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Abstract. Recently, Jafari and Sprott (2013) have found nine simple chaotic flows with 

quadratic nonlinearities which include the unusual feature of having a line equilibrium. 

This study investigates the control of a simple chaotic system having a line equilibrium 

by means of the passive control method. Lyapunov function is used to realize that the 

passive controller ensures the global asymptotic stability of the system. In order to 

validate all the theoretical analyses, numerical simulations are demonstrated. Owing to 

the single passive controller, the chaotic flow stabilizes towards its line equilibrium in the 

state space effectively. 
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1  Introduction 
 

Lorenz introduced the first chaotic attractor in 1963 [1]. It is an interesting 

nonlinear phenomenon, therefore chaos generation has received a great deal of 

attention from researchers. Rössler proposed a simple three-dimensional chaotic 

system in 1976 [2]. A double-scroll attractor was shown from Chua’s circuit in 

1984 [3]. Sprott focused on simpler chaotic systems in 1994 and uncovered 19 

distinct chaotic flows which have either five terms and two nonlinearities or six 

terms and one nonlinearity [4]. In 1999, Chen and Ueta found a novel chaotic 

attractor called Chen chaotic system [5]. Lü et al. developed a new chaotic 

system, which represents the transition between the Lorenz and Chen systems in 

2002 [6]. Then, Lü et al. proposed a generalized form of the Lorenz, Chen and 

Lü systems called unified chaotic system in 2002 [7]. In recent years, several 

new chaotic attractors have been revealed [8–10], and many more will be 

discovered on account of their potential applications especially in cryptology 

and secure communication [11, 12]. Recently, Jafari and Sprott have focused on 

the chaotic systems that have a line equilibrium and found nine simple chaotic 

flows [13]. They are three-dimensional continuous autonomous chaotic 

attractors and consist of six terms and two parameters [13]. 
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In addition to searching for new chaotic systems, chaos control has become an 

important task. Its goal is to eliminate the chaotic trajectories and stabilize 

towards an equilibrium point of the system. At first, it was believed that 

controlling chaos cannot be done because chaotic systems are very sensitive to 

initial conditions. However, Ott, Grebogi, and Yorke applied the control of a 

chaotic system successfully in 1990 [14]. Afterwards, the chaos control has also 

received extensive attention. Many effective control methods such as linear 

feedback control [15], nonlinear feedback control [16], adaptive control [17], 

sliding mode control [18], passive control [19-25], impulsive control [26], and 

backstepping design [27] have been proposed for the control of chaos. Among 

them, the passive control method has been gaining significance due to using 

only one state controller which provides considerable benefits in reducing the 

complexity and cost. In this method, the main idea is to keep the system 

internally stable by using a controller which renders the closed loop system 

passive upon the properties of the system. In recent years, the passive control 

method has been applied for the control of Lorenz [19], Chen [20], unified [21], 

Rabinovich [22], Rucklidge [23] and some other chaotic systems [24, 25]. 

 

According to the literature review, the control of a chaotic system having a line 

equilibrium has not been investigated. Motivated by the chaos control studies, in 

this paper, the control of a chaotic flow having a line equilibrium has been 

implemented with a single state passive controller. The rest of this paper is 

organized as follows. In Section 2, a chaotic system which has a line 

equilibrium is described. In Section 3, a single passive controller is designed for 

the control. In Section 4, numerical simulations are demonstrated to validate the 

control. Finally, concluding remarks are given in Section 5. 

 

2  A Simple Chaotic Flow having a Line Equilibrium 

Jafari and Sprott [13] were inspired by the structure of the conservative Sprott 

case A system: 
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and they searched for chaotic flows with a line equilibrium. They considered a 

general parametric form of Eq. (1) with quadratic nonlinearities of the form 
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where the system has a line equilibrium in (0, 0, z) with no other equilibria. An 

exhaustive computer search has been done and nine simple cases are found 
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which have only six terms. The ninth chaotic flow is given in the following 

equation: 
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where a and b are the system parameters [13, 28]. When they are selected as a = 

1.62 and b = 0.2, the Lyapunov exponents become 0.0642, 0, and -0.6842 [13]. 

Thus, system (3) is chaotic for these parameters. Its Kaplan–Yorke dimension is 

2.0939 [13]. 
 

 
      (a) 

 
      (b) 

 
      (c) 

Fig. 1. Time series of the chaotic system having a line equilibrium for (a) x signals, (b) y 

signals, and (c) z signals. 
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The equilibria of the chaotic system (3) can be found by getting ,0x  ,0y  

and 0z  as follows: 
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Hence, the chaotic system (3) has a line equilibrium point: (x, 0, 0). Under the 

initial conditions x(0) = 0, y(0) = 1, and z(0) = 0.8, the time series, the 2D phase 

plots, and the 3D phase plane of chaotic system (3) are demonstrated in Fig. 1, 

Fig. 2, and Fig. 3, respectively. 

