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Hamiltonian and dissipative passage through
resonance
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Abstract. This paper compares passage through resonance in the case of a conserva-
tive (Hamiltonian) system and in the case of a dissipative system. In the conservative
case we will have the Poincaré recurrence theorem on a compact energy manifold; the
implication is that if passage through resonance takes place, this will be repeated an
infinite number of times with slightly modified positions and momenta. The form
the recurrence takes will provide information about the internal structure of the res-
onance zone. We illustrate this for the 1 : 2 : 7 resonance. One of the conclusions
is that apart from actions, the angles (or phases) are important to characterize the
dynamics.

For our dissipative system we have chosen a toy problem and a gyroscopic system
that displays many phenomena. In these cases we have apart from passage the pos-
sibility of being caught into resonance. The gyroscopic example has been discussed
in [12] and was summarized in [10] ch. 7.5.3, but we add a number of aspects. We
will argue that our examples are typical for passage through resonance zones. Slow
manifold theory adds insight to the phenomena.
Keywords: resonance, nonlinear, flywheel, recurrence.
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1 The Hamiltonian system

In applications one often has to consider many degrees-of-freedom (dof) sys-
tems.Usually, the procedure is then to truncate the system to the resonant
part, leaving out the non-resonant modes. One of the motivations for the first
sections is to consider the validity of this procedure.
Consider the three dof Hamiltonian H(p, q) = H2(p, q) +H3(p, q) + . . . with

H2 =
1

2
ω1(p21 + q21) +

1

2
ω2(p22 + q22) +

1

2
ω3(p23 + q23). (1)

The frequencies ω1, ω2, ω3 are chosen positive; we can approximate them by
rational numbers as the rationals are dense in the set of real numbers. The
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Hamiltonian terms Hj(p, q), j = 3, 4, . . . are homogeneous polynomials in p, q
of degree j. We assume that two of the frequencies, say ω1 and ω2, are close
to the first order 1 : 2 resonance of two dof. Often we rescale the frequencies
to obtain ω1 = 1, ω2 = 2, ω3 = l, l ∈ Q; detuning effects to allow for small
frequency perturbations can be added in applications. For an exhaustive list
of first and second order resonances of three dof Hamiltonians see [10], tables
10.3-4. The three frequencies are not in first or second order resonance of three
dof, so for the frequency l we exclude neighborhoods of the natural numbers
1, 2, . . . , 6.

A powerful theorem on the stability of Hamiltonian systems in the sense of
exponentially-long time invariance of the actions was formulated and proved
by Nekhoroshev [6]. This theorem presupposes the absence of first or second
order resonances in the system but in many applications a natural combination
of low and higher order resonances takes place. This motivates to explore in
detail combined low and higher order resonance to analyze the variation of the
non-resonant actions (or amplitudes). The tools will be normal form theory
and the use of the Poincaré recurrence theorem to characterize the dynamics
in resonance zones.

It is convenient to scale the coordinates near the stable origin of the system
by putting p, q → εp, εq and dividing by ε2. This leads to the Hamiltonian

H(p, q) =
1

2
(p21 + q21) + (p22 + q22) +

1

2
l(p23 + q23) + εH3(p, q) + ε2 . . . (2)

So ε2 is a measure for the energy with respect to stable equilibrium at the
origin. We introduce action-angle coordinates I, φ by the transformation:

qi =
√

2Ii sinφi, pi =
√

2Ii cosφi, i = 1, 2, 3, (3)

leading with (2) to

H = I1 + 2I2 + lI3 + εH3 + ε2 . . . and İ = −∂H
∂φ

, φ̇ =
∂H

∂I
.

