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1 Introduction

This summary is based on joint work with Roelof Bruggeman to be published
in [3]. In [1] we have studied the inhomogeneous Fermi-Pasta-Ulam (FPU)
problem which contains many different resonance cases. In [8] and [9] recurrence
and near-integrability aspects of FPU cells were studied. Inspired by [6] we will
discuss the inhomogeneous periodic FPU-problem in the case of alternating
masses 1,m, 1,m, . . . , m ≥ 1, a = 1/m, see [2] and [3]. In a periodic chain, for
(even) n particles with arbitrary masses mj > 0, position qj and momentum
pj = mj q̇j , j = 1 . . . n, ε ≥ 0 a small parameter, the Hamiltonian (see [1]) is of
the form:

H(p, q) =

n∑
j=1

(
1

2mj
p2j + V (qj+1 − qj)) with V (z) =

1

2
z2 +

α

3
z3 +

β

4
z4. (1)

If α 6= 0, β = 0 we will call this an α-chain, if α = 0, β 6= 0 a β-chain. The
momentum integral:

m1q̇1 +m2q̇2 + . . .+mnq̇n = P0 (2)

can be used to reduce the system to n − 1 degrees-of-freedom (dof). Our
analysis is for a large part based on averaging normal form theory, the numerical
illustrations on matcont under Matlab with ode78.

2 Invariant manifolds

Studying the alternating FPU-chain with 8 particles we observed an invariant
manifold equivalent to the system with 4 particles. This phenomenon turns
out to be much more general, as will become clear in Theorem 1 below. It can
be considered as an illustration of the theory of Chechin and Sakhenko in [4],
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see also [5].
We consider the system FPU2n(a;α, β) of second order differential equations

mj q̈j = +(qj+1 − qj) + α(qj+1 − qj)2 + β(qj+1 − qj)3

− (qj − qj−1)− α(qj − qj−1)2 − β(qj − qj−1)3
(3)

for 1 ≤ j ≤ 2n, with indices taken modulo 2n. The masses are m2j−1 = 1 and
m2j = a−1 with a > 0. If m2j = 1 we have the classical periodic FPU chain.
The parameters α, β ∈ R regulate the non-linearity of the system. If α = β = 0
the system is linear, with associated matrix −A2nC2n, where A2n is a 2n× 2n
diagonal matrix with diagonal (1, a, 1, a, . . .), and C2n has the form

2 −1 0 · · · 0 −1
−1 2 −1 · · · 0 0
0 −1 2 · · · 0 0
...

...
...

...
...

0 0 0 · · · 2 −1
−1 0 0 · · · −1 2


. (4)

The system of differential equations (3) has the same structure if we allow α
and β to be complex, and a ∈ C r {0}. In this complex context we have the
following result:

Theorem 1. Let n ≥ 2 and let k be a multiple of n. There is a 2n-dimensional
subspace Mk,n ⊂ C2k such that the restriction of the system FPU2k(a;α, β) to
Mk,n is equivalent to the system FPU2n(a;α, β).

By equivalence we mean that there is a bijective map Φ : C2n → Mk,n

such that the image t 7→ Φq(t) of the solution t 7→ q(t) with initial values
(q(0), q′(0)) ∈ C2n is the solution in C2k with initial values

(
Φq(0), Φq′(0)

)
.

An implication is that a system of 4 particles in an FPU chain with alter-
nating masses can be found in the dynamics of submanifolds in systems with
8, 12, 16, . . . etc. particles. Likewise a FPU chain with 8 particles can be found
in in the dynamics of submanifolds in systems with 16, 24, 32, . . . etc. particles.

3 The FPU chain with 8 particles

The case of 4 particles has been extensively discussed in [2]. As an illustrative
example we consider the case of an FPU α-chain with 8 alternating masses.
The eigenvalues λi = ω2

i are

λi = 2(1 + a), 1 + a+
√

1 + a2 (twice), 2, 2a, 1 + a−
√

1 + a2 (twice), 0.

The momentum integral (2) enables us to reduce the equations of motion to 7
dof.
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Fig. 1. Timeseries for α-chains based on the FPU-like system with 8 particles near
M357, 2000 timesteps, ε = 0.5 (the figure contains parameter values different from
figs. in [3]). Vertical the Euclidean distance d1246 to the initial values of the modes
1, 2, 4, 6 with initial values 0.01 and x3(0) = x5(0) = x7(0) = 0.2. Left the quasi-stable
case a = 0.5 (0 ≤ d1246 < 0.04), right the unstable case a = 0.75 (0 ≤ d1246 < 0.35)
extended to 6000 timesteps. Note that the picture does not display the recurrence
theorem as we only show the modes starting outside but near M357.

3.1 The α-chain for a = 0.5 and a = 0.75

First order averaging-normalization produces already non-trivial results for a =
0.5 and a = 0.75. From the normal form we find three invariant manifolds with
three dof each, so 6-dimensional. Numbering the eigenvalues from largest to
smallest we have the invariant manifolds from the modes 1, 4, 5: M145, modes
2, 5, 6: M256, modes 3, 5, 7: M357; the fifth mode plays a pivotal role. For
M357 we demonstrate stability if a = 0.5, instability for a = 0.75 in fig. 1.
In the case a = 0.75 the normal form has seven integrals and is integrable,
in the case a = 0.5 we found six independent integrals. Using the recurrence
theorem as a tool has been neglected in the literature, probably because for
statistical mechanics the theorem does not give much information. For finite-
dimensional Hamiltonian systems the recurrence theorem can produce valuable
insight in the dynamics of the phase-flow. Hamiltonian systems will contain
many resonance zones associated with stable and unstable periodic solutions.
Using the recurrence theorem as a tool we can identify in this problem some of
the prominent zones where 2 : 1 : 1 resonances are present.

3.2 The α-chain for large m ( a small)

The assumption of m large induces strong resonances. In the case of 8 particles
we have for the reduced 7 dof system the frequencies

√
2+O(a) for the first four

modes, the so-called optical group and the frequencies
√

2a, a, a for the modes
5, 6, 7, the acoustical group. The normal form changes accordingly and we find
again invariant manifolds. Using recurrence, quasi-trapping in resonance zones
near the optical and the acoustical group can be identified with 1 : 1 resonances.
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Conclusions

• Many of our considerations hold also for the classical periodic FPU chain.
We have shown in [1] and [2] that in the case of four particles the presence of
two equal masses produces a symmetry in the dynamical system that makes
the system structurally unstable (a small perturbation of the parameters
produces qualitatively different dynamics). This means that the classical
periodic FPU chain with all masses equal is also structurally unstable and
that it is misleading as a model.

• The averaging-normal form technique we have used is valid for an arbitrary
number of particles as long as the total energy of the chain is finite and
small. This enables us to extend the analysis to chains with many particles
as was shown in [7].

• The dynamics on the energy manifold is structured by approximate in-
variant manifolds, some of them valid for all time, some with finite but
long validity (1/εm intervals for some positive m). At the same time the
Poincaré recurrence theorem produces relatively short recurrence times, see
[9]. Altogether this suggests that the classical periodic FPU chain for low
energy values does not lead to equipartition of energy and is not a good
model for statistical mechanics.
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