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Abstract. Knowing the inherent characteristics of a price time series is the preface of 

forecasting future prices. This study tries to use chaos theory to investigate the behavior 
of copper prices. Keeping the mathematical definition of chaos as a standard frame, the 

known chaos tests were applied based on a discipline. The Lyapunov exponent and the 

BDS test (Brock, Deckert, Scheinkman, 1986) approved the evidence of nonlinear 

behavior and possible evidence of chaos for the gathered data. However, the close returns 
test, as a direct test of chaos, rejected the presence of chaos in copper return series. 

Finally, a GARCH (generalized autoregressive conditional heteroskedasticity) type 

model was fitted on the series under study to capture this nonlinearity. The BDS test 

results indicated that there was no longer any nonlinearity in the filtered data. It was 
concluded that the stochastic methods should be applied to predict future copper prices. 

Keywords: Chaos, the BDS test, Lyapunov exponent, the close returns test, nonlinear 

dynamics. 
 
 

1  Introduction 
 

The chaos tests look for a deterministic behavior through seemingly turbulent 

structures. A number of researchers have applied these tests for different 

financial time series to examine whether their series are chaotic. Many of them, 

such as Frank and Stengos [1], Hsieh [2], Panas and Ninni [3], and Scarlet et al 

[4], have established the presence of chaos in the economic time series. Many 

others, such as J.T. Barkoulas et al [5], Cecen and Erkal [6], Frank et al [7], 

Gilmore [8], Adrangi et al [9], Yousefpoor et al [10], though have found 

evidence of non-linear structure in their time series under study, they believe it 

is a non-linear stochastic behavior not a deterministic one. Knowing the inherent 

characteristics of a time series is important because it leads the researcher at the 

next step to select the best model of forecasting. As mentioned by Aihara [11], 
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if a data set be chaotic, a chaotic neural network can be applied to model its 

dynamics.  

The common chaos tests that are introduced in chaos literature have been 

applied to study these characteristics. But, these tests need an excessive number 

of data that are not usually available for financial time series. This is even worse 

for yearly time series. Ramsey [12] has shown that the correlation dimension 

will be misleading if the number of examined data be small. Panas [13] used 

only metric chaos tests and showed that the behavior of copper returns (from 

January 1989 to December 2000) was mostly driven by unpredictable stochastic 

variables. He mentioned that there was no priority between different chaos tests 

and recommended that a careful investigation should be done into validity of 

these tests. Yousefpoor et al [10] offered a systematic approach to select the 

chaos tests. They kept the mathematical definition of chaos (in sense of 

Devaney) as a direction to choose the tests. 

In this paper we tried to implement the chaos tests on daily copper prices in a 

systematic order on the basis of mathematical definition of chaos. Alike 

researches such as J.T. Barkoulas et al. [5], we applied the topological approach, 

by using the close return test, which attempts to detect more fundamental 

properties of a chaotic system and, on the other hand, it is not misleading for 

relatively small data sets. To do so, a number of copper historical prices were 

gathered from London Metal Exchange market from January 1997 to October 

2007 (number of observations=2735) to be examined. 

This paper is organized as follows. Section 2 presents chaos theory basis. 

Section 3 presents the empirical results of each test. Section 4 draws 

conclusions.  

 

2  Chaos theory basis 
 

The chaos simply defines as a non-linear deterministic dynamic which 

seemingly behaves like a stochastic structure. The interest is to find the function 

that governs these dynamics. The motion of a time series like 

( 0 1, 2, 1, ..., ,n nx x x x x ) that seems stochastic may be governed by a chaotic 

function like 1( )n nf x x  . Having this function, one will be able to develop the 

series for future ( 1 2, ,...n nx x  ). Yousefpoor et al [10] mentioned the 

mathematical definitions of a chaotic f in sense of Devaney [14]. Here, we 

refer to the main definition of a chaotic function which briefly conveys all 

properties that a chaotic function possesses:  

 

Let V be an interval, it is said that :f V V   is chaotic on V if: 

 

  I. f  has sensitive dependence on initial conditions; 

 II. f  is transitive; 

III. Periodic points are dense in V. 

 



Chaotic Modeling and Simulation (CMSIM)  4: 531-543, 2017      533 

 
The rapid divergence of solutions, which are close together initially, is called 

sensitive dependence on initial conditions. 

