
numbers; Error bars are 1.96 times the standard error. (b) Fractal dimension obtained
by application of the Kaplan-Yorke formula as a function of the Rayleigh number.
The position of the solid line spanning each figure represents the value of the Rayleigh
number at the onset of the crisis.

As shown in Figure 3.2, the largest asymptotic Lyapunov exponent is posi-
tive for Ra ≥ 12360, and increases quasi-linearly for 12400 < Ra < 12546. This
suggests that temporal chaos has been reached. For all Rayleigh numbers con-
sidered, only one single positive Lyapunov exponent is found and is on the order
of 0.01. The test 0− 1 for chaos proposed by Gottwald and Melbourne [12,13]
was applied to an appropriately sampled temperature time series, and returned
a value close to 1, which confirms that our flow is chaotic. The Lyapunov ex-
ponent is considerably larger for the intermittent case Ra = 12600 than for the
chaotic case Ra = 12380.

We find that the asymptotic value of exponents 2 to 4 is close to zero.
We observe that the temporal oscillations of the short-time exponents 2 to 4
decrease with the time step, as can be expected. As shown by Sirovich and
Deane [10] for Rayleigh-Bénard convection, three exponents should be zero:
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Table 1. First 8 Lyapunov exponents at two different Rayleigh numbers for two
different time steps.

Ra = 12380 Ra = 12600

λi dt = 1 × 10−3 dt = 1 × 10−2 dt = 1 × 10−3 dt = 1 × 10−2

1 0.0094 ± 0.0004 0.0078 ± 0.0002 0.0199 ± 0.0005 0.0140 ± 0.0005

2 −0.00047 ± 0.00067 −0.00027 ± 0.00043 −0.0001 ± 0.0008 −0.0002 ± 0.0005

3 0.00075 ± 0.00048 0.00031 ± 0.00026 0.0036 ± 0.0006 0.0009 ± 0.0006

4 0.00010 ± 0.00053 −0.00090 ± 0.00031 0.00011 ± 0.00062 0.00047 ± 0.00066

5 −0.0579 ± 0.00020 −0.0220 ± 0.0001 −0.0594 ± 0.00017 −0.0230 ± 0.0001

6 −0.0726 ± 0.0006 −0.0485 ± 0.0004 −0.0696 ± 0.0006 −0.0464 ± 0.0006

7 −0.0709 ± 0.0006 −0.0318 ± 0.0004 −0.0732 ± 0.0006 −0.0328 ± 0.0006

8 −0.0843 ± 0.0006 −0.0571 ± 0.0004 −0.0919 ± 0.0006 −0.0594 ± 0.0006

one comes from the fact that the time derivative
∂X

∂t
of the reference solution

X satisfies the linearized equation, since the system is autonomous. The other

two zero exponents reflect the fact that
∂X

∂y
,
∂X

∂z
also satisfy the linearized

equation on account of the homogeneous boundary conditions.
All exponents of order n ≥ 5 were found to be negative. Convergence was

more difficult to reach for these higher-order exponents. However even if some
uncertainty is present, this does not affect significantly the value of the fractal
dimension.

The Lyapunov dimension was estimated using the Kaplan-Yorke formula [11]:

DL = K +
SK
|λK+1|

(7)

where K is the largest n for which Sn =
∑n
i=1 λi > 0. It was found to be

between 4.2 and 4.6, as can be seen in Figure 3.2 (b). An inflection point, cor-
responding to a sharp increase in the largest exponent, is observed at the onset
of intermittency for both the largest exponent and the Lyapunov dimension.

4 Short-time Lyapunov exponent

As pointed out by Vastano and Moser [15], examination of the short-time Lya-
punov exponent provides additional information about the flow. Figure 6 and 7
shows the distribution of the first Lyapunov exponent for the two Rayleigh num-
bers and the two time resolutions. We can see that the distributions are very
similar for both time intervals, which shows the convergence of the computa-
tions. Corresponding time series of the largest Lyapunov exponent and their
Fourier spectrum are represented in Figure 8. The fundamental excitation fre-
quency f = 0.22 is dominant in the chaotic case. Lower frequencies become
important in the chaotic case.

