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Abstract. The main purpose of this work is to study the relationship between the
Allee effect and the synchronization. In general it was believed that, due to compe-
tition for resources, a population will have a reduced growth rate at higher densities
and increased growth rate at lower densities. However, Warder Clyde Allee intro-
duced the idea that the reverse is true. When the population density is low, the
growth rate is reduced and there is a critical population size, the Allee point, below
which the population becomes extinct. The extinction of a population is not always
a fact to avoid. Indeed, extinguishing a population of cancer cells is an important
goal. When the population density is low, individuals require the help of others to
survive, and it has been repeatedly reported by some biologists that there is a posi-
tive influence of the Allee effect on the cooperation, or synchronism, of populations.
Using Bertalanffys models, in which were introduced Allee effect factors, we study
the evolution of the synchronizability when the Allee point increases. In fact, our
numerical results show that, when the Allee effect gets stronger, the synchronization
improves. Considering any fixed network, coupling several nodes having in each one
the same dynamical system modeled by Bertalanffy’s equation, we observed that the
synchronization begin at a lower value of the coupling parameter and the amplitude of
the synchronization interval becomes larger. These results confirm the experimental
observations of biologists.
Keywords: Synchronization, Allee effect, von Bertalanffy’s models, Symbolic dy-
namics, Chaotic region.

1 Introduction

The Allee effect is an important dynamic phenomenon first described by Allee
in 1931, [1]. The generally accepted definition of Allee effect is a correlation
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between population size or density and the mean individual performance, of-
ten measured as per capita population growth rate of a population or species.
Stephens et al in 1999, [26], distinguish between component Allee effect (that is
a positive relationship between any measurable component of individual perfor-
mance and population density) and demographic Allee effect (that is a positive
relationship between the overall individual performance and population density.

The demographic Allee effect can be classified as either weak or strong.
A population exhibiting a weak Allee effect will possess a reduced per capita
growth rate (directly related to individual fitness of the population) at lower
population density or size. However, even at this low population size or density,
the population will always exhibit a positive per capita growth rate. Meanwhile,
a population exhibiting a strong Allee effect will have a critical population size
or density, the Allee point, under which the population growth rate becomes
negative. Therefore, when the population density or size hits a number below
this threshold, the population will be extincted. The Allee point is the minimal
population size required for growth. The Allee effects should be of great concern
to those attempting to assess risk of species extinction. See for example [12] and
[19]. On the other hand, the extinction of a cancer tumor cell population will
be a good goal that eventually can be achieved by increasing the Allee effect.
In fact, increasing growth thresholds and strengthening cooperation reduces
the growth of cancer cells and could be an important treatment strategy, [13].

Synchronization is a fundamental nonlinear phenomenon which can be ob-
served in many systems modelling real life [2]. In population dynamics it can
be observed on the level of single cells and even on the level of large populations
[24] [7] [10]. On the other hand, spatial synchronization can promote global
population extinctions [16].

Experimental evidence suggests that for species under a strong Allee ef-
fect, the training and group cohesion may be crucial to enhance survival. The
animals can reach this collective behaviour through local interactions. Each
individual interacts locally with conspecifics and, on the scale of the group, a
collective behaviour (synchronization) emerges: animals move together, choose
the same patch habitat to live and show a tendency to migrate collectively.
That is, a strong Allee effect seems to improve synchronization, [9]. In this
work we conduct mathematical analyses, using von Bertalanffy’s models, to
support this assumption.

The growth of individuals within a population is usually modeled by a func-
tion which represents the growth of an “average” individual in the population.
The growth of an individual is regarded as an increase in its length or weight
with increasing age. Among the various functions or models that have been
used to analyze the increase in average length or weight of animals such as fish,
marine birds or chick, is the von Bertalanffy’s model, one of the most popular,
see for example [6], [8] and references therein.

The layout of this work is as follows. In Section 2, we introduce some
basic results about network synchronization and we present a process based on
symbolic dynamic, in order to find the chaotic region of the generalized von
Bertalanffy’s models. In Section 3, we describe the von Bertalanffy’s models
without and with Allee effect and, we determine the chaotic region of this
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generalized one. In Section 4, we show some results of our numerical simulations
for the Lyapunov exponent, which allow us to relate the synchronizability of
the network with the Allee point.

2 Preliminaries

In this section, we present some basic results required for the rest of the paper.
First, we introduce some important notions about network synchronization
and, in second, we remember some knowledge about symbolic dynamics and
topological entropy.

