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Abstract. The correlation diagram of eigenenergies versus Planck constant has been
proven as a suitable and useful tool for the study of the quantum manifestations of
chaos in molecular systems. In this paper, we study the dynamics of the nonlinear
LiCN and highly nonlinear KCN molecular systems, showing how the regular classi-
cal structures (Kolmogorov-Arnold-Moser tori) embedded in the chaotic sea in phase
space (mixed-chaos regime) are manifested in the correlation diagram as emerging
diabatic states, which can remain hidden if only a fixed value of the Planck constant
is considered (typically ~ = 1 a.u.). Additionally, the quantum transition from order
to chaos is studied, in the framework of the scars frontier reported in the literature,
for the two-regions (regular and chaotic) LiCN correlation diagram and for the ap-
parently chaotic (mixed-chaos) KCN correlation diagram, leading to the proposal of
a schematic correlation diagram arrangement for a generic molecular system.
Keywords: Quantum chaos, Quantum-classical correspondence, Eigenenergies cor-
relation diagram, Nonlinear molecular systems.

1 Introduction

The correspondence between classical mechanics and quantum mechanics re-
mains a topic of interest, as evidenced by the abundant recent literature about
it. Since the correspondence for integrable systems was explained essentially in
terms of the EBK (Einstein-Brillouin-Keller) quantization [1], and the corre-
spondence for chaotic (ergodic) systems in terms of the Gutzwiller trace formula
[2], the focus is on systems with the so-called mixed-chaos behavior, where reg-
ular and chaotic structures coexist.

Moreover, one of the most solid theoretical tools to study the quantum-
classical correspondence is random matrix theory [3] and, especially, the level
statistics derived from it, where the statistical behavior of the neighboring
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eigenenergy levels as the strength of the perturbation changes is analyzed. No-
tice that the eigenenergies spectrum versus the strength of the perturbation
constitutes the corresponding correlation diagram, being the correlation dia-
gram versus Planck constant a proven useful tool for the study of the quantum
manifestations of chaos [4]. Additionally, in contrast with toy systems (as is
the case, for example, of quantum maps), we think that realistic systems (as is
the case of molecular systems) are especially interesting.

In this paper, we present a study on the correspondence between classi-
cal structures in phase space and quantum structures in the correlation dia-
gram versus Planck constant, for molecular systems with mixed-chaos behavior,
showing specific results for LiCN and KCN molecules.

2 Molecular model and calculations

2.1 Hamiltonian molecular model

Both systems studied in this work correspond to triatomic cyanide molecules
XCN (withX = Li,K), where the length between C and N atoms can be fixed at
its equilibrium value, since the CN bond is much stronger than the interactions
with atom X, so that an adiabatic decoupling of the involved degree of freedom
is suitable. Namely, we study the motion of atom X around the dimer CN.
The corresponding Hamiltonian function for the purely vibrational dynamics
(i.e., without rotation) is given in Jacobi coordinates by

H =
P 2
R

2µ1
+
P 2
θ

2

(
1

µ1R2
+

1

µ2r2eq

)
+ V (R, θ), (1)

where µ1 = mX(mC +mN)/(mX +mC +mN) and µ2 = mCmN/(mC +mN) are
reduced masses (being mX , mC, and mN the corresponding atomic masses), req
is the fixed C-N equilibrium length (req = 2.19 a.u. for X = Li and req = 2.22
a.u. for X = K), R is the distance between the CN dimer center of mass and the
X atom, and θ is the angle formed by the corresponding R and req directions,
with θ = 0 and θ = π rad for the linear configurations X-CN and CN-X,
respectively. Clearly, PR and Pθ are the corresponding conjugate momenta, and
V (R, θ) is the potential energy function describing the vibrational interactions
in each molecular system.

