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Abstract. Basic foundational aspects of both quantum physics and relativity in-
dicate that, at some fundamental level, the physical vacuum might behave as a
stochastic medium, somehow similar to a highly turbulent ether. This picture, if
taken seriously, might have phenomenological implications for the “ether-drift” ex-
periments (from Michelson-Morley until the modern ones with optical resonators).
Indeed, if there were a preferred reference frame, e.g. the system where the Cosmic
Microwave Background (CMB) is exactly isotropic, the microscopic velocity field,
which determines light anisotropy at the laboratory level, may differ sizeably from
the macroscopic velocity field, as directly fixed by the earth cosmic motion. This
would produce deviations from a standard Fourier analysis of the data and make it
difficult to separate a genuine physical signal from spurious instrumental noise. With
these premises, we have considered a theoretical framework where all measurable ef-
fects vanish exactly when light propagates in an “ideal” vacuum and where, within
the analogy of a turbulent flow, there are random fluctuations of the local drift around
the average earth motion. In this scheme, it is highly non trivial to understand if
the irregular signal observed in present experiments with vacuum optical resonators
is just spurious noise or has a genuine physical origin. We have thus compared with
the classical experiments where light was still propagating in gaseous systems (air or
helium at atmospheric pressure). In this case, the small irregular residuals observed
in the various experiments become consistent with the same earth velocity of 370
km/s indicated by the direct CMB observations with satellites in space. In view of
the substantial implications, for both physics and the history of science, new dedi-
cated experiments and new methods of analysis are needed for a definite clarification.
Keywords: Michelson-Morley Experiments; Cosmic Microwave Background; Stochas-
tic Vacuum.

1 Introduction

In 1887 Michelson and Morley tried to detect in laboratory a small difference
of the velocity of light propagating in different directions that, according to
classical physics, should have revealed the motion of the earth in the ether
(“ether drift”). The result of their measurements, however, was much smaller
than the classical prediction and considered as a typical instrumental artifact:
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a “null result”. This was crucial to stimulate the first, pioneering formulations
of the relativistic effects and, as such, represents a fundamental step in the
history of science.

Nowadays, this original experiment and its early repetitions performed at
the turn of 19th and 20th centuries (by Miller, Kennedy, Illingworth, Joos...)
are considered as a venerable, well understood historical chapter for which, at
least from a physical point of view, there is nothing more to refine or clarify.
All emphasis is now on the modern versions of these experiments, with lasers
stabilized by optical cavities that, apparently, have confirmed the null result by
improving by many orders of magnitude on the limits placed by those original
measurements.

Though, this is not necessarily true. In the original measurements, light was
propagating in gaseous systems (air or helium at atmospheric pressure) while
now, in modern experiments, light propagates in a high vacuum or inside solid
dielectrics. Therefore, in principle, the difference with the modern experiments
might not depend on the technological progress only but also on the different
media that are tested thus preventing a straightforward comparison.

One should also take into account that, in the interpretation of the data, it
was always assumed that any physical signal should only exhibit those smooth
time modulations, associated with the earth rotation and its orbital revolution,
which enter the motion of the laboratory with respect to a hypothetical pre-
ferred reference frame Σ, e.g. the Cosmic Microwave Background (CMB). The
data instead were showing an irregular behavior indicating sizeably different
directions of the drift at the same hour on consecutive days so that statistical
averages were much smaller than all individual values. Within the traditional
view, this has always represented a strong argument to interpret the measure-
ments as mere instrumental artifacts.

Here, however, there might be a logical gap. The relation between the
macroscopic earth motion and the microscopic propagation of light in a labo-
ratory depends on a complicated chain of effects and, ultimately, on the physical
nature of the vacuum. By comparing with the motion of a body in a fluid, the
standard view corresponds to a form of regular, laminar flow where global and
local velocity fields coincide. Instead, some arguments (see e.g. [1–3]), suggest
that, at some fundamental level, the physical vacuum might resemble a turbu-
lent fluid where large-scale and small-scale motions are only indirectly related.
In this case, the parameters of the macroscopic Earth’s motion would only fix
the limiting boundaries for a microscopic velocity field which has an intrinsic
non-deterministic nature.