2.1 Network synchronization

Mathematically, networks are described by graphs and the theory of dynamical
networks is a combination of graph theory and nonlinear dynamics. From
the point of view of dynamical systems, we have a global dynamical system
emerging from the interactions between the local dynamics of the individual
elements and then, graph theory analyzes the coupling structure.

A graph is a set G = (V (G), E(G)) where V (G) is a nonempty set of N
vertices or nodes and E(G) is the set of m edges or links eij that connect two
vertices vi and vj , [5]. If the graph is weighted, for each pair of vertices (vi, vj)
we set a non negative weight aij such that aij = 0 if the vertices vi and vj are
not connected. If the graph is not weighted, aij = 1 if vi and vj are connected
and aij = 0 if the vertices vi and vj are not connected. If the graph is not
directed, aij = aji. The matrix A = A(G) = [aij ], where vi, vj ∈ V (G), is
called the adjacency matrix. The degree of a node vi is the number of edges

incident on it and is represented by ki, that is, ki =

i=N∑
i=1

aij .

Consider the diagonal matrix D = D(G) = [dij ], where dii = ki. We call
Laplacian matrix to L = D − A. The eigenvalues of L are all real and non
negatives and are contained in the interval [0,min {N, 2∆}], where ∆ is the
maximum degree of the vertices. The spectrum of L may be ordered, λ1 = 0 ≤
λ2 ≤ · · · ≤ λN . The second eigenvalue λ2 is know as the algebraic connectivity
or Fiedler value and plays a special role in the graph theory. As much larger λ2
is, more difficult is to separate the graph in disconnected parts. The graph is
connected if and only if λ2 6= 0 . In fact, the multiplicity of the null eigenvalue
λ1 is equal to the number of connected components of the graph. As we will
see later, as bigger is λ2, more easily the network synchronizes.

Consider a network of N identical chaotic dynamical oscillators, described
by a connected, unoriented graph, with no loops and no multiple edges. In each
node the dynamics of the oscillators is defined by ẋi = f(xi), with f : Rn → Rn
and xi ∈ Rn the state variables of the node i.

The state equations of this network are

ẋi = f(xi) + c

N∑
j=1

lijxj , with i = 1, 2, ..., N. (1)
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where c > 0 is the coupling parameter, A = [aij ] is the adjacency matrix
and L = (lij) = D − A is the Laplacian matrix or coupling configuration
of the network. The network (1) achieves asymptotical synchronization if
x1(t) = x2(t) = ... = xN (t) →

t→∞
e(t), where e(t) is a solution of an iso-

late node (equilibrium point, periodic orbit or chaotic attractor), satisfying
ė(t) = f(e(t)).

Consider the network (1) with identical chaotic nodes. The network equa-
tions in the discretized form are

xi(k + 1) = f(xi(k)) + c

N∑
j=1

lijf(xj(k)), with i = 1, 2, ..., N. (2)

Let 0 = λ1 < λ2 ≤ ... ≤ λN be the eigenvalues of the coupling matrix L
and let µ be the Lyapunov exponent of each individual n-dimensional node.
If c > µ

|λ2| , then the synchronized states are exponentially stable [14]. So, as

bigger is λ2, more easily (for a lower c) the network synchronizes. We may fix
f , the local dynamic in each node and vary the connection topology, L, or fix
L and vary f . In this work we fix the network configuration and vary the local
dynamical f . We consider on each node the same Bertalanffy function with
Allee effect, f = fr, and we study the effect of increasing the Allee point on
synchronization.

In a chaotic system it is important to measure the sensitivity with respect to
initial conditions. One way to do that is to compute the Lyapunov exponents
that measure the average rate at which nearby trajectories diverge from each
other. Consider the trajectories xk and yk, starting from x0 and y0, respectively.
If both trajectories are, until time k, always in the same linear region, we can
write

|xk − yk| = eγk|x0 − y0|,
where γ = 1

k

∑k−1
j=0 ln |f ′r(xj)|.

The Lyapunov exponent of a trajectory xk is defined by

µ = lim
k→+∞

1

k

k−1∑
j=0

ln |f ′r(xj)|,

whenever it exists. The computation of the Lyapunov exponent µ gives the
average rate of divergence (if µ > 0), or convergence (if µ < 0) of the two
trajectories from each other, during the time interval [0, k], see for example
[11]. In particular, for the von Bertalanffy’s functions, the Lyapunov exponents
depend on one biological parameter, the intrinsic growth rate r.

