
Chaotic Modeling and Simulation (CMSIM) 4: 413-423, 2016

Scattering of Rayleigh waves by sinusoidal
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Abstract. Rayleigh waves propagating along the surface of a semi-infinite, mono-
clinic, incompressible medium are considered. The surface is assumed to be flat with
superposed undulations of small amplitude (in relation to the wave length of the
Rayleigh waves). Using this smallness, a perturbation approach is used to obtain
the zeroth and the first order solutions. In deriving the zeroth order solution, the
quartic secular equation for the wave speed for the incompressible case is obtained
without taking the limit of a compressible case. The first order corrections to the
perfectly-flat surface solutions for stresses and displacements are derived. The results
are illustrated with numerical calculations.
Keywords: Rayleigh waves, surface undulations, monoclinic, incompressible solid.

1 Introduction

Rayleigh waves are surface waves propagating in semi-infinite elastic media, [1].
Mal [2] considered the effect of small corrugations on a flat surface in the con-
text of earthquake waves in an isotropic medium. Later, Chandler-Wilde [3]
studied scattering of body waves from a rough surface and Markenscoff and Lek-
oudis [4] considered Love waves in slowly varying layered media. This approach
was extended to incompressible, orthotropic media by Nair and Sotiropoulos
[6]. Of course, incompressibility itself is an approximation to characterize ma-
terials with high values for the bulk modulus compared to the shear modulus.
In these studies cited above (except for the case of Love waves) incident waves
get reflected from the surface accompanied by two scattered components with
distinct wave numbers. From a knowledge of the incident wave number and
the scattered wave numbers one may characterize the surface undulations. As
a continuation of our previous studies on incompressible, orthotropic mate-
rials [7] and on incompressible, monoclinic materials [8], here we consider
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Rayleigh waves propagating on a flat surface with sinusoidal, small amplitude
undulations in an incompressible, monoclinic material. The small amplitude
compared to the wave length allows one to expand the governing equations and
the boundary conditions in a perturbation series. Of course, the zeroth order
system, which consists of a set of homogeneous equations with homogeneous
boundary conditions, describes Rayleigh waves on a flat surface. We directly
derive the secular quartic equation for the wave speed explicitly to obtain the
original quartic equation obtained by Destrade, et al. [9] as a limiting case of
Rayleigh waves in compressible materials. This limiting process has been de-
scribed by Ting [10] and by Destrade [11]. Rayleigh waves on flat surfaces in
the orthotropic, compressible case were studied by Ogden and Pham [12], [13],
[14] and Royer and Dieulesaint [15]. The first order equations are, again, ho-
mogeneous. However, the first order boundary conditions are inhomogeneous,
with the inhomogeneities depending on the zeroth order solutions. Solutions of
these equations are given for traction as well a displacement components. The
results are illustrated with numerical results for a select range of parameters.

2 Formulation

As shown in Fig. 1, a monoclinic, incompressible medium occupies the domain
−∞ < x1 < ∞, 2a sinωx1 < x2 < ∞. Here, the amplitude of the surface of
the surface undulation , 2a, and the spatial frequency, ω, are assumed to be
small compared to the wave length and frequency of the Rayleigh wave along
a perfectly flat surface. That is, if k represents the Rayleigh wave number, it
is necessary to have ε ≡ ka << 1 and it is sufficient (not necessary) to have
ω/k << 1.

 
x 

y 

Fig. 1. A semi-infinite medium with an undulating surface.

We assume plane strain condition and stress-strain relations

σ11 = −p+ C11u1,1 + C12u2,2 + C16(u1,2 + u2,1),
σ22 = −p+ C12u1,1 + C22u2,2 + C26(u1,2 + u2,1),
σ12 = C66(u1,2 + u2,1) + C16u1,1 + C26u2,2,

(1)

where Cij represent the five material constants, σij the stresses, ui,j the dis-
placement gradients and p the hydrostatic pressure.