We will also use amplitude-phase coordinates r, ψ with transformations:

qi = ri cos(ωit+ ψi), q̇i = −ωiri sin(ωit+ ψi). (4)

1.1 Birkhoff-Gustavson or Born-approximation

After Birkhoff and Gustavson (earlier formulated by Born [1]) we will introduce
a symplectic near-identity transformation producing normal forms (see [10] for
theory and literature). Prominent terms in the normal forms are produced
by the resonances induced by the frequencies 1, 2, l. Introducing annihilation
vectors a ∈ Z3 with the property a1 + 2a2 + a3l = 0, the normal form will
contain corresponding combination angles of the form:

χ = a1φ1 + a2φ2 + a3φ3.
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We will call ‖a‖ = |a1|+ |a2|+ |a3| the norm of the annihilator. The Birkhoff-
Gustavson normal form to H4 in action-angle coordinates involves the angles
φ1, φ2; it will be:{

H12 = I1 + 2I2 + lI3 + εb1I1
√

2I2 cos(χ1 − b2) + ε2A(I1, I2, I3),

χ1 = 2φ1 − φ2.
(5)

We used the annihilator (2,−1, 0). The constants b1, b2 are real (for potential
problems b2 = 0), A is a homogeneous, quadratic polynomial in I1, I2, I3 (quar-
tic in the amplitudes or positions and momenta).

Preliminary conclusions on the Birkhoff-Gustavson normal forms
(5)

1. The normal form (5) is clearly integrable with integrals H12, I1 + 2I2 and
I3.

2. Near stable equilibrium the energy manifolds are S5 and are foliated in
tori as in the case of two dof but with additional parametrization by the
integral I3.

3. On the energy manifold we find families of short-periodic solutions
parametrized by I3 which is a degeneration in the sense of Poincaré ([7]
vol. 1).

The treatment of higher order resonance in [9] is quite general for two dof, the
theory will be used with extensions from [11], see also [10].

2 Higher order interactions

We will be interested in the influence of higher order resonances on the long-
term behaviour of the action I3 and the general flow involving passage through
resonance. To avoid too many parameters we will consider potential problems,
for the qualitative aspects of the phenomena this is a certain restriction. The
case of the 1 : 2 resonance for the first two modes is the simplest case as the
resonance acts on the cubic part of the Hamiltonian.

2.1 The case b1 6= 0, ‖a‖ ≥ 5

Note that the condition b1 = 0 involves symmetry assumptions. If b1 6= 0 the
system for k = 2 is not discrete symmetric in p1, q1. The Birkhoff-Gustavson
normal form in action-angle coordinates will be of the form:{

H = I1 + 2I2 + lI3 + εb1I1
√

2I2 cosχ1 + ε2A(I)+

ε3[D1(I) +D2(I) cosχ2 +D3(I) cosχ3 + ε4 . . .]
(6)

A(I) (I = I1, I2, I3) is a homogeneous quadratic polynomial in its arguments;
χ1 = 2φ1 − φ2, χ2, χ3, . . . are combination angles that arise at higher order
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terms starting with ε3. The equations are with a neighborhood of the normal
modes excluded and omitting O(ε4) terms:

İ1 = 2εb1I1
√

2I2 sinχ1 + ε3[D2(I)c1 sinχ2 + . . .] + ε4 . . . ,

φ̇1 = 1 + εb1
√

2I2 cosχ1 + ε2 ∂A∂I1 + ε3[∂D1

∂I1
+ ∂D2

∂I1
cosχ2 + . . .] + ε4 . . .

İ2 = −εb1I1
√

2I2 sinχ1 + ε3[D2(I)c2 sinχ2 + . . .] + ε4

φ̇2 = 2 + εb1
I1√
2I2

cosχ1 + ε2 ∂A∂I2 + ε3[∂D1

∂I2
+ ∂D2

∂I2
cosχ2 + . . .] + ε4 . . .

İ3 = −ε3[D2(I)c3 sinχ2 + . . .] + ε4 . . .

φ̇3 = l + ε2 ∂A∂I3 + ε3[∂D1

∂I3
+ ∂D2

∂I3
cosχ2 + . . .] + ε4 . . .

(7)

Starting with ε3 the dots stand for terms dependent on the actions and possi-
bly other resonant combination angles. It follows from the equations and the
compactness of the energy manifold that H2 = I1 + 2I2 + lI3 is conserved to
O(ε) for all time. In addition we have

d

dt
(I1 + 2I2) = ε3[(c1 + 2c2)D2(I) sinχ2 + . . .] + ε4 . . . .