If the coupling parameter c belongs to the synchronization interval]
1− e−µ

λ2
,

1 + e−µ

λN

[
(3)

then the synchronized states xi(t), (i = 1, ...N) are exponentially stable, [14].
Fixing the topology of the network, the eigenvalues of the Laplacian λ2 and
λN are fixed, so the synchronization only depends on the Lyapunov exponent
of each node, µ, which in turn depends on the two biological parameters: von
Bertalanffy’s growth rate constant and the asymptotic weight.
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2.2 Symbolic dynamics and topological entropy

Symbolic dynamics is a theory composed by a set of results and techniques
which have a primordial role in the study of qualitative and quantitative prop-
erties of discrete dynamical systems. The topological complexity of a dynami-
cal system is usually measured by its topological entropy. This numerical and
topological invariant is associated to the growth rate of the several states of
dynamical systems, [15], [17], [18] and [25].

Consider a family of unimodal maps, fr, depending on a parameter r. For
each value of this parameter r, the orbit of the critical point c is given by

Or(c) =
{
xk : xk = fkr (c), k ∈ N0

}
(4)

defined by an iterative process, where

xk = fkr (c) = fr(xk−1), with k ∈ N. (5)

In order to study the topological properties of these orbits, we associate
to each orbit Or(c) a sequence of symbols, corresponding to the critical point

itinerary, denoted by S(r) = S
(r)
0 S

(r)
1 S

(r)
2 . . . S

(r)
k . . ., with k ∈ N0, where S

(r)
k

belongs to the alphabet A = {L,C,R}, with each symbol defined by

S
(r)
k =

L if fkr (c) < c
C if fkr (c) = c
R if fkr (c) > c

.

Note that, the alphabet A is an ordered set of symbols, corresponding to
the intervals of monotonicity and to the critical point of the map fr. The real
line order induces naturally an order relation in the alphabet A, so L ≺ C ≺ R.
The space of all symbolic sequences of the alphabet A is denoted by AN.

The expansive maps admit Markov partitions, whose existence is implicit
in the works of Bowen and Ruelle. In this study, we consider the existence of
Markov partitions, which are characterized by the orbit of the critical point of
the map fr, [25].

Consider the set of points corresponding to the k-periodic orbit or kneading
sequence of the critical point

S(r) = (CS
(r)
1 S

(r)
2 . . . S

(r)
k−1)∞ ∈ AN.

This set of points determines the Markov partition of the interval I = [0, 1]
in a finite number of subintervals, denoted by PI = {I1, I2, . . . , Ik−1}. The
dynamics of the map fr is completely characterized by the symbolic sequence
S(r) associated to the critical point itinerary.

The map fr and the Markov partition associated, induce a subshift of finite
type whose Markov transition matrix M = [mij ], (k − 1) × (k − 1), is defined
by

mij =

{
1, if intIj ⊆ fr(intIi)
0, otherwise

.
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Usually, the subshift is denoted by (
∑
M , σ), where σ is a shift map in

∑N
k−1

defined by σ (S1S2 . . .) = S2S3 . . ., with
∑
k−1 = {1, . . . k − 1} corresponding

to the k − 1 subshifts states.
The topological entropy of the map fr, in the phase space, is defined in

the associated symbolic space as the asymptotic growth rate of the admissible
words (finite symbolic sequences) in relation to the length of the words, i.e.,

htop (fr) = lim
n→∞

lnN (n)

n

where N (n) is the number of admissible words of length n. For a subshift of
finite type, unidirectional or bidirectional, described by the Markov transition
matrix M , the topological entropy is given by htop (σ) = ln (λM ), where λM is
the spectral radius of the transition matrix M . For a more detailed approach
about subshifts of finite type and the Perron-Frobenius Theorem for Markov
transition matrix, see [15], [17], [25] and references therein.

3 Chaotic region of von Bertalanffy’s models with Allee
effect

We start this section with the description of the usual von Bertalanffy’s growth
models. As these models do not include Allee effect, phenomenon observed in
many populations, bellow are presented generalized models that correct this
disadvantage. After this presentation, the chaotic region of the generalized
von Bertalanffy’s growth models is identified and, the correspondent Lyapunov
exponent is estimated in order to study the chaotic synchronization.

