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Abstract. Recurrence networks are unweighted and undirected complex networks
constructed from time series of dynamical systems. In this work, we propose a method
to construct weighted recurrence network from a time series which can provide a sin-
gle index to compare the structural complexity of different chaotic attractors. This is
because, a specific network measure, the node strength distribution of the weighted
recurrence network, from every chaotic attractor follows a common pattern: a power
law with exponential cut off at the tail. We show that the power law index is char-
acteristic to the fractal structure of the attractor. For pure noise, this index tends to
zero and the distribution becomes exponential.
Keywords: Weighted Recurrence Networks, Time Series Analysis, Node Strength
Distribution.

1 Introduction

Nonlinear time series analysis using complex network measures has become an
important area of research over the last two decades [1]. This approach has
several advantages over the conventional approach, especially in the character-
ization of the structural properties of the underlying attractor. It involves first
transforming the time series into a complex network and analyzing it using
the standard network measures. Several methods [2–4] have been proposed in
the literature to transform a time series into a complex network, with each of
them finding application in particular contexts, to address the complementary
features of the time series not obtained from the conventional approach using,
mainly, correlation dimension and entropy.

A simple and direct method to convert time series to complex network is
using the property of recurrence [5] of every dynamical system and the resulting
network is called recurrence network (RN) [6]. To transform the time series into
a RN, it is first embedded in a multi-variate state space of dimension M using
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the time delay co-ordinates [7]. Every point in the attractor is then identified as
a node and a recurrence threshold (ε) is set to define the connection between two
nodes. Two nodes are considered to be connected if the corresponding points
on the attractor are within the limit of this threshold. From the construction, it
is clear that the RN is an unweighted and undirected network with the elements
of the adjacency matrix Aı either 1 or 0 depending on whether two nodes are
connected or not. Once constructed, an array of statistical measures [8] can
be defined from the RN that can characterize the structural properties of the
attractor underlying the time series [9].

A crucial parameter in the construction of the RN is the recurrence thresh-
old, ε, since the characteristic properties of the RN depend on its value. In
general, for each embedded attractor from the time series, the value of ε has
to be determined separately as it varies with the size of the attractor. Two
criteria are usually employed [6,8] to select ε. The first and the primary one
is that there should be a giant component for the resulting RN which sets a
lower bound for ε. In order to ensure that the network is not overconnected,
the upper bound for ε is set such that the link density (the ratio of actual
connections to all possible connections in a network of N nodes) is only a small
fixed fraction of the maximum possible value. This provides a small range ∆ε
of optimum threshold for each system where the resulting network is considered
to be a proper network representation of the time series.

Recently, we have proposed a scheme [10] where we tried to fix a small uni-
form range ∆ε for choosing the threshold for time series from different chaotic
systems. For this, we first transform the time series to a uniform deviate so
that the size of the attractor always remains within the unit cube. To find the
lower bound of ε, we use the standand criterion that the network turns into a
single giant component. The upper bound is determined by the condition that
the network is not overconnected. However, instead of fixing the link density,
we apply a criterion that the characteristic path length (that defines the global
connectivity of the network) of RN from chaotic time series is significantly dif-
ferent from that of white noise. The scheme has been effectively applied to
compare network measures from different chaotic attractors [10], to study the
influence of noise on the structure of chaotic attractors [11] and to propose a
new heterogeneity index [12] for complex networks which, in turn, provides a
unique measure for each chaotic attrator through RN. We stick to the same
criteria for the selection of ε in this work.

2 Weighted recurrence network and strength
distribution

The unweighted RN is constructed first using the selected value of ε. In order to
convert it into a weighted RN (WRN), one has to assign weight factor to every
link in the network. For weighted networks that model any real world system
or interaction, the weight factor will be specific to the network. For example,
in a transportation network, it may depend on the distance between two nodes
while for a communication network, the same may be characterized by the rate
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of information transfer through the link. Here we introduce a general criterion
for assigning the weight factors that can be adopted to any kind of network,
but especially useful for RNs.

Assume that the RN has N number of nodes and the ıth node has a degree
ki. That is, it is connected to ki other nodes in the network. The weight factor
wij for the link between two nodes ı and  in the network is defined as:

wij =

√
kikj

kmax
(1)

where kmax is the maximum degree in the network. Note that the maximum
possible value of wij is normalized as 1 and occurs for a link between two nodes
which are connected to kmax other nodes in the network. For a reference node
i in general, it is connected to ki other nodes with each link having a different
weight factor.

From the point of view of a network, the more the number of connections
for a node ı, the shorter the path becomes when connected through the node.
For example, if a nearly isolated (with ki ∼ 1) node is connected to a hub, that
connection carries a high weight factor (due to the large degree of the hub) and
provides an easy path between the node and any other arbitrary node in the
network.