We conclude that I1 + 2I2 and I3 are conserved to O(ε) on the timescale 1/ε2.
If χ2 and the other combination angles at ε3 are timelike (χ̇2 etc. sign-definite),
we can remove the O(ε3) terms by normalization and improve the estimate.

Consider the case that apart from χ1 we have at H5 one more combination
angle given by χ2 = a1φ1 + a2φ2 + a3φ3. For the combination angles χ1, χ2 we
have from system (7) the equations:

χ̇1 = εb1(2
√

2I2 − I1√
2I2

) cosχ1 + ε2(2 ∂A∂I1 −
∂A
∂I2

)+

ε3(F3(I) + F4(I) cosχ2) + ε4 . . .

χ̇2 = εb1

(
a1
√

2I2 + a2
I1√
2I2

)
cosχ1 + ε2

(
a1

∂A
∂I1

+ a2
∂A
∂I2

+ a3
∂A
∂I3

)
+

ε3 (F5(I) + F6(I) cosχ2) + ε4 . . . .

(8)

To O(ε2) the equations for χ1, χ2 depend on χ1 and I only, the terms O(ε3)
depend on I and cosχ2. As in the case of two dof, the presence of a resonance
manifold (or zone) produces small variation of the actions and local oscillations
of χ2. The actions I1, I2 will be nearly constant in a neighborhood of a stable
1 : 2 short-periodic solution. In the Birkhoff-Gustavson normal form (7) to
O(ε) these are obtained by putting sinχ1 = 0 and χ̇1 = 0 leading to χ1 = 0, π
and solutions I1 = I10, I2 = I20 of:

2
√

2I2 −
I1√
2I2

= 0, I1 + 2I2 = E0(= I1(0) + 2I2(0)).

This yields:

I10 =
2

3
E0, I20 =

1

6
E0, (9)

with I3 still undetermined. A 5-dimensional neighborhood of these values of
I1, I2, χ1 with I3 still free defines the resonance zone M of the system. So on a
given energy manifold, the two I1, I2 periodic solutions are parametrized by I3
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and correspond with two manifolds M1,M2 embedded in the resonance zone
M of the energy manifold. The dynamics on M is described with system (7)
by: 

İj = ε3C1 sinχ2 + ε4 . . . , j = 1, 2, 3,

χ̇1 = ε2A0 + ε3(A1 +A2 cosχ2) + ε4 . . . ,

χ̇2 = ±εB0 + ε2B1 + ε3(B2 +B3 cosχ2) + ε4 . . .

(10)

with A0, A1, A2, B1, B2, B3, , Cj , j = 1, 2, 3 depending on the solutions I10, I20
of (9) and I3; B0 is a constant that in general will not vanish. We conclude
that in general χ2 is timelike as long as the orbits remain in the resonance zone
M . For orbits in M we can average over χ2 to obtain O(ε) invariance of I3 on
the timescale 1/ε3.
Generically we have the following result:

Corollary 21 1. From the normal form (7) we know that I3 is limited to O(ε)
variations on the timescale 1/ε2. Estimates like this for I3 are valid on a
long polynomial timescale, but not as long as in Nekhoroshev estimates, see
[6].

2. The orbits outside the resonance zone M .
The strongest changes in the actions arise for I1, I2 if χ1 is not constant,
the orbits are approximately moving on toroidal manifolds with significant
exchange of energy with small modulations caused by the third dof; an ex-
ample is given in the next section.

3. Passage through the resonance zone M .
In the resonance zone M where the manifolds M1,M2 are embedded the re-
currence of the Hamiltonian flow is expected to be delayed by quasi-trapping.
See for an illustration fig. 1 to be discussed below.

3 The 1 : 2 : 7 resonance

To fix ideas and as an explicit example we consider the 1 : 2 resonance in
combination with higher order resonance for l = 7. The combination angles
that may arise correspond with resonances acting on H3, . . . ,H6:

H3(‖a‖ = 5) : χ1 = 2φ1 − φ2, H5 : χ2 = φ1 + 3φ2 − φ3,
H6(‖a‖ = 6) : χ3 = 3φ1 + 2φ2 − φ3, χ4 = φ1 − 4φ2 + φ3, χ5 = 4φ1 − 2φ2.

