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Abstract: The behavior of the deformation field of coupled fractal structures in the 

multilayer nanosystems is investigated. On the example of coupled fractal surfaces 

(elliptic and hyperbolic type) it is shown that the behavior of the deformation field is 
determined by mutual influence of stochastic processes on each other. Features of 

behavior of attractors (singular points) of the deformation field for these structures is 

investigated. When changing the governing parameters, there are possible effects of 

alteration and moving of the fractal structures relative to each other. 
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1  Introduction 
 

Recently, various nonlinearities in periodic structures and metamaterials have 

been actively investigated [1]. Further development was given to nanophysics, 

condensed matter physics (Tosi [2], Schneider [3]), neural networks 

(Heyman [4]), which use nanoobjects as active objects. The most important task 

is to study the mutual influence, collective interactions, dynamics of such 

nanoobjects (V. Abramov [5, 6]). In this case, there are possible the effects of 

various topological phase transitions associated with the shape and dimension of 

nanoobjects, the formation of new coupled structures (clusters). One example of 

this kind can be model multilayer nanosystems and bulk fractal structures 

appearing there (V. Abramov [7], Abramova [8-10]). 

The relevance of such studies is confirmed by the award of the Nobel Prize in 

Physics for 2016 to M. Kosterlitz, D. Thouless, D. Haldane for theoretical 

discoveries of topological phase transitions and topological phases of matter. 

In this paper, the effects associated with the shape of objects are investigated 

using attractors of both separated and coupled structures. When modelling the 

fractal bulk structures in the multilayer nanosystem, bulk lattice nodes that are 

attractors can be as active elements (C.H. Skiadas [11]). These attractors form a 

surface of active elements of the deformation field (displacement field). In order 

to determine the position of singular points (attractors) of a displacement field in 

a single active layer it is necessary to cross this surface by a plane. As a result it 

is possible to find isolines of singular points in a separate layer. 

In this paper, the dynamics of the interactions of both separated and related 

structures is modelled by organizing separate stochastic processes in the coupled 
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system. In this case, many physical properties (for example, the deformation 

field (V. Abramov [7], Abramova [8, 9])) in coupled fractal structures differ 

from the properties of separate fractal objects. 

The aim of this paper is to study the mutual influence of structures and their 

attractors, separate stochastic processes on each other in a coupled fractal structure. 

 

2  Mutual influence of elliptic type structures and their 

attractors in a coupled fractal system 
 

A coupled fractal structure which consists of two separate fractal structures ( i=1,2 ) 

is considered. This coupled structure is in the bulk discrete lattice 1 2 3N N N  , 

whose nodes are given integers , ,n m j . 

The nonlinear equation for the dimensionless displacement function u  of lattice 

node of this coupled fractal structure is given in the form (Abramova [8]) 

2
2

i 0 i
i 1

(1 )(1 2 ( , )) /u R sn u u k Q


    ;   0i 0i 1i 2i 3ip p p n p m p j       ;      (1) 

2 2 2 2 2 2
i 0i 1i 0i i 2i 0i i 3i 0i i( ) / ( ) / ( ) /c c cQ p b n n n b m m m b j j j       .         (2) 

In expressions (1), (2) index i  corresponds to the number of a separate fractal 

structure;   is the fractal dimension of the deformation field u  along the Oz -

axis ( [0,1]  ); 0u  is the constant (critical) displacement; k  is the modulus of 

the elliptic sine; parameters 0ip , 1ip , 2ip , 3ip , 1ib , 2ib , 3ib , 0in , icn , 0im , 

icm , 0ij , icj  characterize different fractal structures. 

Parameters iR  determine the orientation of the deformation fields of separate 

structures in the coupled system. In general case these parameters may depend on the 

layer index j  and the dimensionless time t . Functions iQ  take into account the 

interaction of the nodes of both in the main plane of the discrete rectangular 

lattice as well as interplane interactions. 

Singular points (attractors) of the deformation field of the multilayer 

nanosystem are located on the surface, the core of which is determined by 

condition 

1 2 0Q Q  .                                                     (3) 

If surface (3) is crossed plane kj j , we obtain the equation of the isolines. 

Nonlinear equations (1), (2) can be solved by iteration method on any of indices 

, ,n m j . If one of these indices is considered fixed, then the result of the 

iteration will be the displacement function, which is a stochastic surface, 

depending on the other two indices. 

In this work the iterative procedure on index n  simulates a stochastic process on 

a rectangular discrete lattice with a size 1 2N N , 11,n N ; 21,m N , 
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1 240N , 2 180N . 

Separate fractal bulk structures (FBS) are chosen in the form of: a real fractal 

elliptic cylinder (FEC) and an imaginary fractal elliptical cylinder, whose 

structure allows interpretation as a fractal quantum dot (FQD). The equations of 

surfaces of the considered structures do not depend on index j , thus the 

parameters 3i 0b   in the functions iQ . 

