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Abstract. In this paper, the control of a chaotic finance system is applied by using 

Artificial Neural Networks (ANNs). Economic systems become more complicated and 

have undesired nonlinear factors. It is difficult to control when a chaotic behaviour 

occurs. So that the ANNs have the ability of learning functional relations, they can 

achieve the control of chaotic systems more effectively. On-line neural training 

algorithms are used for regulating the chaotic finance system to its equilibrium points in 

the state space. For faster training in back-propagation, Levenberg-Marquardt algorithm 

is preferred. Numerical simulations are performed to demonstrate the effectiveness of the 

proposed control technique. 

Keywords: Chaotic Finance System, Chaos Control, Neural Control, Artificial Neural 

Networks, Neural Networks. 

 

1  Introduction 
 

Nowadays, the financial systems are being more complicated and the markets 

are rising rapidly in an asymmetrical economic growth. The economic 

progresses are resulting in nonlinearity which leads difficult to control. Upon 

having some unpredictable nonlinear factors in interest rate, investment demand, 

price, per investment cost and stock, the financial systems can reveal chaotic 

behaviour. Nonlinearity and chaos in a financial system are undesired 

characteristics and traditional econometric approaches, strict assumptions, 

statistics based methods may be inadequate for a stable economic growth and 

control. Furthermore, the control of chaos in a financial system has significant 

importance from the management point of view of avoiding undesirable 

situations such as economical crises. 
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A nonlinear system under chaotic behaviour might have undesired trajectories; 

therefore it is required to control for eliminating chaos. Since the successful 

study of Ott, Grebogi, and Yorke named OGY control [1], various methods for 

the control and synchronization of chaotic systems have been presented. These 

approaches mainly include linear feedback [2], nonlinear feedback [3], time-

delayed feedback [4], adaptive [5], sliding mode [6], impulsive [7], passive [8] 

control methods. In the most of these control methods, it is assumed that the 

dynamical model of the chaotic system is known. However, some of the chaotic 

system models do not exactly represent the real situation, the parameters may be 

unknown and many chaotic systems do not have any mathematical equations. 

Intelligent control techniques generally attempt to control the chaos by using the 

output values of states, so they can be more comprehensive solution. Recently, 

the control of Lorenz [9, 10], Rossler [11], Chen [12], Lü [13], unified [14], and 

unknown [15] chaotic systems have been implemented with Artificial Neural 

Networks (ANNs). Fuzzy logic, the other popular intelligent technique, is used 

in the control of Lorenz [16, 17], Chua [17, 18], Rossler [18], Chen [18, 19], 

unified [20], Mathieu–van der Pol [21] and some other chaotic systems. With 

the Adaptive Neuro-Fuzzy Inference Systems (ANFIS), which is a combination 

of ANN and fuzzy logic systems, there are only a few papers for the control of 

chaotic systems [22–25]. 

 

The first chaotic finance system has been introduced in 2001 [26, 27]. Then, a 

new chaotic finance attractor has been built in 2007 [28]. Afterwards, two 

different hyperchaotic finance systems have been presented respectively in 2009 

and 2012 [29, 30]. Some papers have been published concerning the dynamic 

behaviours of these chaotic finance systems [30–33]. The synchronization of the 

chaotic finance systems have been implemented with active [34, 35], nonlinear 

feedback [36, 37], adaptive [38], sliding mode [39], and passive [39] control 

methods. For the control of the chaotic finance systems, several control methods 

have been proposed [29, 30, 40–45]. Yang and Cai have achieved the control of 

chaotic finance system via linear feedback, speed feedback, selection of gain 

matrix, and revision of gain matrix controllers in 2001 [40]. Chen has employed 

the time-delayed feedbacks to provide the control of this system in 2008 [41]. 

Emiroglu et al. have used a passive controller for controlling this nonlinear 

system in 2012 [42]. Cai et al. have constructed the control of modified chaotic 

finance system by means of linear feedback, speed feedback and adaptive 

control methods in 2011 [43]. The control of the former hyperchaotic finance 

system has been performed with the effective speed feedback control method by 

Ding et al. in 2009 [29], with the linear feedback control method by Uyaroglu et 

al. in 2012 [44], and with the time-delayed feedback control methods by Gelberi 

et al. in 2012 [45]. Yu et. al have realized the control of the latter hyperchaotic 

finance system with the linear feedback and effective speed feedback control 

methods in 2012 [30]. 