The simplest explanation for this analogy is the intuitive representation
of the vacuum as a fluid with vanishing viscosity. Then, in the framework
of the Navier-Stokes equation, a laminar flow is by no means obvious due to
the subtlety of the zero-viscosity (or infinite Reynolds number) limit, see for
instance the discussion given by Feynman in Sect. 41.5, Vol.II of his Lectures
[4]. The reason is that the velocity field of such a hypothetical fluid cannot be a
differentiable function [5] and one should think, instead, in terms of continuous,
nowhere differentiable functions, similar to ideal Brownian paths [6]. This gives
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the idea of the vacuum as a fundamental stochastic medium consistently with
some basic foundational aspects of both quantum physics and relativity .

In this different perspective, with forms of turbulence which, as in most
models, become statistically isotropic at small scales, the direction of the local
drift is a completely random quantity that has no definite limit by combining
a large number of observations. Thus, one should first analyze the data in
phase and amplitude (which give respectively the instantaneous direction and
magnitude of the drift) and then concentrate on the latter which is a positive-
definite quantity and remains non-zero under any averaging procedure. In this
alternative picture, a non-vanishing amplitude (i.e. definitely larger than the
experimental resolution) is the signature to separate an irregular, but genuine,
signal from instrumental noise.

In this perspective, numerical simulations, as those performed in ref.[3],
become essential. These calculations, confirming the first indications of ref.[15],
indicate that in present ether-drift experiments with vacuum optical resonators
[16–20], it is highly non trivial to understand if the observed irregular signal is
just spurious noise or has a genuine physical origin. The reason is that, in the
very high vacuum adopted in the experiments, the velocity of light becomes
extremely close to the basic parameter c of Lorentz transformations where
any observable effect is expected to vanish exactly. Therefore, one should run
experiments slightly “off vacuum”, where the refractive index N 6= 1 but one
can still control the analysis with the constraints posed by the absence of any
measurable effect in the ideal N → 1 limit.

With this premise, light propagation in a gas of refractive index N = 1 + ε
was considered in detail (see the Appendix 2 of ref.[21]). In principle, (the solid
container of) the gas can be at rest in Σ (case 1) or in the laboratory frame
S’ (case 2). For case 1, and for the Σ observer, it is customary to assume the
isotropic metric γµν = diag(N 2,−1,−1,−1). For case 2, on the other hand,
the choice is not so obvious. To see why, let us denote by gµν the effective
space-time metric for the S’ observer and introduce the transformation matrix,

This picture was first proposed in the old ether theory at the end of XIX Century
[7]. In this original derivation, the Lorentz covariance of Maxwell equations was not
postulated from scratch but was emerging from an underlying physical system whose
constituents obey classical mechanics. More recently, the turbulent-ether model has
been re-formulated by Troshkin [8] (see also [9] and [10]) in the framework of the
Navier-Stokes equation and by Saul [11] by starting from Boltzmann’s transport equa-
tion. As another example, the same picture of the physical vacuum (or ether) as a
turbulent fluid was Nelson’s [12] starting point. In particular, the zero-viscosity limit
gave him the motivation to expect that “the Brownian motion in the ether will not
be smooth” and, therefore, to conceive the particular form of kinematics which is
at the base of his stochastic derivation of the Schrödinger equation. A qualitatively
similar picture is also obtained by representing relativistic particle propagation from
the superposition, at very short time scales, of non-relativistic particle paths with
different Newtonian mass [13] . In this formulation, particles randomly propagate (in
the sense of Brownian motion) in an underlying granular medium which replaces the
trivial empty vacuum [14] . For more details, see [3] .
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say Aµν , which for N = 1 connects the two metrics, i.e.