3.1 The von Bertalanffy’s models: usual and generalized

An usual form of von Bertalanffy’s growth function is given by

Wt = W∞

(
1− e−K

3 (t−t0)
)3
, (6)

where Wt is the weight at age t, W∞ is the asymptotic weight, K is von
Bertalanffy’s growth rate constant and t0 is the theoretical age the animals
would have at weight zero, see [6] and [8]. The growth function given by
Eq.(6) is solution of the von Bertalanffy’s growth equation, which represent
the population growth rate (see dashed line in the Fig.1 (a)) and is given by

f (Wt) =
dWt

dt
=
K

3
W

2
3
t

(
1−

(
Wt

W∞

) 1
3

)
, (7)

introduced by von Bertalanffy to model animals weight growth, see [3] and [4].
The per capita growth rate, associated to this growth model (see dashed line
in the Fig.1 (b)), is given by

g (Wt) =
f (Wt)

Wt
=
K

3
W
− 1

3
t

(
1−

(
Wt

W∞

) 1
3

)
.
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(a) Population growth rates (b) Per capita growth rates
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Fig. 1. von Bertalanffy’s models without (dashed black line) and with Allee effect
(model 1 in red, model 2 in green and model 3 in blue), with W∞ = 10, C = 3,
E = 0.8 and r = ri = 100, i = 1, 2, 3.

However, the von Bertalanffy growth model, Eq.(7), do not exhibit Allee
effect, because the per capita growth rate decreases at low densities (see dashed
line in Fig.1 (b)). Alternative models with Allee effect can be considered using
suitable corrections, as was done in [20]. In that paper, it were introduced new
correction factors, one of rational type and the others of polynomial type, where
two parameters are considered. The use of a parameter C > 0 leads to general-
ization, which yields some more flexible models with variable extinction rates.
An Allee point, also called rarefaction critical density or unstable equilibrium,
E, is incorporated so that the generalized models have strong Allee effect. The
transition from the strong Allee effect to the inexistence of this effect, occurs
when a “weakening” of the Allee effect, depending on the parameters C and
E, is done.

The corrected or generalized von Bertalanffy growth models, that represent
population growth rates (see red, green and blue lines in Fig.1 (a)), were defined
in [20] by the differential equations

f∗i (Wt) =
dWt

dt
=
K

3
W

2
3
t

(
1−

(
Wt

W∞

) 1
3

)
Ti (Wt) , i = 1, 2, 3, (8)

where the correction factors which adjust the Allee effect are defined by

T1 (Wt) =
Wt − E
Wt + C

, T2 (Wt) =
Wt − E
W∞ + C

and T3 (Wt) =
Wt − E
E + C

with |E| < W∞ and C > 0, where E is the rarefaction critical density or Allee
point, W∞ the carrying capacity, and C is a parameter that allows to define and
study more flexible models, with variable extinction rates. The corresponding
per capita growth rates, associated to these growth models (see red, green and
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blue lines in Fig.1 (b)), are given by

g∗i (Wt) =
f∗i (Wt)

Wt
=
K

3
W
− 1

3
t

(
1−

(
Wt

W∞

) 1
3

)
Ti (Wt) , i = 1, 2, 3.

3.2 Chaotic region of the corrected models

To study the chaotic synchronization, we need to identify the chaotic region of
these generalized von Bertalanffys models in the parameter space.

We start to consider a family of maps, representing the generalized von
Bertalanffy’ models with three adjustment factors, which result from the nor-
malization of the population growth rates given by the Eq.(8). These maps
fi,ri : [0, 1] → ]−∞, 1], with i = 1, 2, 3, incorporate strong Allee effect and are
defined by

fi,ri (x) = ri x
2
3

(
1− x 1

3

)
Ti (x) , i = 1, 2, 3 (9)

with x = Wt

W∞
∈ [0, 1] the normalized weight and ri = ri(K,W∞) = K

3 ×W
2
3∞ >

0 (i = 1, 2, 3) an intrinsic growth rate of the individual weight, see an example
of model 1 in Fig.2.
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Fig. 2. Graphics of f1;r1(x), for r1 (12.95 (red), 13.60 (green) and 14.17 (blue)), with
W∞ = 10, C = 3 and E = 0.8

For each i = 1, 2, 3, we consider that Ari = fi;ri (Ari) is the first positive
fixed point of each map fi;ri and A∗ri = max{f−1i;ri (Ari)}. After define these
two points Ari and A∗ri , we consider the following family of unimodal maps
fi,ri :

