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Abstract. We demonstrate that reservoir computing can be utilized as an observer
not only of chaotic temporal dynamics, such as those produced by the Rössler sys-
tem, but also for two-dimensional dynamics generated by an optoelectronic system.
Our optoelectronic experimental system consists of a spatial-light modulator with
self-feedback that generates complex two-dimensional spatio-temporal patterns. The
observer successfully cross-predicts the dynamics at all spatial locations based on
observed time series from a selected subset of locations. The observer consists of
reservoir computing subnetworks that receive input and predict local regions in space
only, making the proposed observer resource efficient.
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1 Introduction

The Central Limit Problem in probability theory is the problem of laws of
convergence of sequences of sums of random variables.

It appeared due to a new approach by Paul Lévy (Paul Lévy, French, born
in 1886) of the classical limit problem. Lévy formulated and solved the prob-
lem: find the family of all possible limit laws of normed sums of independent
and identically distributed random variables (in brief i.i.d.). If these random
variables have a finite second moment, the limit law, with classical norm, is
normal. Therefore, Lévy was interested, firstly, with a new case that of infinite
second moments, the first moments being finite or infinite. Thus, the question
of all possible limit laws of normed sums with independent but not necessarily
identically distributed random variables arises in a natural way.

Therefore, one can reformulate the central limit problem in the following
way: find the limit laws of sequences of sums of independent summands and
also find conditions for convergence to a specific one.
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Let us consider arbitrary random variables Yn and set Xn1 = Yn and Xnk =
0 a.s., for k > 1 and every n. The sequence of laws becomes, in this case, the
sequence L(Yn) and, therefore, the family of possible limit laws contains any
law L (denote L(Yn) ≡ L). Hence, some restriction is necessary to be imposed.

Central Limit Problem. The common feature is that the number of sum-
mands increases indefinitely, and the limit law remains the same if an arbitrary
finite number of summands is omited.

A natural restriction is the following (M. Loève): the summands Xnk are

uniformly asymptotically negligible, that is to say Xnk
P→ 0 uniformly in k or,

equivalently, for every ε > 0 arbitrarily small

max
k

P [ |Xnk| ≥ ε]→ 0.

A precise formulation of the central limit problem can be now given:
Central Limit Problem. Let

Snkn =

kn∑
k=1

Xnk

be sums of uniformly asymptotically neglijable independent summands Xnk,
with kn →∞.

i Find the family of all possible limit laws of these sums.
ii Find conditions for convergence to any specified law of these family.

Limit theorems

We have already introduced the laws L, so that we shall refer in this section,
in short, to the basical laws of probability theory.

At the origin of the classical limit problem one finds three limit theorems
and corresponding limit laws.

Let us denote by Sn the number of occurrences of an event A with constant
probability p in n independent trials. Also it is assumed that p + q = 1 and
both p and q are different to zero, which is referred to as the Bernoulli case.
For Xk being the indicator of the event A in the k-th trial then,

Sn =

n∑
k=1

Xk, n = 1, 2, · · ·

where the summands are i.i.d. indicators. Thus,

EXk = p, EX2
k = p

while the variance is
σ2Xk = p− p2 = pq,

so that it results

ESn =

n∑
k=1

EXk = np
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and

σ2Sn =

n∑
k=1

σ2Xk = npq.

The first limit theorem of probability theory is due to J. Bernoulli and
it affirms that

Sn
n

P→ p

or, equivalently, if ε > 0 is arbitrarily small, then

lim
n→∞

P

[∣∣∣∣Snn − p
∣∣∣∣ < ε

]
= 1.

Bernoulli obtained this theorem directly, by a difficult analysis of the symp-
totic behaviour of the binomial distribution

b(k;n, p) =

(
n

k

)
pkqn−k, k = 0, 1, 2, · · · , n.

The second limit theorem was obtained firstly by Abraham DeMoivre
in 1730, for p = q = 1

2 and, then, this was generalized by Laplace for 0 < p < 1.
Laplace found also the following integral version of this theorem

P

[
Sn − np√

npq
< x

]
−→ 1√

2π

x∫
−∞

e−
1
2y

2

dy, −∞ ≤ x ≤ +∞.

which stands for the second limit theorem.