gµν = AµσA
ν
ργ
σρ (1)

The subtlety is that Aµν is a two-valued function for N = 1. In fact, when γµν

coincides with the Minkowski tensor ηµν = diag(1,−1,−1,−1), the standard
choice to preserve the invariance of the velocity of light and get gµν = ηµν

is Aµν = Λµν , where Λµν is the Lorentz transformation matrix associated with
the S’ velocity v with respect to Σ. On the other hand for N 6= 1, according
to special relativity, to preserve isotropy and thus the equivalence of the two
frames, one should instead fix Aµν = δµν , this being the only way to get
gµν = γµν . But, for any finite v, Λµν and δµν cannot be related by a point
transformation, thus, by continuity and in an infinitesimal region N = 1 + ε,
there are two solutions. Namely, if Aµν is the identity matrix, we expect a first
solution

[gµν(N )]1 = γµν ∼ ηµν + 2ε δµ0 δ
ν
0 (2)

while, if Aµν is a Lorentz transformation, we expect the other solution

[gµν(N )]2 = ΛµρΛ
ν
σγ

ρσ ∼ ηµν + 2ε vµvν (3)

vµ being the dimensionless S′ 4-velocity, vµ ≡ (v0,v/c) with vµv
µ = 1.

When combined with the idea of a stochastic vacuum, this leads to the
effective metric for light propagation

ĝµν(t) ∼ ηµν + 2ε v̂µ(t)v̂ν(t) (4)

where v̂µ(t) is a random velocity field which fluctuates around the average earth
motion. In this new scheme, see ref.[22], the small irregular residuals observed
in the classical experiments where light was still propagating in gaseous sys-
tems acquire a crucial importance and can become consistent with the average
Earth’s velocity of 370 km/s which is obtained from astronomical observations
of the CMB. This surprising agreement motivates additional, precise checks
with a new generation of laser interferometers where optical cavities are filled
with a gaseous medium. The main aspects of this research will be summarized
in the following.

2 Basic formalism

To illustrate the general framework, let us assume Eq.(3). As shown in ref.[21]
(see Appendix 2), one can then solve the equation gµνpµpν = 0 for light prop-
agation and define the velocity of light cγ(θ) from the ratio p0/|p| where θ is
the angle between v and p in the S’ laboratory frame. Thus, one can compute
the two way-velocity

c̄γ(θ) =
2 cγ(θ)cγ(π + θ)

cγ(θ) + cγ(π + θ)
(5)

which gives

c̄γ(θ) ∼ c

N

[
1− εv

2

c2
(
1 + cos2 θ

)]
(6)
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and a fractional light anisotropy

∆c̄θ
c

=
c̄γ(π/2 + θ)− c̄γ(θ)

c
∼ ε v

2

c2
cos 2(θ − θ0) (7)

Here, the pair (v, θ0) describes the magnitude and the direction of the local
drift in the relevant plane of the interferometer. Then, from the basic relations
of modern ether-drift experiments [16], this is directly related to the frequency
shift between two orthogonal optical resonators

∆c̄θ
c
∼ ∆ν(θ)

ν0
(8)

Likewise, one can compare with the fringe patterns measured in the classical
Michelson-Morley experiments. These depend on the time difference ∆t(θ) for
light propagation back and forth along perpendicular paths of length L

∆t(θ) =
2L

c̄γ(θ)
− 2L

c̄γ(π/2 + θ)
∼ 2L

c

∆c̄θ
c

(9)

(where, in the last relation, we have assumed that light propagates in a medium
of refractive indexN = 1+ε, with ε� 1). This gives directly the fringe patterns
(λ is the light wavelength)

∆λ(θ)

λ
∼ 2L

λ

∆c̄θ
c

(10)

Thus both the frequency shifts of the modern experiments and the fringe shifts
of the classical experiments depend on the light anisotropy

∆c̄θ(t)

c
= 2S(t) sin 2θ + 2C(t) cos 2θ (11)

where

C(t) =
1

2
ε
v2x(t)− v2y(t)

c2
S(t) =

1

2
ε

2vx(t)vy(t)

c2
(12)

with vx(t) = v(t) cos θ0(t), vy(t) = v(t) sin θ0(t) and we have made explicit the
time dependence of the signal.