From (8) we have for j = 2, . . . , 5:

χ̇j = εb1

(
a1
√

2I2 + a2
I1√
2I2

)
cosχ1 + ε2

(
a1
∂A

∂I1
+ a2

∂A

∂I2
+ a3

∂A

∂I3

)
+ ε3 . . .

In the resonance zone M we have with (9):

a1
√

2I2 + a2
I2√
2I2

=

√
E0

3
(a1 + 2a2).
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Fig. 1. The Euclidean distance d to the initial values of orbits generated by the
1 : 2 : 7 resonant Hamiltonian (11), ε = 0.1 and 5000 time-steps. Left we started
outside the resonance zone M and will pass repeatedly through the zone with q1(0) =
0.1, q2(0) = 0.5, q3(0) = 0.5, velocities zero. Right we started in the resonance zone
M at q1(0) = 0.5, q2(0) = 0.17678, q3(0) = 0.5, velocities zero resulting in stronger
recurrence. In M the actions I1, I2 show variations of order 10−3, the action I3
associated with frequency 7 shows variations of order 10−4.

Fig. 2. The Euclidean distance d to the initial values of orbits generated by the
1 : 2 : 7 resonant Hamiltonian (11), ε = 0.1 and 5000 time-steps. Starting outside the
resonance zone M we have repeatedly passage of M . We took q1(0) = 0.1, q2(0) = 0.5,
velocities zero, and to show the influence of the non-resonant third mode from left to
right q3(0) = 0.0, 0.05, 0.1. The recurrence depends strongly on the third mode.

With the discussion given earlier we conclude that χ2, χ3, χ4 are timelike. This
holds generally for a combination angle with a1, a2 of the annihilation vector if
a1/a2 6= −2. We have χ5 = 2χ1, it interesting to consider the influence of the
resonances connected with χ2 (timelike) and χ1, χ5 (not timelike). We consider
a Hamiltonian with non-resonant terms omitted (an intermediate normal form)
to consider the dynamics of the 1 : 2 : 7 Hamiltonian resonance:

{
H = 1

2 (q̇21 + q21) + 1
2 (q̇22 + 4q22) + 1

2 (q̇23 + 49q23)− εq21q2+
ε2

4 (q41 + 2q42 + q43 + 8q22q
2
3) + ε3q1q

3
2q3 + ε4q41q

2
2 .

(11)
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The equations of motion can be written as:
q̈1 + q1 = 2εq1q2 − ε2q31 − ε3q32q3 − ε44q31q

2
2 ,

q̈2 + 4q2 = εq21 − ε2(2q32 + 4q2q
2
3)− ε33q1q

2
2q3 − ε42q41q2,

q̈3 + 49q3 = −ε2(q33 + 4q22q3)− ε3q1q32 .
(12)

The second and third normal modes are solutions of the equations of mo-
tion (12). It is convenient to use for the normal form polar coordinates:
q = r cos(ωt + ψ), q̇ = −rω sin(ωt + ψ). Using the corresponding combina-
tion angles in ψ we find by normalization (excluding the normal modes):

ṙ1 = − ε2r1r2 sinχ1 + ε3

16r
3
2r3 sinχ2 + ε4

8 r
3
1r

2
2 sin 2χ1,

ψ̇1 = − ε2r2 cosχ1 + ε2( 3
8r

2
1 − 9

64r
2
1 − 1

16r
2
2)+

1
16ε

3 r
3
2r3
r1

cosχ2 + ε4

8 r
2
1r

2
2(6 + cos 2χ1),

ṙ2 = ε
8r

2
1 sinχ1 + 3

32ε
3r1r

2
2r3 sinχ2 − ε4

32r
4
1r2 sin 2χ1,

ψ̇2 = − ε8
r21
r2

cosχ1 + ε2( 3
8r

2
2 + 1

2r
2
3 − 1

32r
2
1) + ε3 3

32r1r2r3 cosχ2+
ε4

32r
4
1(6 + cos 2χ1),

ṙ3 = − ε3

112r1r
3
2 sinχ2,

ψ̇3 = ε2

563r23 + ε2

7 r
2
2 + ε3

112
r1r

3
2

r3
cosχ2.