[
Ari , A

∗
ri

]
−→

[
Ari , A

∗
ri

]
, which satisfy the following conditions:

• fi;ri (Ari) = fi;ri
(
A∗ri
)

= Ari ;

• fi;ri ∈ C3
(]
Ari , A

∗
ri

[)
;
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• f ′i;ri(x) 6= 0,∀x ∈
]
Ari , A

∗
ri

[
\{ci}, (ci is the positive critical point of each

fi;ri(x));

• f ′i;ri(ci) = 0 and f ′′i;ri(ci) < 0;

• the Schwarz derivative of fi;ri(x) is given by

S (fi;ri(x)) =
f ′′′i;ri(x)

f ′i;ri(x)
− 3

2

(
f ′′i;ri(x)

f ′i;ri(x)

)2

.

S (fi;ri(x)) < 0, for all x ∈
]
Ari , A

∗
ri

[
\{ci} and S (fi;ri(ci)) = −∞. This

condition ensures a “good” dynamic behaviour of the models: the continu-
ity and monotonicity of topological entropy, the order in the succession of
bifurcations, the existence of an upper limit to the number of stable orbits
and the non-existence of wandering intervals (Singer’s Theorem). In gen-
eral, the growth models studied have negative Schwarzian derivative and
the use of unimodal maps is usual, see for example [21], [22] and [23].

In this work, using the family of unimodal maps defined above, we are only
interested in identifying the region of chaos on the parameter space, leaving to
another study the detailed analysis of the dynamic behavior of these models.
In Fig.3, is represented the bifurcation diagram of the model f1;r1 , for some fix
values of the parameters, where we can observe, as an example, the dynamic
behaviour of the generalized models. The symbolic dynamics techniques prove
to be a good methodology to determine by numerical approximation the sev-
eral regions of the parameter plane, namely the chaotic region. Commonly,
the symbolic sequence that identifies the beginning of chaos is

(
CRLR3

)∞
, a

6-periodic orbit, see for example [21] and [22]. In the chaotic region of the
(K,W∞) parameter plane, the evolution of the population size is a priori un-
predictable. The maps are continuous on the interval with positive topological
entropy, whence they are chaotic and the Sharkovsky ordering is verified. The
symbolic dynamics are characterized by iterates of the functions fi;ri that origi-
nate orbits of several types, which already present chaotic patterns of behavior.
The topological entropy is a non-decreasing function in order to the parameter
ri, beeing always less or equal to ln 2 (consequence of the negative Schwartzian
derivative). In [21] and [22] can be seen a topological order with several sym-
bolic sequences and their topological entropies, which confirm this result to
others growth models. This region is bounded below by the curve of the in-
trinsic growth rate, ri, values where the chaos starts. The upper bound it a
line designated by chaotic semistability curve, defined by the parameters such
that f2i;ri (ci) = Ari , i.e., the maximum size growth is equal to the critical den-
sity. This curve characterizes the transition between the chaotic region and an
essential extinction region, where the graphic of any function fi;ri is no longer
totally in the invariant set

[
Ari , A

∗
ri

]
. For the model 1 exemplified in Fig.3, the

chaotic region occurs for values of the intrinsic growth rate, r1, in the interval
[12.945, 14.177].



412 Aleixo and Caneco

xn

6 8 10 12 14
0.0

0.2

0.4

0.6

0.8

1.0

Fig. 3. Bifurcation diagram of f1;r1 (x) for W∞ = 10, C = 3 and E = 0.8

4 Numerical simulations and conclusions

In this section, we choosed model 1, f1;r1 , to make numerical simulations, com-
puting the synchronization interval for several increasing values of E, maintain-
ing fixed the others parameters. We fixed the network, so in the synchronization
interval, Eq. (3), the λ2 and λN are fixed. In this case, the network synchro-
nizability depends only on the local dynamic in each node, which is expressed
by its Lyapunov exponent µ.

For each value of E, using symbolic dynamics techniques, we obtained the
values of the parameter r1 that bound the chaotic region and then, we selected
a range of values of E, for which there is a common range of values of r1 in the
chaotic zone. In this work, we considered three intervals for the Allee point E:
0.1 ≤ E ≤ 0.5, 0.6 ≤ E ≤ 1.0 and 1.2 ≤ E ≤ 1.5, for which we selected the
corresponding common chaotic zones 12.16 ≤ r1 ≤ 12.34, 13.54 ≤ r1 ≤ 13.60
and 15.21 ≤ r1 ≤ 15.42, respectively (see Table 1).