Transitivity implies that the orbit of some interval 0I is dense in [0, 1].
1
 The set 

0I is said to be dense in [0, 1] if for each interval  0,1I   there is a point of 

0I which is in I . 

Periodic points are all unstable and this means that as soon as an orbit comes 

close to a periodic point, it will be pushed away somewhere else. 

There is a special case that each of these conditions implies the other two [15].
2
 

Yousefpoor et al [10] mentioned that it might be impossible to recognize this 

special case and it is impossible to rely on investigating one condition in 

practice. Nevertheless, they regarded conditions (I) and (III) mentioned in main 

definition of chaos. It is notable that no test is found for condition (II) of chaos 

mathematical definition. They also mentioned that all chaos prerequisites must 

simultaneously be established for a time series to be chaotic. 

 Our goal is also performing introduced chaos tests (based on mathematical 

definition of chaos) to check null hypothesis of chaos for copper daily prices. In 

other words, if our data do not satisfy just one of conditions (I) and (II), they are 

not chaotic. 

 

3  Empirical results 
 

There are many chaos tests that have been used for chaos detection in different 

researches. But, Knowing the conditions we are looking for, we selected the 

largest Lyapunov exponent and the close return tests which examine conditions 

(I) and (III) of mathematical definition of chaos in order. The BDS test is also 

used to detect what kind of dependency exists among data. In this section, the 

empirical results are arranged according to our research development.  

At the first step we calculated the copper return series. It is generally believed in 

financial affairs that, against return series, the price time series are not 

stationary. Stationary is important because it assures that statistical properties of 

a time series do not change over time. Thus, we changed daily copper price 

series to a stationary one by first difference 1ln( )t t tr p p   . Using the 

augmented Dickey–Fuller [16] and Phillips–Perron [17] tests, it was approved 

that this return series is a stationary one (Table 1). 

 

                                                 
1 A sequence of iterates like ( 0 1, 2, 1, ..., ,n nx x x x x ), is called the orbit of 0x  under f  in 

dynamical system approach. 
2 In special case of symmetric one-hump mapping, each of these conditions implies the other row. 
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Fig. 1. First differenced time series (copper return series) 

 

Table 1. Stationary test of first differenced time series 

Value of 

statistic 
10% critical 

value 
5% critical 

value 
1% critical 

value 
Test 

-38.28 

-55.38 

-1.61 

-1.61 

-1.94 

-1.94 

-2.57 

-2.57 

ADF 

PP 

 

3.1.  Looking for nonlinear dependence 
 

As mentioned previously, chaotic data exhibit nonlinear behavior. A numeric 

test which is widely used for nonlinearity testing is the BDS test (Brock, 

Deckert, and Scheinkman, [18]). The test uses correlation function (also called 

the correlation integral) as the test statistic. This choice is in contrast with the 

Grassberger-Procaccia [19] test, which uses the correlation dimension. The 

correlation function is needed in deriving the correlation dimension, but the two 

are not the same.  

Since the derived distribution of the correlation dimension is unknown, the BDS 

test uses the correlation function as the test statistic. The asymptotic distribution 

of the correlation function is known under the null hypothesis of whiteness 

(independent and identically distributed observations). As a result, the BDS test 

can be used to produce a formal statistical test of whiteness against dependence. 

However, the sampling distribution of the BDS test statistic is not known under 

the null of chaos [20]. 