(13)

It follows from system (13) that

d

dt
(r21 + 4r22) = O(ε3),

d

dt
(r21 + 4r22 + 49r23) = O(ε5).

Because of the compactness of the energy manifold we have r21 + 4r22 + 49r23 −
2E = O(ε) for all time (E a constant). From the estimate for the action I3 we
have that r21 + 4r22 − 2E0 = O(ε) on the timescale 1/ε2 (E0 a constant). We
find for the combination angles:

χ̇1 = − ε
r2

(r22 − 1
8r

2
1) cosχ1 + 1

2ε
2(r21 − r22 − r23) + ε3

8
r2r3
r1

(r22 − 3
4r

2
1) cosχ2+

ε4

4 r
2
1(6 + cos 2χ1)(r22 −

r21
8 ),

χ̇2 = − ε
2r2

(r22 + 3
4r

2
1) cosχ1 + ε2

4 ( 9
16r

2
1 + 103

28 r
2
2 − 39

14r
2
3)+

ε3

16 (
r32
r1
r3 + 9

2r1r2r3 −
1
7
r21r

3
2

r3
) cosχ2,

χ̇5 = 2χ̇1.

(14)

The resonance zone M is for fixed energy E a neighbourhood of sinχ1 =
0, π, r21 = 8r22. The angle χ2 is timelike to first order in the resonance zone M ,
so we do not expect corresponding higher order resonance manifolds; this also
holds for the angles χ3 and χ4. Putting sinχ1 = 0, r21 = 8r22 in M we have
timelike O(ε3) perturbations decreasing with r3:

ṙ1 =
ε3

16
r32r3 sinχ2, ṙ2 =

3
√

2

16
ε3r32r3 sinχ2.

To illustrate the part played by resonance zone M we consider recurrence start-
ing outside M and in M , see fig. 1. Inside M the variations of the actions are
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small as expected. When passing through the resonance zone (fig. 1 left), we
observe delay of recurrence because of quasi-trapping in the resonance zone.
It is interesting to observe the influence of small values of q3(0). In fig. 2 we
show that for q3(0) = 0 we have relatively strong recurrence and little effect of
passage through M . This picture changes immediately for small nonzero values
of q3(0).The presence of r3 in the denominator of the O(ε3) term in the system
(14) suggests that resonance for small positive values of r3 might arise but the
polar coordinate transformation is not valid for q3 → 0; note that starting at
q3(0) = 0.5, see fig. 1, the recurrence is stronger than for small q3(0). An indi-
cation of the influence of q3(0) is that the variation of χ̇1 to O(ε2) is maximal
if q3(0) = 0, minimal if r23(0) = 7r21(0).

Remark
The discussion for the 1 : 2 : 7 resonance is typical for the 1 : 2 : ω resonance
where ω is chosen such the system is not in first or second order three dof
resonance. An approximate higher order resonance with annihilation vector
(a1, a2, a3) will result in equations for the combination angles of the form (14)
leading to a timelike combination angle χ in the resonance zone. The conclusion
is that we have quite generally that for such systems outside the normal mode
planes the 1 : 2 resonance dominates but quasi-trapping in M can be effective
and recurrence will be delayed for a large set of initial values.

