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Abstract. In this study, Adaptive Neuro-Fuzzy Inference System (ANFIS), which is a 

combination of fuzzy inference system and artificial neural network learning algorithms, 

is proposed for the anti-synchronization of chaotic systems. Based on an adaptive model 

reference control technique, two identical chaotic systems that have different initial 

conditions are trained by backpropagating the anti-synchronization errors. In the 

simulations, well-known Lorenz chaotic system is used. Simulation results show that the 

proposed approach is very effective for the anti-synchronization of chaos. 

Keywords: Anti-synchronization, Chaos, Adaptive Neuro-Fuzzy Inference System, 

Neuro-Fuzzy, ANFIS. 
 

 

1  Introduction 
 

The aim of synchronization is to use a master system’s output to induce a slave 

system so that the slave system’s output could follow the master system’s output 

asymptotically. Anti-synchronization means that the synchronized slave 

system's output has the same absolute values but opposite signs. Since the 

synchronization of chaotic systems was first proposed by Pecora and Carroll in 

1990 [1], chaos synchronization has become one of the most interesting research 

subjects and many control techniques have been proposed for the 

synchronization and anti-synchronization of the chaotic systems. Active control 

method was used for the synchronization of chaotic Lorenz [2], Rössler [3], 

Chen [3], Chua [4], between Lorenz and Rössler [5], and many other identical 

and non-identical systems. The synchronization and anti-synchronization were 

applied with active control for chaotic Colpitts [6], extended Bonhöffer–van der 

Pol [7], and hyperchaotic Chen [8] systems. Active controllers were also 

constructed for chaos anti-synchronization between chaotic Lü and Rössler [9], 

and between hyperchaotic Lorenz and Liu [10] systems. Anti-synchronization 

between hyperchaotic Lorenz and Liu [10], hyperchaotic Lorenz and Chen [11], 

between two different hyperchaotic four-scroll [12], and a modified three-
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dimensional chaotic finance [13] systems were realized by means of adaptive 

control technique. Feedback controllers were proposed to anti-synchronize 

Rössler [14], between Rössler and Chen [14], Chua [15], and Liénard [16] 

chaotic systems. The anti-synchronization was achieved Lorenz [17], Tigan 

[17], between Tigan and Lorenz [17], between Genesio and Rössler [18], 

hyperchaotic Chen [19], hyperchaotic Lü [19], and between hyperchaotic Chen 

and Lü [19] systems on the basis of nonlinear control scheme. Sliding mode 

control was applied to Rikitake [20], hyperchaotic Lorenz [21], hyperchaotic Lü 

[22], and hyperchaotic Qi [23] systems. Anti-synchronization of chaotic systems 

were also presented with passive control [24], H∞ control [25], and 

backstepping design [26] techniques. 

 

Furthermore, the synchronization and anti-synchronization of chaotic systems 

implemented with artificial intelligence approaches. Artificial Neural Networks 

(ANNs) were used for the synchronization of chaotic Lorenz [27], Rössler [27, 

28], unified [29], Genesio-Tesi [30], Duffing-Holmes [31] systems. The 

synchronization of chaotic Lorenz [32, 33], Rössler [32], Chen [32], Duffing-

Holmes [33], Chua [34], and Rikitake [35], between Chen and Lü [36], between 

Chen and hyperchaotic Lorenz [36] systems were applied with fuzzy logic. 

Anti-synchronization between hyperchaotic Wu and hyperchaotic Lorenz 

systems [36], chaotic Lorenz [37], and hyperchaotic Lorenz [37] were achieved 

owing to the fuzzy logic controllers in recent years. ANFIS was used for the 

chaos synchronization only in a few papers [38, 39]. 

 

According to the literature review, the anti-synchronization of chaos has not 

been investigated with ANFIS based controllers. In this paper, the anti-

synchronization of two identical Lorenz chaotic systems is applied by using an 

adaptive model reference ANFIS control technique. 

 

The rest of this paper is organized as follows: In Section 2, the Lorenz chaotic 

system, and ANFIS are described briefly. Then, the proposed ANFIS model is 

constructed for chaos anti-synchronization in Section 3. Afterwards, ANFIS 

controllers assigned to Lorenz chaotic system and the simulation results are 

presented graphically to verify the anti-synchronization in Section 4. Finally, the 

paper is concluded in Section 5. 