As anticipated, the standard analysis of the data has been based on the
idea of smooth, regular modulations of the signal associated with a cosmic earth
velocity. In general, this is characterized by a magnitude V , a right ascension α
and an angular declination γ. These parameters can be considered constant for
short-time observations of a few days where there are no appreciable changes
due to the earth orbital velocity around the sun. In this framework, where the
only time dependence is due to the earth rotation, the traditional identifications
are vx(t) ≡ ṽx(t) and vy(t) ≡ ṽy(t) as from the simple application of spherical
trigonometry [23]

cos z(t) = sin γ sinφ+ cos γ cosφ cos(τ − α) (13)

ṽ(t) = V sin z(t) (14)
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ṽx(t) = ṽ(t) cos θ̃0(t) = V [sin γ cosφ− cos γ sinφ cos(τ − α)] (15)

ṽy(t) = ṽ(t) sin θ̃0(t) = V cos γ sin(τ − α) (16)

Here z = z(t) is the zenithal distance of V, φ is the latitude of the laboratory,
τ = ωsidt is the sidereal time of the observation in degrees (ωsid ∼ 2π

23h56′
) and

the angle θ0 is counted conventionally from North through East so that North
is θ0 = 0 and East is θ0 = 90o. With the identifications vx(t) ≡ ṽx(t) and
vy(t) ≡ ṽy(t), one thus arrives to the simple Fourier decomposition

S(t) ≡ S̃(t) = S0 + Ss1 sin τ + Sc1 cos τ + Ss2 sin(2τ) + Sc2 cos(2τ) (17)

C(t) ≡ C̃(t) = C0 + Cs1 sin τ + Cc1 cos τ + Cs2 sin(2τ) + Cc2 cos(2τ) (18)

with time-independent Ck and Sk Fourier coefficients.
On the other hand, let us assume that the vacuum behaves as a stochastic

medium similar to a turbulent fluid. Then, the parameters of the macroscopic
Earth’s motion would not directly determine the local flow but just fix the
typical limiting boundaries for a microscopic velocity field which has an intrinsic
non deterministic nature. This means that Eqs.(17,18) are no longer valid
and one should instead go back to Eq.(12) by identifying vx(t) = v̂x(t) and
vy(t) = v̂y(t) with a random velocity field as in Eq.(4). By following ref.[24],
in the limit of homogeneous turbulence, these velocity components can then be
generated by the method of unsteady random Fourier series.

The perspective is that of an observer moving in the turbulent fluid who
wants to describe the two velocity components in his x-y plane at a fixed
location in his laboratory. For homogeneous turbulence, one finds the general
expressions

v̂x(t) =

∞∑
n=1

[xn(1) cosωnt+ xn(2) sinωnt] (19)

v̂y(t) =

∞∑
n=1

[yn(1) cosωnt+ yn(2) sinωnt] (20)

where ωn = 2nπ/T , T being a time scale which represents a common period
of all stochastic components. The coefficients xn(i = 1, 2) and yn(i = 1, 2) are
random variables with zero mean and have the physical dimension of a velocity.
Here the macroscopic Earth’s motion enters: to determine their limiting bound-
aries. To this end, let us denote by [−dx(t), dx(t)] the range for xn(i = 1, 2)
and by [−dy(t), dy(t)] as the corresponding range for yn(i = 1, 2). In terms of
these boundaries, the only non-vanishing (quadratic) statistical averages are

〈x2n(i = 1, 2)〉stat =
d2x(t)

3 n2η
〈y2n(i = 1, 2)〉stat =

d2y(t)