3.1 Nekhoroshev’s theorem for discrete symmetry, b1 = 0

In mathematical applications, for instance pendulum models, it is natural to
have symmetries. Assuming discrete symmetry in the first dof q1, v1 we have
b1 = 0 in Hamiltonian H12 of system (5). In this case we can often ap-
ply Nekhoroshev’s [6] theorem to obtain for the three actions only variations
O(δ(ε)) with δ(ε) = o(1) as ε → 0 on an exponentially long timescale. This
application involves the proof of the steepness of the Hamiltonian H(I, φ) =
H12 + ε3 . . . with b1 = 0: H12 = I1 + 2I2 + lI3 + ε2A(I1, I2, I3). A sufficient
condition for steepness of the full Hamiltonian H(I, φ) is convexity of H12, see
[8]. This is the case if A(I) is positive definite. In this case we find that for
every orbit of H starting in the neighborhood of the origin we have for the
action:

I(t)− I(0) = O(εa) for t = O(e1/ε
b

) with constants a, b > 0. (15)

Note that in degenerate cases, for instance where A vanishes or A = A(I1, I3),
we can still apply the results of higher order resonance.

4 Resonance in the dissipative case

Resonances and resonance zones are abundant in mechanical systems, see for
instance [3] or [2] for nice collections of engineering problems. An interesting
classical example is the motion determined by gravitation and tidal friction in
a binary star system or alternatively a planet with a moon. In this problem
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the energy of the two-body system changes monotonically while total angular
momentum is conserved. The dynamics leads to either permanent disruption
of the system or motion into resonance where the rotation of the two bodies
is co-planar, circular and 1 : 1 (facing each other permanently); for details
and references see [5]. The phenomenon of passage into resonance is a basic
possibility in mechanical systems.

4.1 General notions

Consider the n+m dimensional system

ẋ = εX(φ, x), φ̇ = Ω(x) + εΩ1(x, φ), (16)

with x ∈ Rn, φ ∈ Tm where x is a slowly varying, n-dimensional state variable,
φ represents m angles describing a m-dimensional torus. The vector function
X is periodic in the angles, we have the multiple Fourier expansion:

X(φ, x) =

k=∞∑
k=0

(ak(x) cos(k1φ1 + . . .+ kmφm) + bk(x) sin(k1φ1 + . . .+ kmφm)),

with k = (k1, . . . , km) ∈ Zm. Resonance zones in Rn are determined as neigh-
borhoods of

k1Ω1(x) + . . .+ kmΩm(x) = 0.

The resonance zones may exist if the corresponding Fourier coefficient ck(x)
does not vanish. Passage through a resonance zone will always take place if
the system (16) is conservative; solutions can not be trapped. Outside the
resonance zones we can average over the angles. This results to first order in
an O(ε) approximation of the state variable x on the timescale 1/ε.
If system (16) is dissipative, a subset of the solutions entering a resonance zone
can be trapped into resonance. When deriving the equations that are valid in a
resonance zone one usually finds to first order a conservative system consisting
of a pendulum equation or coupled pendulum equations; this is quite deceptive.
To establish trapping in a resonance zone one usually has to compute at least
a second order approximation.

Example 1. Consider the toy problem:
ẋ1 = ε+ 2ε cos(φ1 − φ2)− εx1,
ẋ2 = ε sin(φ1 − φ2),

φ̇1 = x1 + x2,

φ̇2 = x2.

(17)

There is one combination angle in the system: χ = φ1 − φ2. We find

χ̇ = x1,
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Fig. 3. Left the behaviour of x1(t) with time, ε = 0.1, based on system (17). When
starting in x1(0)) = −1, χ(0) = 0 the solution moves into the resonance zone near
x1 = 0. Starting in x1(0)) = −1, χ(0) = 0.2 the solution passes through the resonance
zone and ends up near x1 = 1. Right passage into resonance in the χ, χ̇ phase-plane
for system (17) with x1(0)) = −1 and starting values χ(0) = 0,−0.05,−0.1

so that χ will be timelike when outside the region around x1 = 0. A neigh-
borhood of x1 = 0 will be a resonance zone. Outside this zone we can average
over the angles to obtain approximations by solving:

ẋ1 = ε− εx1, ẋ2 = 0.

As the averaging approximation of x1(t) tends towards 1, the orbits will enter
the resonance zone when starting with x1(0) < 0. To consider the behavior of
the solutions in the resonance zone we rescale near x1 = 0 by x1 =

√
εy. In

the resonance zone we find for y and χ the equations:{
ẏ =
√
ε+ 2

√
ε cosχ− εy,

χ̈− 2ε cosχ = ε− ε
√
εy.