 

Motivated by the previous intelligent chaos control papers, in this study, further 

investigations on the control of chaotic finance systems are explored. Although 
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there are several studies in financial chaos control, as to the knowledge of the 

authors there is no intelligent approach for controlling the chaotic finance 

systems. In this study, neural controllers are employed for achieving the control 

of a chaotic finance system. The effectiveness of the proposed ANN control 

technique has been presented visually by using simulation results. 

 

2  Materials and Methods 

2.1  Chaotic Finance System 

The chaotic finance system is described by a set of three first-order differential 

equations as 
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where x, y, z are state variables and a, b, c are positive constant parameters, they 

represent the interest rate, investment demand, price exponent, saving amount, 

per investment cost, and elasticity of demands of commercials, respectively [26, 

27]. It exhibits chaotic behaviour when the parameter values are chosen as a = 

3, b = 0.1, and c = 1 [41]. The time series, 2D phase portraits and 3D phase 

plane of the chaotic finance system under these parameter values and the initial 

conditions x(0) = 1.5, y(0) = 4.5, and z(0) = -0.5 are illustrated in Fig. 1, Fig. 2, 

and Fig. 3, respectively. 

 

The equilibria of chaotic finance system (1) can be found by solving the 

following equation:  
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Then, the chaotic finance system possesses three equilibrium points; 
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When the parameter values are taken as a = 3, b = 0.1, and c = -0.5, the 

equilibrium points become E1(0, 10, 0), E2(-0.7746, 4, 0.7746), and E3(0.7746, 

4, -0.7746). 
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    (a) 

 
    (b) 

 
    (c) 

Fig. 1. Time series of the chaotic finance system for (a) x signals, (b) y signals, and (c) z 

signals 
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      (a) 

 
      (b) 

 
     (c) 

Fig. 2. 2D phase portraits of the chaotic finance system in (a) x–y phase plot, (b) x–z 

phase plot, and (c) y–z phase plot 

 

Fig. 3. 3D phase plane of the chaotic finance system 

 

 

 



Kocamaz et al. 294 

2.2  Artificial Neural Networks (ANNs) 

ANNs, which are inspired from biological neural networks, are basically a 

parallel computing technique. An ANN consists of processing elements called 

neurons and connections between them with coefficients called weights. Each 

processing element makes its computation based upon a weighted sum of its 

inputs and an activation function is also used for determining the output value. 

ANNs adapt themselves to the given inputs and desired outputs with a learning 

algorithm, and then they respond to the unknown situations rationally. If using 

only input layer and output layer is not sufficient, increasing the number of 

layers called hidden layers can solve the learning problem. There are different 

kinds of ANNs, the most commonly preferred one is the three-layered Feed-

Forward Neural Network (FFNN). As shown in Fig. 4, elementary FFNNs have 

three layers of neurons: input layer, hidden layer and output layer. 

 

Fig. 4. Basic architecture of feed-forward neural networks 
 

In Fig. 4, X(i) and Y(k) are the input-output data pairs, β1 and β2 are the bias 

values, w is the interconnection weight, and f is the activation function. i, j, and 

k represent the number of inputs, neurons in the hidden layer, and outputs, 

respectively. The values of each neuron in the hidden layer of FFNN can be 

calculated by 
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and the output layer of FFNN can be found as 
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Sigmoid and tangent sigmoid functions are the commonly used activation 

functions in FFNNs. While the sigmoid function produces only positive 

numbers between 0 and 1, the tangent sigmoid function produces numbers 

between -1 and 1. The formula of sigmoid function is given by 

 ,
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and the tangent sigmoid function can be denoted as 
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where e is the base of natural logarithm. 

 

FFNNs must be trained for adapting themselves to the given inputs and desired 

outputs. Back-propagation can be used as a teaching method for FFNNs. It is 

also known as gradient descent training algorithm. But, it is often too slow. 

Therefore, several high-performance training algorithms such as scaled 

conjugate gradient; Fletcher–Reeves conjugate gradient; Powell–Beale restarts 

conjugate gradient; resilient back-propagation; Broyden, Fletcher, Goldfarb, 

Shanno quasi-Newton; one step secant and Levenberg–Marquardt algorithms 

are preferred in recent years. 

 

3  Controlling Chaotic Finance System with ANNs 
 

In this study, a direct ANN control technique is proposed to control the chaotic 

finance system. The direct control technique is widely used for controller design 

with intelligent methodologies. Its goal is to get a control system with 

backpropagating the errors. The parameters of controllers are adjusted to 

minimize the error between the plant’s output and desired output. If the system 

includes nonlinearity, then linear controllers may not produce performance 

satisfactorily. In such cases, artificial intelligence techniques such as ANNs can 

be used in a direct control system. Its fast response time, general approximation, 

and learning abilities make the ANN an attractive method for nonlinear control. 