The equations of motion are

σ11,1 + σ12,2 = ρü1,
σ12,1 + σ22,2 = ρü2,

(2)
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where ρ is the density and üi = ∂2ui/dt
2 with t representing time. We supple-

ment the above equations with the incompressibility condition

u1,1 + u2,2 = 0. (3)

The boundary conditions are: Components of the traction vector on the
wavy surface must be zero.

Using Eq. (3) and eliminating the hydrostatic pressure p, the stress-strain
relations, Eq. (1), can be written as

σ11 − σ22 = (C11 + C22 − 2C12)u1,1 + (C16 − C26)(u1,2 + u2,1),
σ12 = (C16 − C26)u1,1 + C66(u1,2 + u2,1).

(4)

The equations of motion can be written as

σ11,11 + 2σ12,12 + σ22,22 = 0,
σ11,12 + σ12,11 + σ12,22 + σ22,12 = ρ(u1,2 + u2,1)̈ ,

σ11,11 + σ12,12 = ρü1,
(5)

We may introduce the quantities

sij =
σij
C66

, β̄ =
C11 + C22 − 2C12

C66
, γ =

C16 − C26

C66
,

q = s11 − s22, s = s22, τ = s12, α = C66,
(6)

where the parameter β̄ is related to the parameter β introduced in our previous
work [5, 6, 7] as

β =
C11 + C22 − 2C12

4C66
− 1,

in the form
β̄ = 4(β + 1). (7)

Eqs. (4) can be written as

q = β̄u1,1 + γ(u1,2 + u2,1),
τ = γu1,1 + u1,2 + u2,1.

(8)

We require the strain energy, qu1,1 +τ(u1,2 +u2,1) to be positive definite. Using
Eqs. (8), this gives the constraint on the material parameters,

β̄ − γ2 > 0. (9)

Inverting the equations in (8), we get

u1,1 =
1

β̄ − γ2
[q − γτ ],

u1,2 + u2,1 =
1

β̄ − γ2
[β̄τ − γq].

(10)

Using Eqs. (10) in the equations of motion (5) and assuming time-harmonic
solutions for which the time dependence is expressed using the multiplier exp(−iΩt),
we have, for any unknown, u,

ü(x1, x2, t)→ −Ω2u(x1, x2). (11)
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The relevant equations are:

q,11 +2τ,12 +s,11 +s,22 = 0,

q,12 +τ,11 +τ,22 +s,22 =
ρΩ2

α(β̄ − γ2)
[γq − β̄τ ],

q,11 +τ,12 +s,11 =
ρΩ2

α(β̄ − γ2)
[γτ − q].

(12)

Considering the small amplitude waviness of the surface, we expand the
unknowns, u, in the above equations as

u = u0 + εu1 + · · · (13)

The zeroth order system is given by

q0,11 + 2τ0,12 + s0,11 + s0,22 = 0,

q0,12 + τ0,11 + τ0,22 + s0,22 =
ρΩ2

α(β̄ − γ2)
[γq0 − β̄τ0],

q0,11 + τ0,12 + s0,11 =
ρΩ2

α(β̄ − γ2)
[γτ0 − q0].

(14)

The first order system is of the same form:

q1,11 + 2τ1,12 + s1,11 + s1,22 = 0,

q1,12 + τ1,11 + τ1,22 + s1,22 =
ρΩ2

α(β̄ − γ2)
[γq1 − β̄τ1],

q1,11 + τ1,12 + s1,11 =
ρΩ2

α(β̄ − γ2)
[γτ1 − q1],

(15)

The coupling between the two systems is due to the boundary conditions.
For the surface, x2 = 2a sinωx1, the tangent makes an angle θ with the x1-axis,
given by tan θ = 2aω cosωx1 = 2ε(ω/k) cosωx1. Neglecting quadratic terms in
ε, we have

sin θ ∼ 2ε(ω/k) cosωx1, cos θ ∼ 1. (16)

If T and N represent the non-dimensional tangential and normal traction
components on the surface, we have

T = s12(cos2 θ − sin2 θ) + (s22 − s11) cos θ sin θ = 0,
N = s11 sin2 θ + s22 cos2 θ − 2s12 sin θ cos θ = 0.