Based on these separate structures, we form coupled systems FEC1-FEC2 

(fig. 1-3), FQD1–FEC2 and FEC1–FQD2 (fig. 4). The main parameters for FBS 

were the following: 0.5  ; 0 29.537u  ; 0.5k  . 

For the first (FEC1) and second (FEC2) fractal elliptical cylinders parameter 

0ip  is 0i 1.0123p  ; for the first (FQD1) and second (FQD2) fractal quantum 

dots parameter 0ip  is 0i 1.0123p   . 

For these structures the following parameters were same 1i 2i 3i 0p p p     ; 

1i 2i 1b b  ; 0i 31.5279j  ; i 11.8247cj  ; i=1,2 ; the parameters describing 

the semi-axes were different 1 44.4793cn  ; 1 25.7295cm  ; 2 94.4793cn  ; 

2 65.7295cm  . 

The parameters 0i 0i( , )n m  determining the fixed positions of the centres of 

gravity of the separate structures in the coupled fractal system were the same or 

different. The orientation of the deformation fields of separate structures in a 

coupled system was determined by the choice of parameters iR . 

On fig. 1 attractors (isolines of singular points cores) of such coupled fractal 

elliptic cylinders with coinciding ( 01 02 119.1471n n  ; 01 02 89.3267m m  ; 

fig. 1 c) and shifted (fig. 1 d-i) centres of gravity are shown. For separate 

structures of FEC1 (for 1 1R  , 2 0R  ), FEC2 (for 1 0R  , 2 1R  ) the 

attractors (fig. 1 a, b) are located on curves of elliptic type. For the coupled 

fractal structure of FEC1-FEC2, the centres of gravity of FEC1 and FEC2 

coincide and the inequalities ( 1 2c cn n , 1 2c cm m ) are satisfied for the semi-

axes, therefore the structure of the attractor FEC1 is located inside the structure 

of the attractor FEC2 (fig. 1 c). In this case, the influence of the attractors on 

each other is observed: on the elliptical type curves there appear distortions in 

comparison with the smooth curves in fig. 1 a, b. 

The shift of the centre of gravity in the internal structure of the FEC1 with a 

fixed centre of gravity near the external structure of the FEC2 results in a 

essential alteration of the structure of the attractors of the coupled system 

(fig. 1 d-i). For fig. 1 d-f parameters 0im , 02n  stay the same and parameter 01n  

changes, thus the FEC1 moves inside the FEC2 along axis On . For attractors 

on fig. 1 g-i parameter 01 145.1471n   does not change and the parameter 01m  

changes, thus the FEC1 moves inside the FEC2 along axis Om . 
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a) 1 1,c cn m  b) 2 2,c cn m  c) 1 2c cn n , 1 2c cm m  

   
d) 01 143.1471n   e) 01 161.1471n   f) 01 179.1471n   

   
g) 01 115.3267m   h) 01 139.3267m   i) 01 159.3267m   

 

Fig. 1. Attractors of separate FEC1 (a), FEC2 (b) and coupled FEC1- FEC2 (c-i) 

structures with coinciding (c) and shifted (d-i) centres of gravity. 

 

Fig. 2 shows the cross-sections of the deformation field [0;1]u  (top view) of 

fractal elliptic structures, whose attractors are shown in fig. 1. The deformation 

fields both of separate (fig. 2 a, b) and coupled (fig. 2 c-i) structures are 

stochastic surfaces with pronounced features behavior near the attractors from 

fig. 1. 

For the separate structure of FEC1 (fig. 2 a), the first stochastic process was 

realized with 1 21, 0R R  . For the separate structure of FEC2 (fig. 2 b), the 

second stochastic process was realized with 1 20, 1R R  . 

For a coupled system, the both processes were realized together with 

1 21, 1R R   (fig. 2 c-i). 

The realization of the first and second stochastic processes is determined by the 

choice of the values of the semi-axes icn , icm  of the separate structures in a 

coupled system. These semi-axis values are related with the characteristic 
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correlation lengths of the stochastic processes. 

Inside the elliptical type (FEC) regions a pronounced stochastic behavior of the 

deformation field is observed (fig. 2 a, b). The presence of "tails" to the right of 

the FEC1 (fig. 2 a), to the left and to the right of FEC2 (fig. 2 b) is due to the 

iterative process along variable n . 

The appearance of "tails" to the left of the FEC2 (fig. 2 b) is related by the 

greater correlation length of the second stochastic process ( 2 1c cn n , 

2 1c cm m ). In this case, for coupled structures (fig. 2 c-i) there is a pronounced 

influence of stochastic processes on each other, the shift of internal FEC1 

relative to external FEC2. 