3 n2η
(21)

in a uniform probability model within the intervals [−dx(t), dx(t)] and [−dy(t), dy(t)].
Here, the exponent η controls the power spectrum of the fluctuating compo-
nents. For numerical simulations, between the two values η = 5/6 and η = 1
reported in ref.[24], one should fix η = 1 which corresponds to the point of view
of an observer moving in the fluid. Finally, these boundaries can be determined
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from the kinematical parameters (V, α, γ) which describe the macroscopic earth
motion with the identifications dx(t) = ṽx(t) and dy(t) = ṽy(t) as in Eqs.(13)-
(16). For numerical simulations, the parameters were fixed to their average
values obtained from the CMB observations, i.e. V ∼ 370 km/s, α ∼ 168 de-
grees, γ ∼ - 6 degrees. If, however, we impose statistical isotropy, the relation

ṽ2x(t) + ṽ2y(t) = ṽ2(t) (22)

requires the identification

dx(t) = dy(t) =
ṽ(t)√

2
(23)

For such isotropic model, by combining Eqs.(19)−(23) and in the limit of an
infinite statistics, one gets

〈v̂2x(t)〉stat = 〈v̂2y(t)〉stat =
ṽ2(t)

2

1

3

∞∑
n=1

1

n2
=
ṽ2(t)

2

π2

18

〈v̂x(t)v̂y(t)〉stat = 0 (24)

and vanishing statistical averages

〈C(t)〉stat = 0 〈S(t)〉stat = 0 (25)

at any time t, see Eqs.(12). Therefore, by construction, this model gives a
definite non-zero signal but, if the same signal were fitted with Eqs.(17) and
(18), it also gives average values (Ck)avg = 0, (Sk)avg = 0 for the Fourier
coefficients.

3 Comparison with the classical ether-drift experiments

In the absence of experiments where optical resonators are filled by gaseous
media, a detailed comparison [22] was performed with the fringe patterns mea-
sured in the classical ether-drift experiments. To fully appreciate the change
of perspective implied by Eqs.(25), let us consider the traditional procedure
of data taking in the classical experiments. Fringe shifts were observed at the
same sidereal time on a few consecutive days (so that changes in the earth or-
bital velocity could be ignored) and the data were averaged at any given angle
θ. In this way, by combining Eqs.(10) and (11), one was obtaining

〈∆λ(θ; t)

λ
〉stat =

2L

λ
[2 sin 2θ 〈S(t)〉stat + 2 cos 2θ 〈C(t)〉stat] (26)

and these averages were compared with various models of cosmic motion.
But, if the ether-drift is a genuine stochastic phenomenon, as expected if

the physical vacuum were similar to a turbulent fluid which becomes isotropic
at small scales, these average combinations should vanish exactly for an infinite
number of measurements. Thus, averages of vectorial quantities are non van-
ishing just because the statistics is finite and forming the averages Eq.(26) is
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Fig. 1. Joos’ experimental amplitudes in units 10−3 are compared with a single sim-
ulation of 22 measurements performed at Joos times. The stochastic velocity com-
ponents are controlled by the kinematical parameters (V, α, γ)CMB. By changing
the parameters of the simulation, the typical variation of each simulated entry is
(1÷4) ·10−3 depending on the sidereal time. We also show two 5th-order polynomial
fits to the two different sets of values. The figure is taken from ref.[22] .

not a meaningful procedure. In particular, the direction θ0(t) of the drift in the
plane of the interferometer (defined by the relation tan 2θ0(t) = S(t)/C(t)) is
a completely random quantity which has no definite limit by combining a large
number of observations. Instead, one should separate the signal in phase and
amplitude (which give respectively the instantaneous direction and magnitude
of the local drift) and concentrate on the latter which is a positive-definite
quantity and remains non-zero under any averaging procedure.