The average of the weight factors associated with a node as determined by
its connections is defined as the strength of the node, s. For example, for the
node ı, we have:

s(i) =

ki∑
j=1

wij (2)

If all the nodes have equal number of connections < k >, the weight factor
of each node is approximately the same and the network can be considered
as a homogeneous weighted network. As the weight factors among the nodes
become more diverse, the network becomes more heterogeneous. The average
weight factor associated with the whole network is defined as the weighted link
density:

ρw =

∑
i,j wij

N(N − 1)
(3)

In this work, we use the time series from the standard Lorenz arractor
(parameters σ = 10, ρ = 8/3 and r = 28) to illustrate the construction of
WRN and the utility of its measures. For any unweighted complex network, the
degree distribution, denoted by P (k), is a probability distribution representing
how many nodes have a given degree k. For random graphs (RG), the degree
distribution is Poissonian where as for scale free (SF) networks, it obeys a
power law [13]. For the RN from chaotic time series, the degree distribution
is characteristic to the structure of the attractor [10]. To generalize the degree
distribution for the WRN, we first note that the characteristic property of a
node that decides its connectivity in the network is not its degree, but its
strength s as defined in Eq. 2 [14]. In other words, the degree distribution
has to be replaced by the strength distribution of the weighted network which
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represents the probability P (s) of nodes having a given strength s in a network
of N nodes. Even though s varies discretely, it is not an integer like k.
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Fig. 1. Distribution of the normalized node strength in the weighted RN constructed
from the standard Lorenz attractor time series (red solid circles) in log scale. The
solid line is the power law fit before the exponantial cut off (see text). The embedding
dimension used for constructing the network is M = 3 and the number of nodes in
the network, N = 5000.

Instead of using the strength distribution directly, we compute a normalized
strength distribution that reveals the utility of WRN. Since s varies discretely,
we can write ∑

s

P (s)∆s = 1 (4)

We now find the number of nodes n(sn) ≡ NP (s) (rather than the probability
of nodes) corresponding to a normalized strength sn = ∆s

N and the above
equation can be re-written as ∑

sn

n(sn)sn = 1 (5)

Here n(sn) is the number of nodes having strength around the normalized value
sn, which varies in the range [0, 1].
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In Fig. 1, we show the normalized node strength distribution of the WRN
from the Lorenz attractor (solid circles) in the log− log scale. Log scale is
taken to show that n(sn) decreases with sn as a power law initially with an
exponantial cut off at the tail. In fact, we have found that the variation can
be represented using the following functional fit:

n(sn) ∝ s−γn e−sn/c (6)

with the parameters γ and c depending on the particular system. This func-
tional fit is also shown in Fig. 1 (solid line). The crucial parameter here is the
power law index γ indicating a scale free character for the distribution initially.
The average value of γ from 10 different simulations is found to be 0.33± 0.05
for WRN from the Lorenz attractor.

We now show that this distribution is a characteristic property of every
chaotic attractor and is independent of changes in parameters, such as, em-
bedding dimension M and the number of nodes in the network N . This is
illustrated using WRN from Lorenz attractor in Fig. 2 using two N values with
fixed M (top panel) and vice versa (bottom panel). The result implies that the
power law index γ is a characteristic index for a chaotic attractor.

We have repeated the calcuation for several other chaotic attractors and
have found that there is a unique power law index γ for the WRN from each
chaotic attractor. In Fig. 3, we show the strength distribution from the stan-
dard Rössler attractor (a = 0.2, b = 0.2 and c = 7.8) and the Henon attractor
(a = 1.4 and b = 0.3). Finally, we consider the WRN from a pure white noise
and show that the distribution is qualitatively different from that of chaotic
time series. It is found that the power law part is absent in this case and the
variation is purely exponential:

n(sn) ∝ e−sn/c (7)

The distribution is shown in Fig. 4 for two different N values with fixed M
(top panel) and vice versa (bottom panel). Contrary to tha case of chaotic time
series, the distribution changes with M for white noise. The reason is that there
is no structure for the attractor and the trajectory tends to fill the available
state space volume. This changes the WRN and hence the distribution.

3 Conclusion

Analysis of time series data by converting into recurrence networks is an active
area of research with several practical applications. The recurrence networks
considered so far in the literature are unweighted with binary connections. Here
we propose a specific method to construct weighted recurrence network from
time series. The degree distribution gets generalised to the node strength dis-
tribution which we consider in detail in this work. We show that the strength
distribution of WRN from all chaotic attractors follow a common pattern hav-
ing a power law variation with an exponential cut off at the tail. The power
law index γ is characteristic to the specific attractor and γ → 0 as the time
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Fig. 2. Top panel shows the normalised strength distributions for the RN from the
standard Lorenz attractor for number of nodes N = 5000 (red solid circles) and
N = 10000 (blue open triangles), with embedding dimension M = 3. Bottom panel
shows the same for two embedding dimensions M = 3 (red solid circles) and M = 4
(black open squares), with N = 5000.

series tends to pure white noise. Our analysis here is only preliminary using
only a single statistical measure from the WRN. The results indicate that the
WRN can be a potential tool in nonlinear time series analysis. More detailed
analysis using other net theoretic measures are currently underway and will be
presented elsewhere.
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Fig. 3. Top panel shows the node strength distribution of the weighted RN con-
structed from the Rössler attractor. Bottom panel shows the same for the RN from
the Henon attractor. In both cases, N = 5000 and M = 3.
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Fig. 4. A comparison of the normalized strength distributions of the WRN from white
noise for two N values (top panel) with fixed M and vice versa (bottom panel). In
the top panel, solid circles correspond to N = 5000 and open triangles to N = 10000
with M fixed at 3, whereas, in the bottom panel, solid circles correspond to M = 3
and open squares to M = 4 with N fixed at 5000.
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