E Chaotic zone Chaotic zone E Chaotic zone Chaotic zone E Chaotic zone Chaotic zone
lower bound upper bound lower bound upper bound lower bound upper bound

0.1 11.17 12.34 0.6 12.40 13.61 1.1 13.85 15.11
0.2 11.40 12.58 0.7 12.67 13.89 1.2 14.17 15.44
0.3 11.64 12.82 0.8 12.95 14.18 1.3 14.50 15.00
0.4 11.88 13.07 0.9 13.24 14.48 1.4 14.85 16.15
0.5 12.13 13.34 1.0 13.53 14.79 1.5 15.21 16.52

Table 1. Intrinsic growth rate, r1, bounds for the chaotic region, considering model
f1,r1 , with several values of the Allee limit E, W∞ = 10, C = 3.

For each pair of (E, r1) values, we numerically compute the Lyapunov ex-
ponent using 10000 iterations. The simulation results are presented in Tables
2, 3 and 4.

Fixing the network topology and, as a consequence, fixing λ2 and λN , we
can observe that, globally, the Lyapunov exponent decreases as the Allee point
increases, when the parameter r is fixed, see Tables 2, 3 and 4. Attending that
the synchronization interval is given by Eq. (3), the decrease of the Lyapunov
exponent implies: the decreasing of the lower bound and the increase of the
upper bound of the synchronization interval. So, as the Allee point E increases,
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not only the synchronization begins at a lower value of the coupling parameter
c, but also the amplitude of the synchronization interval gets larger. This allow
us to conclude that, the synchronization of the network gets better as the Allee
point E increases.

r1 E = 0.1 E = 0.2 E = 0.3 E = 0.4 E = 0.5
12.16 0.5750 0.4209 0.4188 0.3219 0.1153
12.18 0.5826 0.4500 0.4217 0.3615 0.2333
12.20 0.5790 0.4771 0.4373 0.3698 0.2462
12.22 0.5885 0.4879 0.4374 0.3680 0.2571
12.24 0.6057 0.5003 0.4388 0.3856 0.2752
12.26 0.6214 0.5102 0.4394 0.3789 -0.0954
12.28 0.6280 -0.0527 0.4360 -0.2190 0.3009
12.30 0.6399 0.5013 0.3834 0.3214 0.2654
12.32 0.6558 0.5348 -0.3949 0.3744 0.3316
12.34 0.6778 0.5454 -0.0207 0.3871 0.3468

Table 2. Lyapunov exponent, for µ (0.1 ≤ E ≤ 0.5, 12.16 ≤ r1 ≤ 12.34, W∞ = 10,
C = 3.

r1 E = 0.6 E = 0.7 E = 0.8 E = 0.9 E = 1.0
13.54 0.5923 0.4793 0.4378 0.3583 -0.0780
13.55 0.6266 0.4888 0.4371 0.3677 -0.0561
13.56 0.6320 0.4930 0.4356 0.3672 0.0829
13.57 0.6401 0.5124 0.4226 0.3688 0.2045
13.58 0.6438 0.5112 0.4415 0.3631 0.2286
13.59 0.6531 0.5122 0.4302 0.3745 0.2174
13.60 0.6707 0.4810 0.4354 0.3740 0.2440

Table 3. Lyapunov exponent µ for 0.6 ≤ E ≤ 1.0, 13.54 ≤ r1 ≤ 13.60, W∞ = 10,
C = 3.

r1 E = 1.2 E = 1.3 E = 1.4 E = 1.5
15.21 0.5128 0.4423 0.3682 -0.1583
15.24 0.5309 0.3871 0.3834 0.1875
15.27 0.5573 -0.1978 0.3733 0.2439
15.30 0.5785 -0.0837 0.0867 0.2600
15.33 0.5841 0.2028 0.3684 0.2806
15.36 0.5941 0.4312 0.3872 0.2866
15.39 0.6245 0.4605 0.4077 0.3079
15.42 0.6379 0.4822 0.3971 0.3445

Table 4. Lyapunov exponent µ for 0.6 ≤ E ≤ 1.0, 13.54 ≤ r1 ≤ 13.60, W∞ = 10,
C = 3.
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