(17)

Using the approximation of Eq. (16), and the Maclaurin expansions of the
form

T (x1, x2) = T (x1, 0) + T,2(x1, 0)x2 + · · · , (18)

the traction components can be expanded to obtain

T0 = τ0 = 0, N0 = s0 = 0, (19)

T1 = τ1−2q0
ω

k
cosωx1+

2

k
τ0,2 sinωx1 = 0, N1 = s1+

2

k
s0,2 sinωx1 = 0. (20)

We now have homogeneous systems of differential equations for the zeroth
and first order quantities; but the boundary conditions are homogeneous for
the zeroth order and non-homogeneous for the first order.
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3 Zeroth order solutions

The zeroth order system (14) can be solved assuming the unknowns in the form

u0(x1, x2) = ū0 exp[ik(x1 + λx2)], (21)

where ū0 is a constant. The equations for q̄0, τ̄0 and s̄0 are:

(1− η̄)q̄0 + (λ+ γη̄)τ̄0 + s̄0 = 0,
(λ+ γη̄)q̄0 + (1 + λ2 − β̄η̄)τ̄0 + 2λs̄0 = 0,

q̄0 + 2λτ0 + (1 + λ2)s̄0 = 0,
(22)

where

η̄ =
ρΩ2

α(β̄ − γ2)k2
. (23)

We will also use

η = η̄(β̄ − γ2) = ρc2/α, c2 = Ω2/k2, (24)

where c is the speed of the zeroth order wave.
From the first equation above, we find

q̄0 =
1

η̄ − 1
[(λ+ γη̄)τ̄0 + s̄0]. (25)

Eliminating q̄0 from the other two equations, we obtain

A11(λ)τ̄0 +A12(λ)s̄0 = 0
A21(λ)τ̄0 +A22(λ)s̄0 = 0,

(26)

where the coefficients, which are functions of λ, are defined as

A11(λ) = (1− η̄)(1 + λ2 − β̄η̄)− (λ+ γη̄)2,
A12(λ) = A21(λ) = λ(1− 2η̄)− γη̄,
A22(λ) = (1− η̄)(1 + λ2)− 1.

(27)

Setting the determinant of the system (26), A11A22 − A12A21, to zero, we
obtain the characteristic equation for λ

λ4 + 2γλ3 − (2− β̄ + η)λ2 − 2γλ+ 1− η = 0. (28)

We note that it is η, not η̄, appearing in the quartic equation, and when γ = 0
we have an orthotropic material and λ can be obtained by solving a quadratic
equation for λ2. In order to have the disturbance decay in the x2 direction, we
have to choose two values of λ, λ1 and λ2, with positive imaginary parts. From
the last term in the characteristic equation, this implies that the wave speed
parameter η = ρc2/α has to satisfy the constraint

η < 1. (29)

Following Destrade et al. [9], we may obtain an explicit quartic equation for
η in the following way:



418 S. Nair and D. A. Sotiropoulos

Let us separate amplitudes τ̄0 and s̄0 into two parts—one corresponding to
the solution with λ1 and the other corresponding to λ2. That is

τ̄0 = τ̄01 + τ̄02, s̄0 = s̄01 + s̄02, (30)

The system of equations (26) can be satisfied for the two values of λi, i = 1, 2,
in two ways: By choosing

τ̄0i = −C0iA12(λi), s̄0i = C0iA11(λi), (31)

or by choosing
τ̄0i = −C ′0iA22(λi), s̄0i = C ′0iA21(λi). (32)