To this end, from Eqs.(12) we find

∆λ(t, θ)

λ
∼ L

λ

2ε v2(t)

c2
cos 2[θ − θ0(t)] ≡ A2(t) cos 2[θ − θ0(t)] (27)

In this way, the 2nd-harmonic amplitude A2(t) depends on an observable ve-
locity

v2obs(t) ∼ 2ε v2(t) (28)

which is re-scaled by the tiny factor 2ε with respect to the kinematical velocity
v2 which instead enters the classical prediction[

∆λ(t, θ)

λ

]
class

∼ L

λ

v2(t)

c2
cos 2[θ − θ0(t)] ≡ Aclass

2 (t) cos 2[θ − θ0(t)] (29)

Therefore, the differences with respect to the traditional analysis are: a) the
re-scaling v(t) → vobs(t) and b) the inclusion of the random variations of the
velocity field mentioned above with the identifications vx(t) = v̂x(t) and vy(t) =
v̂y(t) as in Eqs.(19) and (20).

By implementing these two ingredients, things change completely. To have
an idea, we report in Figs. 1 and 2 the comparison between numerical simu-
lations and the experimental second harmonic amplitudes extracted from the
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most precise classical ether-drift experiment, the one performed by Joos in 1930
[25].

Fig. 2. Joos’ experimental amplitudes in units 10−3 are compared with the result
of simulating the averaging process over 10 hypothetical measurements performed,
at each Joos’ time, on 10 consecutive days. The stochastic velocity components
are controlled by the kinematical parameters (V, α, γ)CMB. The effect of varying
the parameters of the simulation has been approximated into a central value and a
symmetric error. The figure is taken from ref.[22] .

The analysis of ref.[22] is summarized in Table 1 where we have also included
the determinations from the Tomaschek [26] and Piccard-Stahel experiments
[27]. The refractivities used in Eq.(28), to transform observable velocity into
kinematical velocity, were ε = 2.8 · 10−4 and ε = 3.3 · 10−5 as respectively for
air and gaseous helium at room temperature and atmospheric pressure.

The only possible discrepancy found in ref.[22] concerned the Michelson-
Pease-Pearson (MPP) experiment at Mount Wilson which was giving a consid-
erably smaller central value, namely v ∼ 180 km/s, for the kinematical velocity,
even though the associated uncertainty could not be estimated. However, we
will now show that, within statistical uncertainties, also the MPP experiment
can become consistent with our stochastic model.

As discussed in [22] it is extremely difficult to understand the results of the
MPP experiment from the original articles [28,29]. No numerical results are
reported and the two papers are even in contradiction about the magnitude of
the measured effects (“one-fifteenth” of the expected value vs. “one-fiftieth”).
To try to understand, we have consulted another article which, rather surpris-
ingly, was signed by Pease alone [30]. In this article, Pease declares that, in

The velocities for the Piccard-Stahel experiment [27] derive from the value L/λ =
6.4 · 106 and the average 2nd-harmonic amplitude (2.8± 1.5) · 10−3. This is obtained
from their individual 24 determinations namely (in units 10−3), the 12 Mt.Rigi values
AEXP

2 = 3.4, 1.1, 4.0, 2.4, 2.4, 4.3, 2.3, 2.6, 0.6, 2.0, 1.2, 3.9, and the 12 Brussels
measurements, at night AEXP

2 = 3.2, 5.2, 6.5, 2.2, 4.9, 3.8 and in the morning AEXP
2 =

1.85, 1.27, 3.40, 1.00, 3.70, 1.14.
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Table 1. The average velocity observed (or the limits placed) by the classical ether-
drift experiments in the alternative interpretation where the relation between the ob-
servable vobs and the kinematical v is governed by Eq.(28).