For the potential energy function, an analytic fit to ab initio quantum cal-
culations has been taken in each case from the literature [5,6]. The potential
energy function V (R, θ), along with the minimum energy path Req(θ) connect-
ing minima and saddles, and the energy profile Veq(θ) = V (Req(θ), θ) along
the minimum energy path, are depicted in Fig. 1 for both molecular systems.
Observe that the behavior of potential energy along the angular coordinate θ is
very anharmonic in both cases. Moreover, in the LiCN molecular system both
linear configurations, θ = 0 and θ = π rad, have stable equilibrium points,
being the most stable one at θ = π rad. However, in the KCN molecular sys-
tem only linear configuration at θ = 0 has a stable, albeit shallow, equilibrium
point, the other linear configuration at θ = π rad corresponding to a saddle
point. Notice that, in KCN case the most stable configuration is a triangular
configuration.
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Fig. 1. Potential energy function for LiCN (left panels) and KCN (right panels)
molecular systems. (Bottom) Contour plot representation spaced 1000 cm−1 for LiCN
and 700 cm−1 for KCN. The minimum energy path connecting minima and saddles in
each energy surface has been superimposed in blue thick line. (Top) Potential energy
profile along the minimum energy path.

2.2 Classical calculations

The Hamilton equations of motion corresponding to Eq. (1) have been built
and standard numerical integration used to obtain trajectories for each molec-
ular system. In order to get a suitable graphical representation of the phase
space structure, we have calculated composite Poincaré surfaces of section along
the minimum energy path for increasing energies. For this purpose, analytic
expressions Req(θ) for each minimum energy path fitted to a Fourier series,
adequate for differential transformations, have been used.

In this way, the canonical transformation

ρ = R−Req(θ), ϑ = θ, (2a)

Pρ = PR, Pϑ = Pθ + PR
dReq

dθ
, (2b)

is made, so that, for a given energy E, a Poincaré surface of section along
the minimum energy path is defined, in (ϑ, Pϑ) coordinates, by making ρ = 0
and choosing an arbitrary branch (the negative one in our calculations) in the
second order equation for Pρ that arise from the Hamiltonian conservation
H(ρ, ϑ, Pρ, Pϑ) = E. Finally, all calculated points from the Poincaré surface
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of section are folded into the interval ϑ ∈ [0, π] rad, taking into account the
symmetry of both molecular systems.

Moreover, the relevant periodic orbits have been obtained, taking advantage
of the symmetry of both systems, by means of the propagation of symmetry
lines [7].

2.3 Quantum calculations

In order to obtain the eigenfunctions and eigenenergies of the Hamiltonian op-
erator corresponding to the Hamiltonian function in Eq. (1) for both molecular
systems, the discrete variable representation–distributed Gaussian basis method
of Bac̆ić and Light [8] was used.

In this way, for the LiCN system, by using a final basis set of around
400 ray eigenvectors lying in 50 angular rays (for decreasing ~ from 1 a.u.
to 0.04 a.u. the number of rays increases up to 180), around 130 low lying
eigenfunctions 〈Rθ |n〉~ (n = 1, . . . , 130) with their eigenenergies converged to
within 1 cm−1 were obtained at values ~ = {0.04, 0.05, . . . , 3.00} a.u., leading to
the corresponding correlation diagram of eigenenergies versus Planck constant.

Similarly, for the KCN system, by using a final basis set of around 1000
ray eigenvectors lying in 50 angular rays (the number of rays increasing up to
120 for decreasing ~ from 0.5 a.u. to 0.1 a.u.), around 300 low lying eigenfunc-
tions 〈Rθ |n〉~ (n = 1, . . . , 300) with their eigenenergies converged to within
1 cm−1 were obtained at values ~ = {0.10, 0.11, . . . , 3.00} a.u., leading to the
corresponding correlation diagram.

Notice that, due to numerical accuracy issues, the correlation diagram for
~ < 0.04 a.u. in LiCN case, and for ~ < 0.10 a.u. in KCN case, could not be
calculated correctly.

3 Results and discussion

3.1 Classical dynamics: Poincaré surface of section

In order to describe the behavior of the LiCN molecular system as energy in-
creases, composite Poincaré surfaces of section at different energies are depicted
in Fig. 2.

Observe that at E = 1500 cm−1 the dynamics is completely regular. Notice
that main resonances ωϑ:ωρ arising from Poincaré-Birkhoff theorem [9] have
been specifically represented, namely 1:6, 1:7, 1:8, 1:9, 1:10, and again 1:10.
Moreover, at E = 2300 cm−1 the mechanism of Chirikov [9] has originated an
extended chaotic region, albeit main tori around (ϑ, Pϑ) = (π, 0) (rad, a.u.)
remain. Note the existence of the near to energy boundary chain of islands
immersed in the chaotic sea, corresponding to a 1:8 resonance. Interleaved in
this 1:8 stable resonance there exists a complementary 1:8 unstable resonance
not visible on the composite Poincaré surface of section. Finally, at E = 4000
cm−1 chaos is extended in phase space, however, regular regions corresponding
to both Li-CN and CN-Li linear configurations endure.
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Fig. 2. Composite Poincaré surfaces of section along the minimum energy path for
the LiCN molecular system at different energies, showing the transition from order
to chaos and the mixed-chaos evolution as energy increases.