The boundary conditions of zero traction components mean

C01A12(λ1) + C02A12(λ2) = 0, C01A11(λ1) + C02A11(λ2) = 0, (33)

or

C ′01A22(λ1) + C ′02A22(λ2) = 0, C ′01A21(λ1) + C ′02A21(λ2) = 0, (34)

The constants C01 and C02 can be expressed using a single constant D as

C01 = −DA12(λ2), C02 = DA12(λ1). (35)

For non-trivial solutions of the two equations, (33) and (34), for C0i and
the two for C ′0i, we require

A12(λ1)A11(λ2)−A12(λ2)A11(λ1) = 0 (36)

and
A22(λ1)A21(λ2)−A22(λ2)A21(λ1) = 0. (37)

Substituting the explicit expressions for the functions Aij from Eqs. (27), we
get Eqs. (36) and (37) in the forms

(2η̄−1)η̄λ1λ2+γη̄2(λ1+λ2)−(1−2η̄)[(1−β̄η̄)(1− η̄)−γ2η̄2]+2γ2η̄2 = 0, (38)

and
(1− η̄)(2η̄ − 1)λ1λ2 + (1− η̄)γη̄(λ1 + λ2)(2η̄ − 1)η̄ = 0. (39)

Multiplying Eq. (38) by (1− η̄) and Eq. (39) by η̄, we can eliminate the terms
containing λi and the resulting secular equation for the wave speed parameter
η is

2(β̄ − γ2)η̄4 − 5(β̄ − γ2)η̄3 + (4 + 4β̄ − 3γ2)η̄2 − (4 + β̄)η̄ + 1 = 0. (40)

Solutions of this secular equation for selected values of β and γ can be found
in our previous paper [5].

In Table 1 we have listed the values of η = ρc2/α which yield two exponents
λ1 and λ2 with positive imaginary parts for various values of β̄ and γ. When
the material is isotropic, β̄ = 4 and γ = 0. We had mentioned the necessary
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Table 1. Dependence of η, λ1, and λ2 on the material parameters β̄ and γ.

β̄ γ η λ1 λ2

1.0 0.0 0.43016 -0.85731+0.14106i 0.85731+0.14106i

0.2 0.38944 -0.97267+0.26369i 0.77267+0.06442i

2.0 0.0 0.70440 -0.66929+0.30943i 0.66929+0.30943i

0.2 0.66789 -0.79830+0.46497i 0.59830+0.17652i

3.0 0.0 0.84583 -0.39722+0.48463i 0.39722+0.48463i

0.2 0.81926 -0.58016+0.71683i 0.38016+0.26079i

4.0 0.0 0.91262 0.0+0.29560i 0.0+1.0i

0.2 0.89378 -0.37851+1.07292i 0.17851+0.22404i

5.0 0.0 0.94560 0.0+0.16379i 0.0+1.42393i

0.2 0.93170 -0.29731+1.43663i 0.09731+0.14923i

6.0 0.0 0.96341 0.0+0.10999i 0.0+1.73911i

0.2 0.95262 -0.26578+1.74109i 0.06578+0.10462i

7.0 0.0 0.97390 0.0+0.08061i 0.0+2.00490i

0.2 0.96517 -0.24959+2.00337i 0.04959+0.07080i

condition, η < 1, for the existence of a pair of complex conjugate solutions for
λ. When β̄ is less than 4.00, there are cases where two values of η < 1 exist.
However, only one of these gives two exponentially decaying solutions in the
x2-direction.

The zeroth order solutions are

τ̄01 = −τ̄02 = DA12(λ2)A12(λ1),
s̄01 = −s̄02 = −DA12(λ2)A11(λ1),

q̄01 =
1

η̄ − 1
[(λ1 + γη̄)τ̄01 + s01], q02 =

1

η̄ − 1
[(λ2 + γη̄)τ̄02 + s02].