Experiment gas in the interferometer vobs(km/s) v(km/s)

Michelson-Morley(1887) air 8.4+1.5
−1.7 355+62

−70

Morley-Miller(1902-1905) air 8.5± 1.5 359± 62
Miller(1925-1926) air 8.4+1.9

−2.5 355+79
−104

Tomaschek (1924) air 7.7+2.1
−2.8 325+87

−116

Kennedy(1926) helium < 5 < 600
Illingworth(1927) helium 2.4+0.8

−1.2 295+98
−146

Piccard-Stahel(1926-1927) air 6.3+1.5
−2.0 266+62

−83

Michelson-Pease-Pearson(1929) air 4.3± ... 182± ...
Joos(1930) helium 1.8+0.5

−0.6 226+63
−76

their experiment, to test Miller’s claims, they concentrated on a purely differ-
ential type of measurement. For this reason, he only reports the quantity

δ(θ) = 〈∆λ(θ; t = 5 : 30)

λ
〉stat − 〈

∆λ(θ; t = 17 : 30)

λ
〉stat

This means that they were performing a large set of observations at sidereal
time 5:30 and averaging the data. Then, the same procedure was carried out, in
the same days, at sidereal time 17:30. Finally, the two averages were subtracted
to form the quantities δ(θ). These are typically below ±0.004 and this is the
order of magnitude which is usually compared [31] with the classical expectation

for the MPP apparatus, namely Aclass
2 = L

λ
(30km/s)2

c2 ∼ 0.45 for optical path of

85 feet or Aclass
2 = L

λ
(30km/s)2

c2 ∼ 0.29 for optical path of 55 feet.

Fig. 3. The histogram W of a numerical simulation of 10.000 instantaneous ampli-
tudes for the single session of January 13, 1928, reported by Pease [30]. The vertical
normalization is to a unit area. We show the median and the 70% CL. The lim-
its on the random Fourier components in Eqs.(19) and (20) were fixed by the CMB
kinematical parameters as explained in the text.
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As explained above, by accepting a stochastic picture of the ether-drift,
the vector average of more and more observations will wash out completely
the physical information contained in the original measurements. Therefore,
from these δ−values, nothing can be said about the magnitude of the fringe

shifts ∆λ(θ)
λ obtained in the individual measurements, i.e. before any averaging

procedure and before any subtraction. Pease just reports a poor-quality plot
of a single observation, performed on January 13, 1928, when the length of the
optical path was still 55 feet. In this plot, the fringes vary approximately in the
range ±0.006 whose absolute value may be taken to estimate the amplitude of
that observation.

We have thus performed a numerical simulation in our stochastic model by
generating 10,000 values of the amplitude, at the same sidereal time 5:30 of the
observation reported by Pease, and using the CMB kinematical parameters to
bound the random Fourier components of the velocity field Eqs.(19) and (20).
The resulting histogram, reported in Fig.3, shows that the value A2 ∼ 0.006
lies well within the 70% Confidence Limit. Notice the large probability content
at very small amplitudes and the long tail extending up to A2 = 0.030 or even
larger values.

The wide interval of amplitudes corresponding to the 70% C. L. (which
could be expressed as 0.014+0.015

−0.012) indicates that, in our stochastic model, one
could accomodate individual MPP observations with an amplitude as 0.002 or
as 0.030 which is fifteen times larger. This is another crucial difference with
a deterministic model of the ether-drift. In this traditional view, in fact, the
amplitude can vary at most by a factor r = (vmax/vmin)2 where vmax and
vmin are respectively the maximum and minimum daily projection of the earth
velocity in the interferometer plane. Therefore, since r varies typically by a
factor of two, the observation of such large fluctuations in the data would induce
to conclude, in a deterministic model, that there must be some systematic effect
which modifies the measurements in an uncontrolled way.

4 Conclusions

The overall consistency of our picture with the classical experiments should
induce to perform the new dedicated experiments where the optical resonators
which are coupled to the lasers (see Fig.4) are filled by gaseous media. In
this case,one should check the relative frequency shift in Eq.(8) and study the
substantially larger frequency shift which should be observed with respect to
the present experiments with vacuum optical cavities.