On the other hand, a representative selection of composite Poincaré surfaces
of section at increasing energies for the KCN molecular system is depicted in
Fig. 3.

The first row of panels (E = 45, 65, 145 cm−1) illustrates the onset of
chaos in this system. We can observe that, according to Poincaré-Birkhoff and
Kolmogorov-Arnold-Moser theorems [9], the main periodic orbit corresponding
to central tori at E = 45 cm−1 suffers a pitchfork bifurcation clearly visible
at E = 65 cm−1. Then, following the mechanism of Chirikov, the separatrix
that arises from this bifurcation breaks, leading to an extended chaotic region
at E = 145 cm−1.

The second row of panels (E = 250, 290, 320 cm−1) shows the evolution of
the two main 1:2 stable resonances, corresponding to the chain of two islands
already existing at E = 45 cm−1, and the chain of two islands arising from
the pitchfork bifurcation of the main periodic orbit depicted in the first row of
panels. Observe that the former 1:2 resonance suffers a pitchfork bifurcation,
apparent at E = 250 cm−1, becoming unstable. The other stable 1:2 reso-
nance remains stable at E = 290 cm−1, whilst the separatrix that arose from
the pitchfork bifurcation of the former 1:2 resonance has broken, leading to
extended chaos in this region. Ultimately, the stable 1:2 resonance also suffers
a pitchfork bifurcation, clearly visible at E = 320 cm−1.

The third row of panels (E = 1300, 1500, 2400 cm−1) is devoted to the
emergence of stable structures at both linear molecular configurations, K-CN
and CN-K. Observe that at E = 1300 cm−1 the linear saddle configuration,
corresponding to ϑ = π rad, is widely attainable, and chaotic behavior is
apparently widespread over the whole available phase space. However, when
energy is increased, new stable structures emerge. Thus, at E = 1500 cm−1 the
linear minimum configuration, corresponding to ϑ = 0, is broadly reachable,
and stable structures (namely, a main tori family at the minimum with an
associated chain of four islands around it) appear in the linear minimum region.
Observe that, surprisingly, at E = 1500 cm−1 a stable structure also appears in
the linear saddle region. At E = 2400 cm−1 this stable structure has expanded,
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Fig. 3. Same as described in the caption of Fig. 2 for the KCN molecular system.

including a chain of six islands around it, whilst the stable structures in the
linear minimum region has become chaotic.

Last, as is shown in the fourth row of panels (E = 7200, 7700, 7900 cm−1),
new stable structures emerge at very high energy. Thus, at E = 7200 cm−1 we
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Fig. 4. Correlation diagram of eigenenergies versus Planck constant for LiCN (left
panel) and KCN (right panel) molecular systems. On grounds of graphical clarity,
energy is divided by Planck constant. The states corresponding to wavefunctions
represented in Figs. 5 and 6 are marked with red dots. Additionally, main series of
Fermi resonances in the regular region of the LiCN correlation diagram are marked
with magenta open symbols (see Table 1).

can observe the appearance of a small tori family in the region around ϑ = π/2
rad with Pϑ < 0. At E = 7700 cm−1 this tori family has extended, and a new
tori family has emerged in the region around ϑ = π/2 rad with Pϑ > 0. At
E = 7900 cm−1 the former tori family with Pϑ < 0 still remains, and a second
tori family has emerged with Pϑ > 0. All these regular structures correspond
to hinge motion (angular back and forth motion) of the atom K around the
group CN, where Pϑ < 0 corresponds to hinge motion around CN-K linear
configuration and Pϑ > 0 corresponds to hinge motion around K-CN linear
configuration.

3.2 Quantum eigenstates: Correlation diagram

The correlation diagram of eigenenergies versus Planck constant for the LiCN
molecular system has been depicted in the left panel of Fig. 4. Note that, in
order to make the picture more readable, energy has been divided by Planck
constant. Representative states at the true value ~ = 1 a.u. have been marked
with red dots and the corresponding wavefunctions depicted in Fig. 5.