(41)

Using the second equation in (2), the vertical displacement ū20 on the sur-
face can be written as

ū20 = − i

kη
[λ1s̄01 + λ2s̄02] (42)

Table 1 shows the values of η, λ1 and λ2 for selected values of β̄ and γ.

Table 2 shows the values of the nondimensional zeroth order stresses τ01 =
−τ02, s01 = −s02, and the vertical displacement measure ku20 for β̄ = 3.0 and
γ = 0.2. The constant D in Eq. (34) is set to unity to normalize the solutions.
This constant is a measure of the amplitude of the zeroth order Rayleigh wave.
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Table 2. Nondimensional zeroth order stresses and the vertical displacement at the
surface for β̄ = 3 and γ = 0.2.

Quantity Value

η 0.8193

λ1 -0.5802+0.7168i

λ2 0.3802+0.2608i

τ01 = −τ02 -0.0732

s01 = −s02 -0.0091-0.0444i

ku20 0.0470-0.0353i

4 First order solutions

From the form of the boundary conditions (19), we need solutions for the first
order equations which depend on x1 as a linear combinations of ei(k+ω)x1 and
as ei(k−ω)x1 . Let

q1+ = q̄+e
ik[(1+ω̄)x1+µx2], q1− = q̄−e

ik[(1−ω̄)x1+µx2],
τ1+ = τ̄+e

ik[(1+ω̄)x1+µx2], τ1− = τ̄−e
ik[(1−ω̄)x1+µx2],

s1+ = s̄+e
ik[(1+ω̄)x1+µx2], s1− = s̄−e

ik[(1−ω̄)x1+µx2],

(43)

where q̄+, etc. are constants and

ω̄ = ω/k.

Substituting these in Eqs. (15), we find

q̄∗ + 2µ∗τ̄∗ + (1 + µ2
∗)s̄∗ = 0,

(µ∗ + γη∗)q̄∗ + (1 + µ2
∗ − β̄η̄∗)τ̄∗ + 2µ∗s̄∗ = 0,

(1− η̄∗)q̄∗ + (µ∗ + γη̄∗)τ̄∗ + s̄∗ = 0,
(44)

where ∗ stands for ± and

η̄∗ = η̄± = η̄/(1± ω̄)2. (45)

Using

q̄∗ =
1

η̄∗ − 1
[(µ∗ + γη̄∗)τ̄∗ + s̄∗], (46)

in the first two equations in (44), we have

Â11τ̄∗ + Â12s̄∗ = 0,

Â21τ̄∗ + Â22s̄∗ = 0,
(47)

where
Â11 = (1− η̄∗)(1 + µ2

∗ − β̄η∗)− (µ∗ + γη̄∗)
2,

Â12 = Â21 = µ∗(1− 2η̄∗)− γη̄∗,
Â22 = (1− η̄∗)(1 + µ2

∗)− 1.

(48)
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The characteristic equation for µ∗ is obtained, similar to the zeroth order sys-
tem, by setting Â11Â22 − Â12Â21 = 0, as

µ4
∗ + µ2

∗(β̄ − 2− η∗) + 2γµ∗(µ2
∗ − 1) + 1− η∗ = 0, (49)

where
η∗ = (β̄ − γ2)η̄∗. (50)

Eq. (49) gives two solutions for µ∗, namely, µ∗1 and µ∗2 with positive imaginary
parts for a certain range of values for ω̄. Unlike the zeroth order system, in Eq.
(49) η∗ is known for a given ω and η. We have a constraint on ω to keep the
value of η−, which is greater than η+, below unity for exponentially decaying
solutions, that is

η < (1− ω̄)2. (51)

Also, the nondimensional wave speeds of the scattered waves are given by

η+ = η/(1 + ω̄)2, η− = η/(1− ω̄)2. (52)