 

   
a) 1 1,c cn m  b) 2 2,c cn m  c) 1 2c cn n , 1 2c cm m  

   
d) 01 143.1471n   

 

e) 01 161.1471n   

 

f) 01 179.1471n   

 

   
g) 01 115.3267m   

 

h) 01 139.3267m   

 

i) 01 159.3267m   

  

Fig. 2. Cross-sections [0;1]u  (top view) of the separate FEC1 (a), FEC2 (b) and 

coupled FEC1- FEC2 (c-i) structures with coinciding (c) and shifted (d-i) centres 

of gravity for 1 21, 1R R  . 

 

Change in the orientation of the deformation field of separate structures (signs 
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for parameters 1R , 2R ) for a coupled structure from fig. 2 c with coinciding 

centres of gravity leads to the essential alteration of the deformation field of the 

coupled structure (fig. 3). 

In this case, an internal region with a regular behavior of the deformation field is 

possible (fig. 3 a, b). Note that the behavior of the attractor from fig. 1 c is preserved 

and does not depend on the change of signs 1R , 2R . 

 

   
a) 1 21, 1R R    b) 1 21, 1R R    c) 1 21, 1R R     

 

Fig. 3. Cross-sections [0;1]u  (top view) of coupled structures FEC1- FEC2 with 

coinciding centres of gravity for different signs 1R , 2R . 

 

Next, we consider coupled structures FQD1-FEC2 and FEC1-FQD2, in which one 

of the attractors is real, the other is imaginary. 

An example of separate structures with an imaginary attractor are quantum dots 

FQD1, FQD2 and with the real attractor are FEC2, FEC1. 

The presence of an imaginary attractor in FQD1 influences the behavior of the real 

attractor of FEC2 of the whole coupled structure FQD1-FEC2 (fig. 4 a). 

In this case, for the coupled structure there are distortions on a curve of elliptic 

type as compared with smooth curves from fig. 1 a, b, the internal curve 

(fig. 1 c) disappears. 

The cross-sections of the deformation field [0;1]u  (top view) of the FQD1-FEC2 

structure for different signs of parameters 1R , 2R  are given on fig. 4 b,c,d,e. 

An appearance of internal regions with a regular (fig. 4 b, e) and structured 

(fig. 4 c, d) behavior of the deformation field are observed. 

The cross-sections of the deformation field [0;1]u  of another structure FEC1-

FQD2 for different signs of the parameters 1R , 2R  are given on fig. 4 f,g,h,i. 

The main features of the behavior of the deformation field (the presence of internal 

regions with regular (fig. 4 f, i) and structured (fig. 4 g, h) behavior) are preserved. 

However, external regions with regular behavior appear (fig. 4 f,g,h,i), there is an 

appearance of an "inflow" (distortion of regular behavior) near the structure of 

FEC1- FQD2 (fig. 4 f). 

This is due to the presence of an imaginary attractor and the influence of the 

stochastic process from FQD2 to FEC1. 
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a)  b) 1 21, 1R R   c) 1 21, 1R R    

   

d) 1 21, 1R R    e) 1 21, 1R R     f) 1 21, 1R R   

   

g) 1 21, 1R R    h) 1 21, 1R R    i) 1 21, 1R R     

 

 

Fig. 4. Cross-section [0;1]u  (top view) of coupled FQD1-FEC2 (b,c,d,e), FEC1- 

FQD2 (f,j,h,i) structures with coinciding centres of gravity for different 1R , 2R . 

Attractor (a) of coupled FQD1-FEC2 structure. 

 

 

3  Behavior of coupled structures of elliptic and hyperbolic 

types 
 

Next, we investigate the behavior of coupled fractal structures based on the 

separate structures of the elliptic (FEC) and hyperbolic (FHC) types: FEC3-

FHC1 and FEC4-FHC2 with variable centres of gravity. 

The behavior of the attractors (fig. 5) and the deformation field (fig. 6-8) of such 

structures has its features as opposed to structures of only elliptic type. 

For the FEC3 parameters were the following: 01 1.0123p  ; 11 21 1b b  ; 

01 59.1471n   ; 1 44.4793cn  ; 1 25.7295cm  . For the FHC1 parameters 
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were the following: 02 1.0123p  ; 12 1b   ; 22 1b  ; 02 179.1471n   ; 

2 17.4793cn  ; 2 12.7295cm  . Other parameters for these structures were the 

same: 1i 2i 3i 0p p p     ; 3i 0b  ; 0i 89.3267m  ; 0i 31.5279j  ; 

i 11.8247cj   ( i=1,2 ). Variable parameter   describes the shift of the centres 

of gravity of coupled structures along axis On . 