(18)

The first order - O(
√
ε) - equation for χ is indeed a forced pendulum equation

and so without trapping, the equilibria are a centre and a saddle for the solu-
tions of cosχ = −1/2. For the trapping phenomenon we need the next order
averaging approximation; see [12] and [4] for technical details.

4.2 The oscillating flywheel with progressive damping

Here we will consider a slightly extended version of an illustrative gyroscopic
model described in [3] ch. 8.3 and [2] ch. 3.3 (see fig. 4); the basic analysis
for linear damping (b = 0) and a hard spring (a = 1) was carried out in [12] .
Consider a flywheel with mass m2 and external energy source that can oscillate
in the vertical x-direction, it has a small eccentric mass m1; put m = m1 +m2.
The eccentric mass makes an angle φ with the vertical. The equations of motion
are with gravitational constant g:{

mẍ+ β(ẋ) + cx+ f(x) = m1r(φ̇
2 cosφ+ φ̈ sinφ),

Jφ̈ = M(φ̇)−Mw(φ̇) +m1rẍ sinφ+m1gr sinφ.
(19)
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Fig. 4. The oscillating flywheel with excentric mass (X should be identified with x
in the text).

We assume that m1 and the nonlinearities are small (O(ε)), also the motor
characteristic M(φ̇) −Mw(φ̇) divided by J . The motor characteristic has a
negative slope, taken linear. We find after rescaling:{

ẍ+ x = ε(−ax3 − ẋ− bẋ3 + φ̇2 cosφ) + ε2 . . . ,

φ̈ = ε( 1
4 (2− φ̇) + (1− x) sinφ) + ε2 . . .

(20)

For a > 0 we have a hard spring, for a < 0 a soft one; b > 0 produces progressive
damping. Here we choose a = 1, b ≥ 0.
We introduce the transformation

x, ẋ→ r, φ2 (r > 0), φ, φ̇→ φ1, Ω

by x = r sinφ2, ẋ = r cosφ2, φ = φ1, φ̇1 = Ω. The transformed equations
become:

ṙ = ε cosφ2(−r3 sin3 φ2 − r cosφ2 − br3 cos3 φ2 +Ω2 cosφ1) + ε2 . . . ,

Ω̇ = ε( 1
4 (2−Ω) + sinφ1 − r sinφ2 sinφ1) + ε2 . . .

φ̇1 = Ω,

φ̇2 = 1 + ε(r2 sin4 φ2 + 1
2 sin 2φ2 + br2 sinφ2 cos3 φ2 − Ω2

r cosφ1 sinφ2)+

ε2 . . .

(21)

To O(ε) the righthand sides of system (21) contains apart from φ1, φ2 the angle
combination χ = φ1 − φ2. Following [10] ch. 7 or [13] we have to distinguish
between the behaviour in a neighborhood M of χ̇ = φ̇1− φ̇2 = 0 (the resonance
zone) and outside the zone M .
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Outside M the angles φ1, φ2 and χ are timelike and we an average over them
to find O(ε) approximations for r and Ω from:

ṙ = −ε
2
r(1 +

3

4
br2), Ω̇ =

ε

4
(2−Ω). (22)

It is clear that outside M the value of Ω tends tot 2; the amplitude r of the
oscillating flywheel tends to zero if the damping is linear (b = 0) or progressive
(b > 0) and after passage of M . There are two equilibria, r = 0 and r2 = − 4

3b
if b < 0, we do not consider this case. Starting at Ω(0) < 1 − O(

√
ε) we will

show that we will move into the resonance zone if b ≥ 0.
In the resonance zone M (in a neighborhood of Ω = 1) we rescale

ω =
Ω − 1√

ε
.

Motivation for the choice of O(
√
ε) for the size of the resonance zone can be

found in [10] ch. 7 or [13] ch. 12. The resonance zone M corresponds with
ω = 0. Neglecting O(ε

√
ε) terms and averaging over timelike angles we find

the equations: 
ṙ = − ε2r(1 + 3

4br
2 − cosχ),

ω̇ =
√
ε
2 ( 1

2 − r cosχ)− ε
4ω,

χ̇ =
√
εω − ε

2 ( 3
4r

2 + 1
r sinχ).