Fig. 5 shows the diagram of proposed direct ANN control technique for the 

control of chaotic finance system. 
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Fig. 5. The model of direct ANN control method for chaos control 

In Fig. 5, Yd is the desired process output (an equilibrium point of the chaotic 

system), Y(t+1) is the actual process output, e(t) equals to Y(t) – Yd is the input 

of the ANN, and u(t) is the output of the ANN. The network's output error 

e(t+1) is defined as Yd – Y(t+1). The goal of the control is to determine the 

bounded input u(t) as lim t→∞ e(t+1) 0. The ANN controllers are trained to 

control the chaotic system by backpropagating the errors so that the differences 

between desired output and actual output are minimized. This training path is 

shown as a dashed line in Fig. 5. For each of the x, y, and z states, there exists 

different ANN controllers in the proposed control model. 27 neurons are 

assigned in the hidden layer of ANNs. The weights of ANNs are adjusted online 

without a specific pre-training stage. If the error between desired output and 

actual output is too small, the control is achieved at that moment and no need to 

train the ANN controllers for this situation. Instead of using back-propagation 

(gradient descent) as a training method, the Levenberg–Marquardt algorithm is 

preferred because of learning relatively very fast. The inputs and outputs of 

ANNs are normalized to values between -1 and 1. Tangent sigmoid function is 

taken as the activation function because it produces numbers between -1 and 1. 

The training parameters of ANN are considered as epochs = 3, goal = 10
-10

 and 

min_grad = 10
-10

. Default values are used for all the other parameters. In order 

to control successfully, the ANN controllers are employed to train again for the 

new Y(t+1) situations by adjusting the weights of ANNs simultaneously. 

 

4  Numerical Simulations 
 

This section of the paper demonstrates the control results of chaotic finance 

system to verify the effectiveness of proposed ANN control technique. The 

simulation results are performed using the Matlab software. The numerical 

analyses are carried out using fourth-order Runge–Kutta method with variable 

time step. The same parameter values and initial conditions of finance system 
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described in Section 2 are taken to ensure the chaotic behaviour. When the ANN 

controllers are activated at t = 50, the simulation results for the control of 

chaotic finance system to E1(0, 10, 0), E2(-0.7746, 4, 0.7746), and E3(0.7746, 4, 

-0.7746) equilibrium points are shown in Fig. 6, Fig. 7, and Fig. 8, respectively. 

 

 
    (a) 

 
    (b) 

 
    (c) 

Fig. 6. Time responses of controlled chaotic finance system to E1(0, 10, 0) with the ANN 

controllers are activated at t = 50 for (a) x signals, (b) y signals, and (c) z signals 
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    (a) 

 
    (b) 

 
    (c) 

Fig. 7. Time responses of controlled chaotic finance system to E2(-0.7746, 4, 0.7746) 

with the ANN controllers are activated at t = 50 for (a) x signals, (b) y signals, and (c) z 

signals 
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    (a) 

 
    (b) 

 
    (c) 

Fig. 8. Time responses of controlled chaotic finance system to E3(0.7746, 4, -0.7746) 

with the ANN controllers are activated at t = 50 for (a) x signals, (b) y signals, and (c) z 

signals 

As expected, the Figs. 6–8 show that the proposed ANN controllers have 

stabilized the chaotic motion of the finance system towards its equilibrium 

points. When the controllers are activated at t = 50, the control is observed at t ≥ 

52 for all equilibrium points. The errors between desired output and actual 

output signals converge to zero with an appropriate time period. Hence, the 

simulation results verify the effectiveness of proposed online direct ANN 

control technique. 
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5  Conclusions 
 

Although several papers have concerned on the control of chaotic finance 

system, it is the first time its control is investigated with an artificial intelligence 

methodology in this study. A direct ANN control technique is proposed to 

achieve the control. The weights of ANN controllers are adjusted online without 

a specific pre-training stage. Levenberg–Marquardt algorithm is preferred for 

faster training. The simulation results in Figs. 6–8 have shown that the chaotic 

finance system is stabilized towards its equilibrium points effectively owing to 

the ANN controllers. The proposed method differs from the previous finance 

chaos control techniques in that it is feasible even if the equations of the finance 

system is unknown. As a future work, the other intelligent techniques such as 

fuzzy logic, ANFIS and genetic algorithm can be applied for the control of 

chaotic finance system. 
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