All states at ~ = 1 a.u. from n = 1 to n = 23 correspond to regular states,
that is, we can assign quantum numbers n⊥ and n‖ by counting nodal lines
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Fig. 5. Wavefunctions 〈Rθ|n〉~ of the LiCN eigenstates marked with red dots in
Fig. 4 represented in color scale. The minimum energy path and the corresponding
eigenenergy contour have also been represented as blue line and black line, respec-
tively. Where appropriate, the involved periodic orbits have been superimposed as
red thick lines, and quantum numbers (n⊥, n‖) have been indicated. Planck constant
values are in atomic units. The axes are the same as in Fig. 1.

which are perpendicular and parallel, respectively, to the minimum energy
path. It can be assumed that these quantum numbers correspond to (ρ, ϑ)
coordinates, so that (n⊥, n‖) = (nρ, nϑ). Thus, states n = 9 and n = 17
represented in Fig. 5 are examples of regular states excited in ϑ coordinate
(0, 12) and both ρ and ϑ coordinates (1, 10), respectively. It is known [1] that
these regular states n = 1 − 23 at ~ = 1 a.u. corresponds to quantization on
the undestroyed classical tori around (ϑ, Pϑ) = (π, 0) (rad, a.u.) elliptic point
shown in Fig. 2.

Above state n = 23 at ~ = 1 a.u., no more excitations in ϑ coordinate can
be accommodated in the undestroyed classical tori around (π, 0) (rad, a.u.) el-
liptic point, and states n = 24 and n = 25 represented in Fig. 5 are quantized,
hence localized, on the unstable and stable 1:8 resonances, respectively, which
are immersed in the chaotic sea, near to energy boundary, shown in the middle
panel of Fig. 2. The corresponding periodic orbits (in red) have been superim-
posed over the wavefunctions, so that we can observe that wavefunctions are
localized along the periodic orbits, and quantum numbers (n⊥, n‖) = (0, 24)
can be assigned by counting nodal lines which are perpendicular and parallel to
the corresponding periodic orbit. Notice that a quantum eigenstate localized
on an unstable periodic orbit is called a scarred state or just a scar.

Above states n = 24 and n = 25 at ~ = 1 a.u., we go into the mixed-
chaos region, where there exist regular states with additional excitations in
ρ coordinate that can still be accommodated in the undestroyed tori around
(π, 0) (rad, a.u.) elliptic point shown in the right panel of Fig. 2, as is the
case for the state n = 32 represented in Fig. 5. There also exist regular states
quantized on classical tori around (0, 0) elliptic point, as is the case for the
state n = 47, and obviously there exist irregular or chaotic states related with
the classical chaotic sea, which do not have a recognizable nodal pattern, so
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that no quantum numbers can be assigned, as is the case for states n = 38 and
n = 60.

Ultimately, observe that the scarred states n = 24 and n = 25 at ~ = 1
a.u., which are in the vicinity of a broad avoided crossing (marked with an open
circle in Fig. 4), recover the regular character at ~ = 0.8 a.u., as is shown in
Fig. 5.

Indeed, in the correlation diagram of the LiCN molecular system, as well
as in that of the KCN system, the symmetry-derived non-crossing rule [10]
is applicable, so that all crossings between eigenstates in Fig. 4 are avoided
crossings, which involve Fermi resonances [11,12], although not all avoided
crossings have the same behavior. Thus, in the left down region of the LiCN
correlation diagram all crossings are narrow avoided crossings, and the involved
eigenstates exchange their characters, so that mixing states (i.e., affected by
the Fermi resonance) appear just at the immediate vicinity of the avoided
crossing. Notice that, as energy and Planck constant increase in the LiCN
correlation diagram, different series of Fermi resonances appear, being their
order of resonance ωϑ:ωρ = |mρ − nρ|:|mϑ − nϑ| for involved states (mρ,mϑ)
and (nρ, nϑ). The main ones of such series of resonances have been marked in
the LiCN correlation diagram, and the corresponding order of resonance ωϑ:ωρ
and quantum numbers (nρ, nϑ) of involved states have been detailed in Table 1.
Observe the correspondence between the appearance of classical and quantum
resonances as energy (and Planck constant) increases, namely 1:6, 2:14, 1:8,
2:18, 1:10, again 1:10, and 1:8.