 

   
a) 10   b) 40   c) 60   

   
d) 80   e) 90   f) 110   

 

Fig. 5. Attractors of coupled FEC3-FHC1 structures with variable centres of 

gravity. 

 

Changing parameter   from 0 to 120, we make approach of the structures FEC3 

and FHC1 (moving centres of gravity along axis On , fig. 5-7). 

At value 60   the centres of gravity of FEC3 and FHC1 coincide (fig. 5 c). 

The change of signs of parameters iR  determines a different orientation of the 

deformation fields of separate structures, which leads to the essential alteration 

of the deformation field of the coupled structure (fig. 6-7). 

At a fixed value of the centres of gravity of separate structures (for example 

10  ) the structure of the attractor of the coupled system (fig. 5 a) does not 

depend on the change of signs of iR . 

However, in this case, the structure of the deformation field changes essentially 

(fig. 6 a,d,g,j), which is due to the influence of different stochastic processes of 

different orientations on each other. If the signs of parameters iR  do not change 

(for example, 1 21, 1R R  ) and parameter   takes different values, then the 

mutual orientation of the stochastic processes is conserved (fig. 6 a-c, 7 a-c) and 
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the structure of the attractors essentially changes (fig. 5). 

In this case, the deformation field changes (fig. 6 a-c, 7 a-c), which is associated 

with the appearance of a different type of non-linearity of stochastic processes 

due to the shift of the centres of gravity of separate structures. 

 

   
a) 10   b) 40   c) 60   

   
d) 10   e)

 
40   f) 60   

   
g) 10   h) 40   i) 60   

   
j) 10   k) 40   l) 60   
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Fig. 6. Cross-section [0;1]u  (top view) of coupled FEC3-FHC1 structures with 

variable centres of gravity: (a,b,c) - 1 21, 1R R  ; (d,e,f) - 1 21, 1R R   ; (g,h,i) - 

1 21, 1R R   ; (j,k,l) - 1 21, 1R R    . 

 

   
a) 80   b) 90   c) 110   

   
d) 80   e) 90   f) 110   

   
g) 80   h) 90   i) 110   

   
j) 80   k) 90   l) 110   

 

Fig. 7. Cross-section [0;1]u  (top view) of coupled FEC3-FHC1 structures with 

variable centres of gravity: (a,b,c) - 1 21, 1R R  ; (d,e,f) - 1 21, 1R R   ; (g,h,i) - 
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1 21, 1R R   ; (j,k,l) - 1 21, 1R R    . 

 
When choosing another (along the diagonal) law of change of the centres of 

gravity of structure FEC4-FHC2 there are essential differences in the behavior 

of attractors and cross-sections of the displacement function compared to the 

coupled structure of FEC3-FHC1. 

The move of structures FEC4 and FHC2 along the diagonal was described by 

parameters: 01 19.1471n   ; 01 14.3267m   ; 02 219.1471n   ; 

01 157.3267m    (fig. 8). Variable parameter   changed from 0 to 140. 

The changes of the structure of the attractors (fig. 8 a-c) and the features of the 

behavior of the displacement function (fig. 8 d-f) confirm the essentially 

nonlinear type of stochastic processes in the coupled system. 

 

   
a) 20   b) 60   c) 90   

   
d) 20   e) 60   f) 90   

 

Fig. 8. Attractors and cross-section [0;1]u  (top view) of coupled FEC4-FHC2 

structures with variable centres of gravity for 1 21, 1R R  . 

 

Conclusions 
 

It is shown that in a model nanosystem the coupled structures based on separate 

fractal structures can be formed. 

Inside the coupled structures (from separate elliptic structures with real attractors, 

fig. 1-3), regions with regular (cavities with a bottom and cavities without a bottom 

– holes) and stochastic (fractal holes) behavior of the deformation field are observed. 

These cavities are surrounded by two smeared boundaries of elliptic type with 

stochastic behavior of the deformation field. Inside the coupled structures (from 
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separate elliptic structures with real and imaginary attractors, fig. 4) additionally fine 

structure in cavities is observed. These cavities are surrounded by a single smeared 

boundary. 

Significant changes in deformation fields for a coupled system from separate 

structures of elliptic and hyperbolic types are observed (fig. 5-8). 

The behavior of attractors (real and imaginary), deformation field, the type of the 

stochastic process for a separate fractal structure, can be controlled by the choice of 

governing parameters (values of semi-axis, positions of the centres of gravity). 

Additionally, in a coupled fractal structure it becomes possible to govern by a 

mutual orientation of the deformation fields of separate structures. 

Is shown that for a coupled structure, the mutual influence of attractors and separate 

stochastic processes on each other is significant. The effects of alteration and 

movement of fractal structures on each to other are possible. 

The simulation results can be used to describe various fractal topological phase 

transitions associated with the shape and dimension of nanoobjects, clusters, and 

superclusters. 
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