(23)

In system (23) the variables ω, χ are relatively fast moving, r is slow. To O(
√
ε)

the flow in M is described by

r(t) = r(0), χ̈+
ε

2
r(0) cosχ =

ε

4
. (24)

For χ we have a pendulum equation with constant forcing; the equilibria sat-
isfy r(0) cosχ = 1

2 , a centre and a saddle. It is interesting to note that this
conservative first approximation in the resonance zone is typical for dissipa-
tive systems as in example 1, see for more details [13]. We draw the following
conclusions.

1. The saddle point remains unstable under higher order perturbations. It has
been shown in [12] by a second order calculation (including the O(ε) terms)
for the case a = 1, b = 0 , that the centre point turns into a stable focus.
The method used was developed by Haberman [4] and employs the energy
values associated with the stable and unstable manifolds of the saddle loop
encircling the centre.

2. The implication of the analysis is that there exist initial conditions of sys-
tem (20) such that the solutions are caught into the resonance zone. Other
solutions will pass through the resonance zone and will approach the state
of constant rotation of the flywheel and absence of vertical oscillations
(r = 0, Ω = 2).

3. Admitting progressive damping b > 0 will not change the first order conser-
vative equation (24) or the location of the resonance zone, but it will affect
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the stability region which is determined by the next order approximation
of system (23). The asymptotic analysis is analogous to the treatment of
our example 1 but of course more cumbersome. More information can be
obtained from the divergence of the flow in the resonance zone. We find
from system (23) for the divergence at the critical points:

−ε
4

(3br2 + 1 +
2

r
cosχ). (25)

As expected, b > 0 enhances the attraction at O(ε).
4. Slow manifold theory, see [13] for references, throws more light on a system

like (23). The equations for ω, χ are called the fast subsystem of (23)
(timescale

√
εt), r varies relatively slowly (timescale εt). The slow manifold

is defined by the zeros of the fast system, i.e.

r cosχ− 1

2
, ω = 0.

The eigenvalue equation to O(
√
ε) for these zeros becomes:

λ2 − r

2
sinχ = 0.

To this order of approximation r = r(0), the slow manifold exists if sinχ >
0. Near the centre point that we obtained earlier, we have to expand
to O(ε) to find the next order of the eigenvalue equation. Solving the
equation to the next order produces a small negative perturbation of the
purely imaginary solutions corresponding with an attracting region in the
resonance zone.

5 Conclusions

We have discussed the case of a combined 1 : 2 and higher order resonance
in the case of a family of three dof time-independent Hamiltonian systems. In
these systems the presence of resonance zones is a natural phenomenon. In such
zones stable and unstable periodic solutions can be found but when orbits enter
a resonance zone, the Poincaré recurrence theorem guarantees the passage of
the orbits through the zone. However, quasi-trapping in the resonance zone
may delay the passage; the implication is that the recurrence properties of the
orbits reflect the complex structure of the resonance zone. So recurrence may
serve as a tool to explore resonance zones.

The situation is qualitatively different in the case of dissipative systems.
Again, resonance zones may be present, but in this case orbits may be caught in
resonance. In mechanical engineering this may cause undesirable phenomena.
The general theory is well-documented , see [10] or [13] for references. We
present two illustrative cases, example 1 which is a nice toy problem, and
then quite typical passage through and into resonance of a gyroscope that is
elastically mounted. In the second case the results are sensitive to the choice of
parameters as expected. In the dissipative case we can formulate the equations
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in the resonance zone in terms of slow manifold theory. It is quite easy and
natural to generalize this for the resonance zones of system (16). The procedure
gives faster access to the problem of the existence of an attracting region in
the resonance zone, but to determine the shape of this region one still has to
perform the second order asymptotics in the spirit of [4]. To first order we
have for an isolated resonance zone a two-dimensional problem, the second
order involves n+ 2 dimensions.
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