The BDS test can be used to produce a test of linearity against the broad 

alternative of nonlinearity, whether or not chaotic. Fitting a linear model of time 

series and removing linear structure, The BDS test then can be used to 

determine whether there is evidence of remaining dependence in the data. If all 

linear dependence has already been removed, then any remaining dependence 

should be nonlinear [20]. 
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Consider a time series of observations , 1,...,tx t T . Use this series of scalars 

to create an ‘embedding’. In other words construct a series of   ‘M-histories’ as 

1 1( , ,..., )M
t t t t Mx x x x   . This converts the series of scalars into a slightly 

shorter series of vectors with overlapping entries. One uses this stack of vectors 

to carry out the analysis. Suppose that the true, but unknown, system which 

generated the observations is n-dimensional. Then provided 2 1M n   

generically the M-histories recreate the dynamics of the underlying system. This 

result, due to Takens [21], permits one to use the M-histories to analyze the 

system's dynamics. The spatial correlations amongst the points (M-histories) are 

measured by calculating the correlation integral, ( )MC   [7]. 

Setting 2s   in the following equation, Euclidian norm is achieved: 

 
1/

1
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Doing so, the correlation integral is calculated using the following equations: 

1
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1mT T M           (3)  

      

The statistic of the BDS test is then given as: 

 

[ ( , , ) (1, , ) ] / ( , , )MBDS T C M T C T M T         (4) 
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In which T represents the length of data and I  is Heaviside step function.  

The distribution of the BDS statistic will well be approximated when a sample 

has 500 or more observations; the M is selected to be 5 or lower; and  is 

selected to be between 0.5 and 2 S.D. of data [22]. 

According to the BDS test, if tx is IID  with a non-degenerate distribution, 

then ( , , ) (1, , )MC M T C T  , as T  . 

Removing linear dependencies of a time series, the BDS test is carried out on 

the residuals to check null hypothesis of being IID . If the BDS statistics do not 

equal to zero, the null hypothesis will be rejected and presence of a nonlinear 
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dependency will be established. Because our efforts were unproductive to fit a 

linear time series model on our data, we carried out the BDS test on our original 

data. 
3
 Table 2 reports the results of the BDS test for our original data: 

 

Table 2 .BDS statistics for original data (first difference) 

M  
BDS 

5 4 3 2  

13.54 11.76 10.81 9.48  0.5 

 / 12.37 11.42 10.42 9.05  1 

12.53 11.74 10.75 9.25  1.5 

12.10 11.44 10.34 8.81  2 

 

From this table it can be inferred that there is some kind of nonlinearity through 

our data. In the next two sections we inspect (based on chaos definition) 

whether this nonlinearity is of chaos.  

 

3.2. Testing the condition (I)  
 

The method of the Lyapunov exponent can be employed to determine whether 

the process generating a time series is chaotic. The approach is based on the idea 

that the distance between two points is described by the largest Lyapunov 

exponent. The Lyapunov exponent measures the average rate of contraction 

(when negative) or expansion (when positive) of trajectories starting nearby on 

an entire attractor.
4
 The exponents can be positive or negative, but at least one 

exponent must be positive for an attractor to be classified as chaotic. If the 

distance of two nearby trajectories grows exponentially (on average), this is 

evidence of chaos because it shows that the process exhibits sensitive 

dependence to initial conditions. Thus, where L is the largest Lyapunov 

exponent, the criteria are [23]:  

 

Stochasticity if  0L  ; (7)     

   

Chaos if 0L     (8)     

    

Here, we employed Kurths and Herzel [24] algorithm to estimate the Lyapunov 

exponent. The approach is started by constructing M-histories in order to 

reconstruct the system. All nearby pairs are selected from amongst the M-

histories. All selected ( , )M M
i jX X  should satisfy following condition: 

                                                 
3  The Ljung and Box test was used to fit a linear time series model on our data. But, 

there was only a weak autocorrelation and, on the other hand, the adjusted R2 statistic 

refused the fit goodness of suggested models. 
4 The trajectory of a chaotic time series is attracted to a part of state space. This part of 
state space is called ‘attractor’. 
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0( ; , ) M M
i jr M i j x X         (9) 

 

In which,  is a small positive number and .  is a metric. We will use the 

Euclidean measure of distance. In eq. (9) we have selected the nearby points in 

the M-histories. Using the next equation, the original nearby points are followed 

further n steps forward in time: 

