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Abstract. Non-relativistic and special-relativistic predictions for low-speed momentum 

diffusion, which are calculated using the same parameter and the same initially localized 

Gaussian ensemble of trajectories, are compared for a prototypical Hamiltonian system – 

the periodically-delta-kicked particle. Contrary to expectation, we show that the 

agreement between the two predictions can break down after some time. 
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1  Introduction 
 

It is conventionally believed [1-3] that the special-relativistic dynamical 

predictions for a low-speed system are always well-approximated by the 

Newtonian predictions. However, contrary to conventional belief, numerical 

study [4,5] of a prototypical Hamiltonian system – the periodically-delta-kicked 

particle – showed that the Newtonian trajectory does not always agree with the 

special-relativistic trajectory – the breakdown of agreement between the two 

single-trajectory predictions is rapid if the trajectories are chaotic, but very slow 

if the trajectories are non-chaotic. Similar rapid breakdown of agreement 

between single-trajectory predictions was also found in a model dissipative 

system [6] and a model scattering system [7]. Recently, we showed [8,9] that 

the Newtonian and special-relativistic statistical dynamical predictions – 

position and momentum means and standard deviations, dwell time, 

transmission and reflection coefficients – for low-speed systems can also rapidly 

breakdown in agreement.  

 

However, a comparison of the Newtonian and special-relativistic 

predictions for low-speed momentum diffusion has not been done to ascertain if 

the special-relativistic prediction is always well-approximated by the Newtonian 

prediction as conventionally expected. In this paper, we compare the low-speed 

momentum diffusion predicted by the two theories based on the same parameter 

and the same ensemble of initial conditions for the periodically-delta-kicked 

particle. Details of the kicked particle and numerical calculation are presented 
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next, followed by the results. The significance of our finding is discussed in the 

final section. 

 

 

2  Methods 
 

The periodically-delta-kicked particle is a one-dimensional Hamiltonian 

system where the delta kicks are due to a sinusoidal potential which is 

periodically turned on for an instant. The Newtonian equations of motion for the 

periodically-delta-kicked particle are easily integrated [10] to yield an exact 

mapping, which is known as the standard map, of the dimensionless scaled 

position X and dimensionless scaled momentum P from just before the (n-1)th 

kick to just before the nth kick: 
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where n = 1,2,…, and K is a dimensionless positive parameter. The special-

relativistic equations of motion for the periodically-delta-kicked particle are also 

easily integrated [11,12] to yield an exact mapping for the dimensionless scaled 

position X and dimensionless scaled momentum P from just before the (n-1)th 

kick to just before the nth kick: 
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where n = 1,2,…. In addition to the parameter K, the relativistic standard map 

[Eqs. (3) and (4)] has another dimensionless positive parameter, . Since 
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βP << 1 implies v << c (i.e., low speed), where v is the particle speed and c is 

the speed of light.  

 

The statistical quantity that is typically used to study momentum diffusion 

is [10,13,14] the mean square momentum displacement (MSMD)  
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where <…> is an average over an ensemble of trajectories. In previous studies 

[10,13,14] of momentum diffusion in the Newtonian standard map, an initially 

non-localized semi-uniform ensemble, where semi-uniform means that the 

initial positions are uniformly distributed but the initial momentums are all the 

same value, was used in the numerical calculation of the MSMD. These studies 

[13,14] of the Newtonian standard map have shown that, for parameter K where 

accelerator mode islands exist, the MSMD has a power law dependence on the 
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kick n: Dn

 where 1 <  < 2. In this case, the diffusion is termed anomalous. In 

contrast, for parameter K where there is no accelerator mode island, the 

diffusion is normal, that is, the MSMD grows linearly [10,13,14].  

 

In our calculations, we use an initially localized ensemble instead where 

the initial positions and momentums are both Gaussian distributed 
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with means <X0> and <P0>, and standard deviations 
0X

  and 
0P

 . In each 

theory, the MSMD is first calculated using 10
6
 trajectories, where the numerical 

accuracy is determined by comparing the 30-significant-figure calculation with 

the 35-significant-figure (quadruple precision) calculation. For example, if the 

former calculation yields 1.234… and the latter yields 1.235…, the 10
6
-

calculation is accurate to 1.23 (3 significant figures). The MSMD is then 

recalculated using 10
7
 trajectories with the same accuracy determination. 

Finally, the accuracy of the MSMD is determined by comparing the 10
6
-

calculation with the 10
7
-calculation. For example, if the 10

6
-calculation is 

accurate to 1.23 and the 10
7
-calculation is accurate to 1.24, the MSMD is 

accurate to 1.2 (2 significant figures). 

 

 

3  Results 
 

Here we will present a representative example to illustrate our findings. In 

this example, the parameter  in the relativistic standard map [Eqs. (3) and (4)] 

is small, 10
-7

, and so the mean particle speed is low, at most about 0.001% of 

the speed of light. The parameter K is 6.9115, and the ensemble is initially 

Gaussian localized in phase space with means <X0> = 0.5 and <P0> = 99.9, and 

standard deviations 
0X

 =
0P

 = 10
-12

. 

 

Fig. 1 shows that the Newtonian and special-relativistic predictions for the 

MSMD are very close and fluctuating for the first 16 kicks, but, from kick 17 

onwards, the MSMD predicted by the two theories disagree with each other 

completely. For example, at kick 17, the Newtonian and special-relativistic 

MSMD are, respectively, 0.19505 (accurate to 5 significant figures) and 

1.523049 (accurate to 7 significant figures), where the numerical accuracies 

were determined using the method described in the previous section and so there 

is no numerical artifact in the results. 
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Fig. 1. Newtonian (squares) and special-relativistic (diamonds) MSMD for the 

first 20 kicks (top) and from kick 20 to kick 50 (bottom). MSMD which cannot 

be resolved in accuracy is not plotted. 
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4   Conclusions 
 

In summary, we have shown that the Newtonian and special-relativistic 

predictions for low-speed momentum diffusion in a Hamiltonian system can 

break down after some time. Which of the two different predictions is 

empirically correct if a test were to be conducted? One would expect the 

special-relativistic prediction to be empirically correct since special relativity 

continues to be successfully verified [15-17]. If so, our finding shows that 

Newtonian mechanics does not always yield empirically correct predictions for 

low-speed momentum diffusion as would be expected conventionally. 
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