Eqs. (47) can be solved in the form

τ̄∗j = −Ĉ∗jÂ12(µ∗j), s̄∗j = Ĉ∗jÂ11(µ∗j), j = 1, 2, (53)

where the constants Ĉ∗j , j = 1, 2 have to be found using the boundary condi-
tions. Corresponding to the two acceptable values of µ∗, we assume

τ̄∗ = τ̄∗1 + τ̄∗2, etc. (54)

The boundary conditions, Eqs. (19), become

τ̄∗1 + τ̄∗2 = D∗1 ≡ (λ1 − λ2)

[
ω̄

η̄ − 1
− ∗1

]
τ̄01,

s̄∗1 + s̄∗2 = D∗2 ≡ − ∗ (λ1 − λ2)s̄01,
(55)

where, again, “*” stands for “±”.
Using the zeroth order solutions in the boundary conditions, we have

Ĉ∗1 = − 1

∆∗
[Â11(µ∗2)D∗1 + Â12(µ∗2)D∗2],

Ĉ∗2 =
1

∆∗
[Â11(µ∗1)D∗1 + Â12(µ∗1)D∗2],

(56)

where
∆∗ = Â11(µ∗2)Â12(µ∗1)− Â11(µ∗1)Â12(µ∗2). (57)

Once, the constants Ĉ∗j are known, the first order solutions for τ̄∗j and s̄∗j can
be computed using Eq. (53).

Finally, the first order correction to the vertical displacement is

u21 = − i

ηk
[(1 + ω̄)(τ̄+1 + τ̄+2 + µ+1s̄+1 + µ+2s̄+2)

+ (1− ω̄)(τ̄−1 + τ̄−2 + µ−1s̄−1 + µ−2s̄−2)] .
(58)
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Table 3. Nondimensional first order stresses and the vertical displacement at the
surface for β̄ = 3.0 and γ = 0.2 for two values of ω̄.

Quantity ω̄ = 0.02 ω̄ = 0.04

η̄+ 0.7874 0.7574
µ+1 -0.5874+0.7326i -0.5935+0.7470i
µ+2 0.3874+0.3016i 0.3935+0.3341i
τ̄+1 -0.0559+0.0544i -0.0557+0.0562i
τ̄+2 -0.0164-0.0201i -0.0185-0.0210i
s+1 -0.0416-0.0263i -0.0442-0.0251i
s+2 0.0127-0.0122i 0.0153-0.0133i
η̄− 0.8530 0.8889
µ−1 -0.5714+0.6994i -0.5606+0.6801i
µ−2 0.3714+0.2055i 0.3606+0.1136i
τ̄−1 0.0575-0.0503i 0.0601-0.0470i
τ̄−2 0.0108+0.0178i 0.0063+0.0154i
s̄−1 0.0356+0294i 0.0315+0.03187i
s̄−2 -0.0066+0.0091i -0.0025+0.0066i
ku21 -0.0039-0.0028i -0.0088-0.0061i

Table 3 shows the first order corrections to the stresses and the vertical
displacement for two values of the frequency of undulations, ω̄ = 0.02 and
ω̄ = 0.04. It was observed that when ω̄ = 0.05, two exponentially decaying
solutions in the vertical direction ceased to exist. The quartic equation (28)
for λ gives a pair of complex conjugate and two real roots for this case.

5 Conclusion

We consider an incompressible, monoclinic solid in plane strain with a free
surface in the form of a low amplitude sine wave. Rayleigh waves propagat-
ing along the surface is analyzed using perturbations in two stages: the first
stage deals with a Rayleigh wave along a flat surface and the second stage
deals with corrections due to the small amplitude sinusoidal perturbations to
the flat surface. We derive the secular quartic equation for the wave speed
directly to obtain the previous result obtained by Destrade et al. [9] using a
limiting case of a compressible solid. We also obtain expressions for the first
order corrections in the form of scattered waves with the corresponding shear
and normal stresses. Numerical values are given in nondimensional form to
illustrate the computational procedure for two different spatial frequencies of
the undulations.
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