 

 
      (a) 

 
      (b) 

 
      (c) 

Fig. 2. Phase plots of the chaotic system having a line equilibrium for (a) x–y phase plot, 

(b) x–z phase plot, and (c) y–z phase plot. 
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Fig. 3. Phase plane of the chaotic system having a line equilibrium. 

3  Control with a Passive Controller 
 

The passive control method is applied to system (3) in order to control the 

chaotic system having a line equilibrium to its equilibrium point. The controlled 

system is considered as follows: 
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where u is the passive controller to be designed. By assuming that the state 

variable z is the output of the system and supposing that z1 = x, z2 = y, Y = z, and 

Z = [z1 z2]
T
, the system (5) can be denoted by normal form: 

 

.

,

,

21
2

122

1

uzzbYYY

Yzazz

Yz













 (6) 

The passive control theory has the following generalized form 
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and according to system (6), 

 ,
0

)(
2

0 











az
Zf  (8) 



Uyaroğlu and Kocamaz 282 

 ,
1

),(
1












z
YZp  (9) 

 ,),( 21
2 zzbYYYZb   (10) 

 .1),( YZa  (11) 

The storage function is chosen as 
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where 
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is the Lyapunov function of )(0 Zf  with )0(W = 0. According to the Eq. (8), 

the derivative of )(ZW  is 

 .0
0

][)(
)(

)(
2

2
2

210 














 az

az
zzZf

Z

ZW
ZW  (14) 

Since 0)( ZW  and 0)( ZW , it can be concluded that )(ZW is the Lyapunov 

function of )(0 Zf  and that )(0 Zf  is globally asymptotically stable [21]. 

 

According to the passivity definition, the controlled system can be equivalent to 

a passive system and globally asymptotically stabilized at its zero equilibrium 

by the following controller [19]: 
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From the Eq. (15), the passive control function is 

 ,21121
2 vYzzzzzbYYu    (16) 

where  is a positive constant and v is an external input signal. By taking back 

z1 = x, z2 = y, and Y = z conversions, the passive controller u becomes 

 .2 vzxyxxybzzu    (17) 

Substituting the Eq. (17) into system (3) yields 
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The equivalent system (18) is a passive system of the chaotic system (3) which 

has a line equilibrium. 

 

The passive controlled system can stabilize towards its any equilibrium point 

( zyx ,, ). Let 0,0,0  zyx  and then system (18) yields 
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This implies 
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The conditions in Eq. (20) maintain the global asymptotical stability of chaotic 

system (5) towards its E(x, 0, 0) equilibrium point. 

 

4  Numerical Simulations 
 

The third-order Runge-Kutta method with variable time step is used in all 

numerical simulations of controlling the chaotic system having a line 

equilibrium. The same parameter values and initial conditions mentioned in 

Section 2 are considered to ensure the chaotic behaviour of the system. The 

controller is activated at t = 50 in all simulations. The passive control gain is 

taken as α = 1. Simulation results for the control of this chaotic system towards 

(1, 0, 0), (0, 0, 0), and (-1, 0, 0) equilibrium points with a passive controller by 

setting v = 1, v = 0, and v = -1 are shown in Fig. 4, Fig. 5, and Fig. 6, 

respectively. 
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      (a) 

 
      (b) 

 
      (c) 

Fig. 4. Time responses of controlled chaotic system having a line equilibrium to (1, 0, 0) 

equilibrium point when the passive controller is activated at t = 50 for (a) x signals, (b) y 

signals, and (c) z signals. 
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      (a) 

 
      (b) 

 
      (c) 

Fig. 5. Time responses of controlled chaotic system having a line equilibrium to (0, 0, 0) 

equilibrium point when the passive controller is activated at t = 50 for (a) x signals, (b) y 

signals, and (c) z signals. 
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      (a) 

 
      (b) 

 
      (c) 

Fig. 6. Time responses of controlled chaotic system having a line equilibrium to (-1, 0, 0) 

equilibrium point when the passive controller is activated at t = 50 for (a) x signals, (b) y 

signals, and (c) z signals. 

As seen in Figs. 4–6, the outputs of chaotic system converge to the (1, 0, 0), (0, 

0, 0), and (-1, 0, 0) equilibrium points after the passive controller is activated. 

Therefore, the simulation results validate all the theoretical analyses. As seen in 

Fig. 4, when the passive controller is activated at t = 50, the control is provided 

at t ≥ 58. Also, the control is observed after 8 time period in Fig. 5 and Fig. 6. 

Hence, the simulation results confirm the effectiveness of proposed passive 

control method. 
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5  Conclusions 
 

In this paper, the control of a chaotic system having a line equilibrium is applied 

with a single state passive controller. The conditions of the asymptotic stability 

of the steady states of the controlled system are ensured with a Lyapunov 

function. Numerical simulations show that this three-dimensional continues time 

chaotic system can be controlled to its line equilibrium point in an appropriate 

amount of time with a passive controller. Hence, computer simulations have 

validated the effectiveness of passive control method in the control of the 

chaotic system having a line equilibrium. 
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