 

 

2  Materials and Methods 

2.1  Lorenz Chaotic System 

The Lorenz model is used for fluid conviction that describes some feature of the 

atmospheric dynamic. The differential equations of the Lorenz chaotic system is 

described by 
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where x, y, z are state variables that represent measures of fluid velocity, 

horizontal and vertical temperature variations, and σ, r, β are positive real 

constant parameters that represent the Prandtl number, Rayleigh number and 

geometric factor, respectively [40]. The Lorenz system is a chaotic attractor 

according to the parameters σ = 10, r = 28, and β = 8 / 3 [40]. The time series of 

the Lorenz chaotic system with the initial conditions (x(0), y(0), z(0)) = (9, 15, 

17) are shown in Fig. 1, the 2D phase portraits are shown in Fig. 2, and the 3D 

phase plane is shown in Fig. 3. 

 

 
      (a) 

 
      (b) 

 
      (c) 

Fig. 1. Time series of Lorenz chaotic system for (a) x, (b) y, and (c) z signals. 
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      (a) 

 
      (b) 

 
      (c) 

Fig. 2. Phase portraits of Lorenz chaotic system in (a) x–y, (b) x–z, and (c) y–z phase plot. 

 

Fig. 3. x–y–z phase plane of Lorenz chaotic system. 

2.2  Adaptive Neuro-Fuzzy Inference System (ANFIS) 

Introduced by Jang in 1992 [41], ANFIS is a Sugeno fuzzy model where the 

final Fuzzy Inference System (FIS) is optimized with an ANN training. It is a 

universal intelligent computing methodology and it is capable of approximating 

any real continuous function on a compact set to any degree of accuracy [42]. 
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ANNs, which are inspired from biological neural networks, have the ability of 

learning functional relations with limited amounts of training data. There are 

mainly two approaches for FISs, namely Mamdani [43] and Sugeno [44]. The 

differences between them arise from the outcome part where fuzzy membership 

functions are used in Mamdani’s approach, while linear or constant functions 

are used in Sugeno’s approach. Since ANFIS is based on the Sugeno type fuzzy 

model, it should be always interpretable in terms of function based fuzzy If-

Then rules. Then, its parameter values are determined by a learning algorithm of 

ANN. Either a backpropagation method or a hybrid method which is a 

combination of least squares estimation with backpropagation can be utilized. 

  

For better understanding of ANFIS, an example with two inputs x, y and one 

output f is given briefly. In an ANFIS model, the output of each rule is a linear 

combination of input variables by adding a constant term. For a first-order 

Sugeno fuzzy model, when it is assumed that each input has two membership 

functions, the fuzzy If-Then rules can be written as 

 Rule 1: If x is A1 and y is B1, then f1 = p1x + q1y + r1,  

 (2) 

 Rule 2: If x is A1 and y is B2, then f2 = p2x + q2y + r2,  

 Rule 3: If x is A2 and y is B1, then f3 = p3x + q3y + r3, 

 Rule 4: If x is A2 and y is B2, then f4 = p4x + q4y + r4,  

where Ai and Bi are the membership functions for inputs x and y, respectively, 

and pi, qi, ri are the parameters of output function with i = 1, 2, 3, … , n 

corresponding to Rule 1, Rule 2, Rule 3, … , Rule n. In ANFIS, the final output 

f is computed by the weighted average of each rule output as: 

  

i

iiii ryqxpwf )(  (3) 

where 

 .
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Fig. 4 shows the composed layers of an ANFIS structure: input fuzzification, 

fuzzy rules, normalization, defuzzification, and total output. In layer 1, the fuzzy 

membership functions are represented. Layer 3 calculates the firing strength of 

the signals received from layer 2 and forwards it to layer 4, which calculates an 

adaptive output for giving them as input to the layer 5, which computes the 

overall output [45]. More detailed information about ANFIS technique can be 

found in [41, 42, 45]. 
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Fig. 4. The architecture of ANFIS with two inputs and one output. 

3  Anti-Synchronization with ANFIS 
 

In this paper, the model reference adaptive control technique with ANFIS is 

proposed for the anti-synchronization of chaotic systems. The goal of model 

reference adaptive control technique is to get a control system behaving like the 

reference model, which specifies the desired response of the system. The 

parameters of controllers are adjusted to minimize the error between the outputs 

of the model and the actual system. If the system has nonlinearity, intelligent 

algorithms such as ANFIS would rather be used in the model reference adaptive 

control due to getting better performance. 

 

In the reference model, the master Lorenz system is described as 
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and the slave Lorenz system is 
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where u1, u2, and u3 are the nonlinear controllers. Sundarapandian obtained the 

controllers for anti-synchronization as 
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where error dynamics are e1 = x2 + x1, and e2 = y2 + y1 [17].  