However, the last 1:8 resonance series has a different behavior: As indi-
cated above, it corresponds to a broad avoided crossing, and contrary to the
other resonances the involved eigenstates do not exchange their characters, so
that mixing states remain after the avoided crossing. This behavior leads to
the energy-level repulsion, which is a feature of quantum chaos derived from
random matrix theory [3]. Accrodingly, the 1:8 resonance series, where scarred
states are originated, was stated as the (order-chaos) frontier of scars [13,14].
Behind the frontier of scars, i.e., in the right top region of the LiCN correla-
tion diagram, level repulsion predominates, which corresponds to the classical
chaotic sea. Nevertheless, in a similar fashion as classical tori emerge from
the chaotic sea, regular eigenstates (characterized by narrow avoided crossings

Symbol Resonance order ωϑ:ωρ Involved states (nρ, nϑ)

9 1:6 (0, 6 + 2k) ± (1, 2k), {k = 0, 1, . . . , 9}
4 2:14 (0, 14 + 2k) ± (2, 2k), {k = 0, 1, . . . , 7}
♦ 1:8 (0, 8 + 2k) ± (1, 2k), {k = 0, 1, . . . , 9}
5 2:18 (0, 18 + 2k) ± (2, 2k), {k = 1, 2, . . . , 8}
� 1:10 (0, 10 + 2k) ± (1, 2k), {k = 2, 3, . . . , 12}
© 1:8 (0, 8 + 2k) ± (1, 2k), {k = 2, 3, . . . , 12}

Table 1. Quantum numbers (nρ, nϑ) identifying the states involved in each series of
Fermi resonances marked at the regular region of the correlation diagram of the LiCN
molecular system represented in the left panel of Fig. 4.
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Fig. 6. Same as described in the caption of Fig. 5 for the KCN eigenstates.

with states characters exchange) emerge from the level repulsion sea. This is
the case of the hyperbolic curves in the right top region of the LiCN corre-
lation diagram, that correspond to regular states quantized on the classical
tori around (0, 0) elliptic point, as is the case of the state n = 47 at ~ = 1
a.u. mentioned above. However, in order to establish the correspondence be-
tween classical phase space structures and quantum correlation diagram in the
mixed-chaos regime, we will turn to the KCN molecular system.

The correlation diagram of eigenenergies versus Planck constant for the
KCN molecular system is depicted in the right panel of Fig. 4. Representative
states at the true value ~ = 1 a.u., as well as at other values for emerging
regular states examples, have been marked with red dots and the corresponding
wavefunctions depicted in Fig. 6.

Observe that, unlike the LiCN case, the correlation diagram for KCN system
exhibits a widespread level repulsion feature, albeit some regular structures
emerge from the level repulsion sea. Indeed, only ground state n = 1 (which is
obviously Gaussian-like) and first excited state n = 2 (shown in Fig. 6 at ~ = 1
a.u.) can be considered as regular states. This quantum behavior is related
to the classical early destruction (at very low energy) of the main tori, as was
shown in the first row of panels of Fig. 3.

Above state n = 2 at ~ = 1 a.u., no more excitations in ρ and ϑ coordinates
are supported, and similarly to states n = 24 and n = 25 of LiCN system
discussed above, states n = 3 and n = 4 represented in Fig. 6 are quantized,
hence localized, on the stable and unstable 1:2 resonances, respectively, which
are immersed in the chaotic sea, as was shown in the second row of panels
of Fig. 3. The corresponding periodic orbits (in red) have been superimposed
over the wavefunctions, so that we can observe that wavefunctions are local-
ized along the periodic orbits, and quantum numbers (n⊥, n‖) = (0, 2) can be
assigned by counting nodal lines which are perpendicular and parallel, respec-
tively, to the corresponding periodic orbit. However, unlike states n = 24 and
n = 25 of LiCN system, states n = 3 and n = 4 do not recover the regular
character as ~ decreases to the numerically computable minimum value ~ = 0.1
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|24〉 + |25〉
(0,24)
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Fig. 7. (Left) Wavefunctions 〈Rθ|n〉~=1 of the sum and difference combination of the
LiCN eigenstates n = 24 and n = 25 (upper panels) and the KCN eigenstates n = 3
and n = 4 (lower panels) unmixing states belonging to the scars frontier at ~ = 1
a.u. (Right) Schematic correlation diagram (E/~ versus ~) arrangement for a generic
molecular system, showing the three possible different regions. Depending on the
specific molecular system, the borderline between regions can move as indicated by
the arrows.