 

( ; , ) M M
n i n j nr M i j x X         (10) 

 

Now, the following ratio is calculated: 

 

0( ;, , ) ( ; , ) / ( ;, , )n nd M i j r M i j r m i j      (11) 

 

If the nearby points have separated, ( ; , )nd M i j  will be larger than one. Finally 

one aggregates over the ( ; , )nd M i j  to get an aggregate statistic [7]: 

 

( , ) ln ( ; , ) / ( 1)n

i j

L M n d M i j N N


       (12) 

 

Our results of ( , )L M n calculation are reported in table 3. 

 

Table 3. Lyapunov exponents 

M  
 6 5 4 3 2  

1.03 1.22 1.46 2.48 1.9  0.5 

 / 1.55 1.07 1.08 1.21 1.9  1 

0.66 0.68 1.08 1.21 1.9  1.5 

 

As it can be seen, all Lyapunov exponents are positive. Though, some 

researchers have construed positive Lyapunov exponents as chaos, there are 

many cases that nonlinear stochastic systems have raised positive Lyapunov 

exponents. For example, see Yousefpoor et al. [10] and Damming and Mitschke 

[25]. 

As a matter of fact, having a positive Lyapunov exponent is a necessary but not 

sufficient evidence of chaos. So, the other prerequisites mentioned in the chaos 

definition should be investigated necessarily.  
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3.3. Testing the condition (III) 

 

Each attractor contains a large number of unstable orbits of many periodicities; 

that are ‘dense’. This density implies periodic points. In order to test the 

periodic points Gilmore [26] presented a new topological test which is named 

‘close return test’. This topological test is a qualitative one and has many 

advantages over metric tests (e.g. correlation dimension).
 5

 For instance, it is 

applicable to relatively small data sets in economics and finance.
 6 

A quantitative form of this test has also presented by Gilmore [8]. Alike the 

BDS test, this quantitative form detects departures from IID and, therefore, is 

disregarded here. 

The starting point for implementing the topological algorithm is the time series  

 ix without an embedding. If one of the observations ix occurs near a periodic 

orbit, then subsequent observations will evolve near that orbit for a while before 

a sufficiently long time, they will return to the neighborhood of ix after some 

interval, T, where T indicates the length of the orbit, measured in units of the 

sampling rate. This means that i i Tx x  will be small. Further, 1ix  will be 

near 1i Tx    , 2ix   will be near 2i Tx    and so on. Thus it makes sense to look 

for a series of consecutive data elements for which i i Tx x   is small. 

To detect these regions of ‘close returns’ in a data set a color-coded graph can 

be constructed. All differences i i Tx x   are computed. If i i Tx x   , 

the result is coded black; if i i Tx x   , the result is coded white. A 

threshold value,  , is determined as a small percentage (usually 2% to 5%) of 

the largest difference between any two values across the data set. The horizontal 

axis of the graph indicates the observation number, i , where (1,2,..., )i N , 

and the vertical axis is designated as t , where (1,2,..., )t N i  . Close returns 

in the data set are indicated by horizontal line segments. However, if the data set 

is stochastic, a generally uniform array of black dots will appear [8, 26].  

Keeping close return plots of a chaotic map
7
 and of a pseudorandom series, 

presented by Gilmore [8], as our standard (figures 2 and 3), we compared our 

blue coded close return plots (500 by 300) with them. Figures 4 to 8 illustrate 

the close return plots of our series. 

 

 

 

 

                                                 
5 The metric approach is characterized by study of distances between points on a strange 

attractor. 
6 The other advantages of this test are described in Gilmore [26]. 
7 The Henon map (Henon, [27]). 
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Fig. 2. Close return plot of a chaotic map 

[8]. 

 

Fig. 3. Close return plot of a pseudorandom 

series [8]. 

 

 

  
Fig. 4. Close return plot of 0 to 500 

observations. 

 

Fig. 5. Close return plot of 500 to 1000 

observations. 

 

 

  
Fig. 6. Close return plot of 1000 to 1500 

observations. 