 

The diagram of adaptive model reference ANFIS control technique for the anti-

synchronization of chaotic systems is shown in Fig. 5. The adaptive model 

reference ANFIS controllers are trained to drive the slave system so that the 

differences between the anti-synchronization errors of ANFIS and the outputs of 

a reference model are minimized. If the ANFIS output error ec(t+1) is defined as 

ec(t+1) = ys(t+1) + ym(t+1), then the goal of the anti-synchronization is to 

determine the bounded input u(t) as lim t→∞ ec(t+1) 0. The parameters of 

ANFIS controllers are adjusted by backpropagating the differences between 

anti-synchronization errors of ANFIS and nonlinear control reference model if 

the distance of error ec(t+1) is greater than er(t+1). This training path is shown 

as a dashed line in Fig. 5. Once the ANFIS controllers are trained successfully, 

they are ready to use for anti-synchronization and there is no need to the 

reference model anymore. 

 

 

Fig. 5. The block diagram of adaptive model reference ANFIS control technique for 

chaos anti-synchronization. 

The inputs of ANFIS include the state values of master and slave Lorenz chaotic 

systems. The output is the control signal. MATLAB is used for training the 

ANFIS controllers. This process is conducted with the command ‘genfis1’. 

Triangular (trimf) type membership functions with the number of 3 are taken for 

all inputs. Therefore, the ANFIS controllers have 729 Sugeno type rules. The 

membership function of output variable is selected as linear type. The training 

process proceeded with the command ‘anfis’. It identifies the parameters of 

Sugeno-type FISs. In the training stage, the hybrid learning rule, which is a 

combination of least-squared error and backpropagation gradient descent 

methods, with 5 epochs and zero error tolerance are preferred. Default values 
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are used for all the other parameters. The training process finishes when the 

maximum epoch number is reached. In order to anti-synchronize successfully, 

the trained ANFIS controllers are employed to train again with a loop. After 

iterating the loop 10 times, the outputs of ANFIS controllers have 0.00025, 

0.0007, and 0.00031 mean squared error as to x, y, and z states, respectively. 

 

 

4  Simulation Results 
 

In this section, numerical simulations are performed to show the anti-

synchronization of two identical Lorenz chaotic systems having different initial 

conditions with adaptive model reference ANFIS control technique. The fourth-

order Runge–Kutta method with variable time step is used in the numerical 

simulations. The above-mentioned parameter values of Lorenz system are 

considered to ensure the chaotic behaviour. The initial conditions are taken as 

(x1(0), y1(0), z1(0)) = (9, 15, 17) for the master system and (x2(0), y2(0), z2(0)) = 

(13, 8, 38) for the slave system. When the ANFIS controllers are activated at t = 

10, the simulation results of anti-synchronization and error signals are 

demonstrated in Fig. 6 and Fig. 7, respectively. 

 

 
      (a) 

 
      (b) 

 
      (c) 

Fig. 6. Time responses of anti-synchronization of Lorenz chaotic systems when the 

ANFIS controllers are activated at t = 10 for (a) x, (b) y, and (c) z signals. 
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Fig. 7. The anti-synchronization error signals of Lorenz chaotic systems when the ANFIS 

controllers are activated at t = 10. 

When the ANFIS controllers are activated at t = 20, the simulation results of 

anti-synchronization and error signals are demonstrated in Fig. 8 and Fig. 9, 

respectively. 

 

 
      (a) 

 
      (b) 

 
      (c) 

Fig. 8. Time responses of anti-synchronization of Lorenz chaotic systems when the 

ANFIS controllers are activated at t = 20 for (a) x, (b) y, and (c) z signals. 
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Fig. 9. The anti-synchronization error signals of Lorenz chaotic systems when the ANFIS 

controllers are activated at t = 20. 

As expected, the anti-synchronization of two identical Lorenz chaotic systems 

starting from different initial conditions is achieved with the ANFIS controllers 

in Fig. 6 and Fig. 8. The anti-synchronization error signals that are shown in 

Fig. 7 and Fig. 9 converge asymptotically to zero. When the ANFIS controllers 

are activated at t = 10, the anti-synchronization is provided at t ≥ 12.5. Also, the 

anti-synchronization is observed at t ≥ 21.5, when the controllers are activated at 

t = 20. Hence, the computer simulations validate the effectiveness of proposed 

adaptive model reference ANFIS control technique. 

 

 

5  Conclusions 
 

In this paper, a novel approach to the anti-synchronization of a chaotic system is 

applied with an ANFIS technique. The ANFIS controllers are trained on the 

bases of adaptive model reference control technique. Famous Lorenz chaotic 

system is preferred for simulations and a nonlinear control method is considered 

as the reference system. Numerical simulations show that ANFIS controllers 

achieve the anti-synchronization of two identical Lorenz chaotic systems in an 

proper time period. As a future work, non-identical chaos anti-synchronization 

may be investigated with ANFIS. 
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