a.u. In order to prove that states n = 3 and n = 4 are involved in a Fermi
resonance, and then regular character is recovered for ~ < 0.1 a.u., sum and
difference combination of the involved states was calculated. As is shown in
the left side of Fig. 7, in the same way as sum and difference combination of
LiCN scarred states n = 24 and n = 25 at ~ = 1 a.u. recover regular be-
havior with quantum numbers (0, 24) and (1, 16) [1:8 Fermi resonance], the
combination of KCN scarred states n = 3 and n = 4 at ~ = 1 a.u. recover
regular behavior with quantum numbers (0, 2) and (1, 0) [1:2 Fermi resonance].
Notice that a more accurate unmixing can be performed by calculating the
couplings 〈m|∂/∂~|n〉, as was done in Ref. [13]. States n = 5 and n = 6, not
represented in Fig. 6, have a similar behavior, albeit increasing excitation to
quantum numbers (n⊥, n‖) = (0, 3). So that, states from n = 3 to n = 6 at
~ = 1 a.u. correspond to the frontier of scars in the KCN molecular system.

Above state n = 6 at ~ = 1 a.u., most states correspond to irregular ones,
as is the case of states n = 7 and n = 9 represented in Fig. 6. However,
as was indicated above, regular quantum structures corresponding to classical
tori emerge from the chaotic level repulsion sea. Thus, as energy and Planck
constant increase, two sets of hyperbolic curves constituted by narrow and
very narrow, respectively, avoided crossings emerge. The first of them, in
which hyperbolic curves are slightly diffuse due to the avoided crossings are
broader, corresponds to regular states quantized on the tori that, surprisingly,
appear at the linear saddle configuration (ϑ = π rad), as was shown in the
third row of panels of Fig. 3. State n = 100 at ~ = 0.42 a.u. with quantum
numbers (1, 0) represented in Fig. 6 is a representative of these regular states.
Notice that, for this set, only excitations in ρ coordinate are allowed. Moreover,
the second set of hyperbolic curves corresponds to regular states quantized on
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the tori that appear at the linear minimum configuration (ϑ = 0), as is the
case for states n = 120 at ~ = 0.63 a.u. with quantum numbers (1, 0), and
n = 148 at ~ = 0.59 a.u. with quantum numbers (1, 2), both represented in
Fig. 6. Notice that, for this set, the first excitation in ϑ coordinate is allowed.
On the other hand, also two sets of mostly straight lines, formed by narrow
avoided crossings, with clearly different slopes, emerge from the chaotic level
repulsion sea in the right top region of the KCN correlation diagram. These
sets correspond to states localized on the hinge motion tori that were shown in
fourth row of panels of Fig. 3. States n = 282 at ~ = 2.16 a.u. with quantum
numbers (0, 42), and n = 277 at ~ = 2.20 a.u. with quantum numbers (0, 46)
in Fig. 6, are representatives of each hinge motion type. Observe that, in fact,
both wavefunctions are localized along the corresponding periodic orbits shown
in Fig. 6.

Finally, we could establish a schematic correlation diagram arrangement for
a generic molecular system as that depicted in the right side of Fig. 7, where the
quantum transition from order to chaos is represented. Observe that in Fig. 4,
the three regions (order, scars frontier, and mixed-chaos) are clearly represented
in the LiCN correlation diagram. However, in the KCN correlation diagram,
mainly the chaotic (mixed-chaos) region is shown, being the order region and
the frontier of scars mainly shrunk into not calculated range 0 < ~ < 0.1 a.u.

4 Concluding remarks

We have established the quantum-classical correspondence for nonlinear molec-
ular systems, by analyzing the structures of the classical phase space and the
quantum correlation diagram of eigenenergies versus Planck constant.

The relationships found are in order. Each Poincaré-Birkhoff resonance in
the regular region of phase space corresponds to a series of Fermi resonances in
correlation diagram. The highest classical action resonances, immersed in the
chaotic sea, correspond to the quantum resonances that constitute the frontier
of scars. The chaotic sea in phase space corresponds to the level repulsion
region (overlap of broad avoided crossings) in correlation diagram, where the
regular tori that emerge from the chaotic sea (mixed-chaos) correspond to states
formed by narrow avoided crossings that emerge from the level repulsion sea.
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