These experiments will likely require a good deal of ingenuity and technical
skill. For instance, an important element to increase the overall stability and
minimize systematic effects may consist in obtaining the two optical resonators

Strictly speaking, for a more precise comparison with the data, one should fold the
histogram with a smearing function which takes into account the finite resolution ∆
of the apparatus. The resulting curve will bend for A2 → 0 and saturate to a limit
which depends on ∆. Nevertheless, this refinement should not modify substantially
the probability content around the median which is very close to A2 = 0.007.
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Fig. 4. The scheme of a modern ether-drift experiment. The light frequencies are first
stabilized by coupling the lasers to Fabry-Perot optical resonators. The frequencies ν1
and ν2 of the signals from the resonators are then compared in the beat note detector
which provides the frequency shift ∆ν = ν1 − ν2. In present experiments a very high
vacuum is maintained within the resonators.

from the same block of material as with the crossed optical cavity of ref.[32].
Still, measuring precisely the frequency shift in the gas mode will be a delicate
issue. To fix the ideas, let us consider gaseous helium at atmospheric pressure,
a velocity v = 300 km/s and a typical laser frequency of about 3 · 1014 Hz. In
these conditions, the expected shift is ∆ν ∼ 10 kHz. This is much smaller than
many effects which must preliminarily be subtracted. For instance, by changing
from vacuum to the gas case under pressure, and for a typical cavity length of 10
cm, the effect of cavity deformations is about 10 MHz [33]. Theoretically, this
should not depend on the gas used but only on the solid parts of the apparatus.
Yet, experimental measurements at atmospheric pressure show that there is a
difference between Nitrogen and Helium of about 0.6 MHz [33]. Therefore,
one should lower the pressure to reduce this spurious effect. Of course, this is
what might show up in a single cavity while we are interested in the frequency
shift between two cavities where the effect will be reduced. Nevertheless, the
pressure will have to be lowered and, then, also the signal will be reduced
correspondingly. Therefore, several technical problems must be solved before
concluding that, in the gas case, there is a definite improvement with respect
to the classical experiments (in particular with respect to Joos).

This substantial enhancement is confirmed by the only modern experiment
performed in similar conditions: the 1963 MIT experiment by Jaseja et. al [34]
. Actually, at that time, they did not use optical resonators but were compar-
ing directly the frequencies of two He-Ne lasers under 90 degrees rotations of
the apparatus. However, the light from the lasers emerges from a He-Ne gas
mixture and thus the two laser frequencies represent a measure of the two-way
velocity of light, along orthogonal directions, in that environment. Finally, for
a proper comparison, one has to subtract preliminarily a large systematic con-
stant shift of about 270 kHz interpreted as being due to magnetostriction in the
Invar spacers induced by the Earth’s magnetic field. As suggested by the same
authors, this spurious effect, that was only affecting the overall normalization
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Fig. 5. The data of ref.[34] for the frequency shift between two He-Ne masers. The
double arrow indicates the range of variation in the same model Eq.(8) used for the
classical experiments.

of the experimental ∆ν, can be subtracted by looking at the time variations of
the data.

Now assuming a preferred frame, the shift is maximal for 90 degree rotations
with respect to the true direction of the earth motion. This means a frequency
shift

Shift . |∆ν(θ = 0)−∆ν(θ = π/2)| ∼ 2(NHe−Ne − 1) (v2/c2) ν0 (30)

Then for a laser frequency ν0 ∼ 2.6 · 1014 Hz, a refractive index NHe−Ne ∼
1.00004 and a cosmic earth velocity of about 315+20

−25 km/s (as for the earth
cosmic motion at the latitude of Boston and at the time of the observations)
the expected frequency shift would be [35]

Shift . 23.6 +3.1
−4.2 kHz (31)

Therefore, once the mean value of 23.6 kHz is hidden in the much larger
spurious shift of 270 kHz, we would expect typical relative variations of about
+3 and −4 kHz (respectively above and below the mean value). This expec-
tation is roughly consistent with residual variations of a few kHz shown in
Fig.5. This fairly good agreement gives further motivations for the new series
of experimental tests.
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