 

Fig. 7. Close return plot of 1500 to 2000 

observations. 
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Fig. 8. Close return plot of 2000 to 2400 observations. 

 

As it can be seen, our plots are more like the close return plot of pseudorandom 

series than that of chaotic map. Thus, the condition (III) of chaos definition is 

not established and our series under study is not chaotic. This result, however, 

does not take our study to an end. Because, the kind of nonlinearity we found 

through our data should be known. The idea is removing this nonlinearity from 

our data via a GARCH-type model; and, then, using the BDS test to examine its 

adequacy for the established nonlinear structure. 

 

3.4. Residual evaluation of a GARCH-type model 
 

Some researches extract the standardized residuals from an appropriate ARCH-

type model and, then, test for chaos on the standardized residuals. Chen [28] 

showed that filtering may affect the dimensionality of the original data and 

filtered data may mimic chaotic data. To avoid this, at first step, we decided to 

test for chaos after removing just linear dependencies. As mentioned before, 

however, we couldn’t fit a satisfactory linear time series model on our data and 

we worked on original data set. Having construed a nonlinear- non chaotic 

structure in our time series, we would implement the BDS test on the residuals 

of a GARCH-type model to check whether the fitted model could describe this 

structure. 

Using Engle [29] test it was approved that a GARCH (2,1) model could be 

appropriate to filter this nonlinearity from our series. Table 5 shows the chi-

square statistic significant at 5% level for Studentized residuals of this model 

with null hypothesis of IID .  

 

 

 

t 

i 
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Table 4. GARCH (2,1) model 

T-ratio Std. Error Value Parameter 

1.33 2.6e-004 3.4e-004  

3.63 1.13e-006 4.1e-006 0 

6.95 0.01053 0.073212 1 

2.34 0.14084 0.32931 
1 

4.32 0.13391 0.57895 2 

 

Table 5. Engle test for residuals of GARCH model. No ARCH effect. 

 

The BDS test was also performed on the standardized residuals of this model. It 

is notable that Brock et al. [18] demonstrated that the distribution of this test 

changes when applied on the residuals ARCH and GARCH-type filters. The 

authors suggest bootstrapping the null distribution to obtain the critical values 

for the statistic when applying it to standardized residuals from these models. 

Hence, The BDS statistics are evaluated against critical values obtained from 

Monte Carlo simulation. Table 6 shows that the residuals of the fitted model are 

IID (the null hypothesis is approved) and this model can describe the nonlinear 

dynamics found in our time series.  

 

Table 6. BDS statistics for filtered data 

M  
BDS 

5 4 3 2  

1.18 1.08 1 0.96  0.5 

 / 
0.8 0.856 0.912 0.793  1 

1.43 1.42 1.3 1  1.5 

2.17 2.11 1.84 1.27  2 

M  Critical values for 

BDS statistic 5 4 3 2  

3.28 2.90 2.62 2.60  0.5 

 / 
2.55 2.47 2.40 2.58  1 

2.53 2.53 2.56 2.68  1.5 

2.82 2.93 3.12 3.33  2 

 

 

 

5% critical value Engle Statistic lags 

11.07 

18.30 

31.41 

6.30 

7.50 

20.10 

5 

10 

20 
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4  Conclusions 
 

We kept the mathematical definition of chaos as a standard frame to select and 

implement chaos tests on copper return series. Previous studies have considered 

only metric tests for such series. Here, we applied the close return test which is a 

topologic one. This test is a direct test of chaos and applicable for small data 

sets. 

It’s also notable that some researchers believe that if the residuals of a stochastic 

model be IID , the chaos tests will not be required and these models describe 

the relationship among data. As mentioned above, filtering may cause a 

misunderstanding of chaos in some cases. To avoid this, the suggestion is 

implementing chaos tests on both original and filtered data sets. 

Following the above policies, we couldn’t establish a chaotic behavior in copper 

return series. The suggestions for forecasting copper prices include using 

stochastic time series models or running the Monte Carlo simulation. 
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