A striking fact is that for both Rayleigh numbers, although the mean value
of the exponent is positive, the maximum value of probability distribution
function (p.d.f.) is actually negative. This is markedly different from the
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results reported by Kapitaniak [14] for quasi-periodically forced systems, where
the mean value of the exponent appeared to correspond to the maximum of the
distribution. We note that no external forcing is imposed in our configuration,
which is characterized by self-sustained oscillations. The distributions at Ra =
12380 and Ra = 12600 present many similarities. The main difference is that in
the intermittent case the local maximum of the distribution for small positive
values in Figure 6 disappears, while a band of significantly higher positive
values (larger than 0.2) is created in Figure 7.

We computed the vector associated with local extrema of the short-time
Lyapunov exponent which were identified in the time series. This gives us
insight into the perturbations most likely to disorganize the flow. We checked
that observations made at a particular time held for other times.

Results are presented in Figure 9 for the chaotic case. For the chaotic case,
we have identified two types of relative extrema: (i) relatively small excursions,
associated with the local maximum and the local minimum in the histogram
from Figure 6 corresponding to positions marked with filled circles in Figure 8
(a). We find that the perturbation associated with a local maximum consists
of almost 2D rolls (Figure 9 (a)), while the minimum corresponds to a strongly
3D flow and a relatively weaker convection roll (Figure 9 (b)). (ii) stronger
excursions, where both extrema are associated with an essentially 2D flow
(positions marked with filled squares in Figure 9 (c)(d)). 2D convection rolls
correspond to the most unstable linear modes. However the convection rolls
associated with maxima seem to be stronger than those associated with minima.

In the intermittent case, we focus exclusively on largest extrema. Figure 10
(a) shows that the maxima in time corresponds to a flow which is in fact almost
1-D (note the much lower value for the criterion Q = 0.05), while the minima
in time corresponds to a 2D flow (see Figure 10 (b)). These two states can be
associated with the break-up and formation of the roll.
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Fig. 6. (Color online) Probability distribution function (p.d.f.) of instantaneous 1st
Lyapunov exponent λinst1 at Ra = 12380.
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Fig. 7. (Color online) Probability distribution function (p.d.f.) of instantaneous 1st
Lyapunov exponent λinst1 at Ra = 12600.
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Fig. 8. (Color online) (a) (b) Evolution of the largest short-time Lyanunov exponent
λinst1 at (a) Ra = 12380 (b) Ra = 12600; (c) (d) Temporal Fourier spectrum of the
largest short-time exponent λinst1 at (c) Ra = 12380 (d) Ra = 12600.
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(a) (b)

(c) (d)

Fig. 9. (Color online) Eigenvector associated with a local extremum of the short-
time exponent at Ra = 12380 at the positions indicated in Figure 8 (a). Value of
the Q isosurface Q = 0.3 (a) t=469 (maximum) (b) t=479 (minimum) (c) t=552
(maximum) (d) t=726 (minimum)

5 Conclusion

We have considered the numerical simulation of a convection roll between two
differentially heated plates of small periodic dimensions. As the Rayleigh num-
ber increases, the convection roll shrinks and grows in a periodic, then quasi-
periodic, then chaotic. For still higher values, the convection roll breaks down
and reforms intermittently at another location. Lyapunov spectrum analysis
was used to characterize the dynamical features of the flow. Two cases in the
purely chaotic and intermittent regime were examined in detail. We found
that although the asymptotic value of the largest exponent is positive, its most
probable value is negative. We showed that intermittency corresponds to the
occurence of higher positive values in the Lyapunov exponent corresponding
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(a) (b)

Fig. 10. (Color online) Eigenvector associated with a local extremum of the short-
time exponent at Ra = 12600 at the positions indicated in Figure 8 (b). Value of the
Q isosurface (a) t=954 (maximum) Q = 0.05 (b) t=968 (minimum) Q = 0.3

to the break-up and reformation of the convection roll. The perturbations
associated with the extremal values of the short-time largest exponent were
identified. In the chaotic case, the perturbations associated with the largest
extrema are 2D convection rolls. Maxima are associated with larger rolls, while
minima are associated with less intense rolls. In the intermittent case, maxima
were associated with a quasi 1-D flow, which corresponds to the break-up of
the roll, while minima corresponded to 2D convection rolls and therefore the
roll formation stage. These results confirm that the analysis of short-time Lya-
punov exponents provides insight into the physics of the flow and suggests that
it could be useful for low-order modelling of its complex dynamics.
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