The third limit theorem was found by Poisson. He modified the Bernoulli
case by considering that the probability p = pn depends upon the total number
n of trials in such a way that, for λ > 0, to have npn → λ. If we write, for
this case, Xnk and Snn, instead of Xk and Sn, one observes that such a case
corresponds to sequences of sums

Snn =

n∑
k=1

Xnk, n = 1, 2, · · · ,

where for every given n, the summands Xnk are i.i.d. indicators with

P [Xnk = 1] =
λ

n
+ 0

(
1

n

)
.

It is already known the result obtained by Poisson, which we write now in the
following form

P [Snn = k] −→ λk

k!
e−λ, k = 0, 1, 2, · · · .

Jacques Bernoulli, Swiss 1654-1705. His works Ars Conjectandi was published only
in 1713.
Abraham DeMoivre, English, 1667-1754.
Pierre Simon de Laplace, French, 1749-1827
Siméon Denis Poisson, French, 1781-1840.
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Basical laws of probability theory

In the way presented above the following three laws of probability theory
were born.

1. The degenerate law L(0) of a random variable degenerate at 0, the
distribution function of which has one point of increse, only at x = 0, and
whose characteristic function is reduced to 1.

2. The normal law N (0, 1) of a normal random variable having the dis-
tribution function defined in the following way

F (x) =
1√
2π

x∫
−∞

e−
y2

2 dy

and its characteristic function defined as

ϕ(t) =
1√
2π

∫
eitx−

x2

2 dx =

= e−
t2

2 · 1√
2π

+∞−it∫
−∞−it

e−
z2

2 dz = e−
t2

2 .

3. The Poisson law P(λ) of a Poisson random variable which has the
distribution function as follows

F (x) = e−λ
|x|∑
k=0

λk

k!

and its characteristic function defined by the equality

ϕ(t) = e−λ
∞∑
k=0

eitk
λk

k!
=

= e−λ
∞∑
k=0

(λeit)k

k!
= eλ(e

it−1). (1)

It is interesting that the first two laws played a fundamental role in the
development of probability theory, while the Poisson law was isolated for a
long time. Nevertheless, the Poisson law is recognized to be, in some sense,
more fundamental for the central limit problem than the first two. [For more
details see [13], [24], [3], [6], [7]].

But we shall consider below the second law, known as the normal law, and
we shall refer to some aspects which emphasize its universal character.

Now some aspects regarding to the normal approximation of the binomial
distribution and the integral limit theorem due to DeMoivre and Laplace are
discussed firstly. Then, we shall refer, in short, to the problem of convergence
to the normal distribution law.

With another occasion we shall refer to new aspects and applications.
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2 Normal approximation of the binomial distribution

The Bernoulli - type experiment is defined as the one in which the following
conditions are respected : (1) in each of succesive independent trials there are
only two possible outcomes; (2) the probabilities will remain the same for all
trials.

Let us denote by p and q these probabilities : p is the probability that the
outcome is a success and q is the probability that the outcome is a failure.
Obviously, p and q are nonnegative numbers and their sum is equal to the unity

p+ q = 1.

Now if we denote a success by the letter R and a failure by the letter
I, then the event ”from n trials result k successes and n − k failures” can be
obtained in a number of ways as we can distribute k letters R in n places.
Hence this event contains {kn points whence one finds that every point has the
probability pkqn−k. Thus the following result is obtained

Theorem 1. Let Pn(k) be the probability to result k successes with probabilities
p, and n− k, 0 ≤ k ≤ n, failures with probabilities q = 1− p from n Bernoulli
trials. Then

Pn(k) = {kn p
k qn−k. (2)

Particularly, the probability to obtain no success is qn. Then, the probability
to obtain at least one success is 1− qn.

Definition 1. The normal density function is defined by the equality

ψ(x) =
1√
2π

e−
1
2 x

2

; (3)

and its integral

N(x) =
1√
2π

x∫
−∞

e−
1
2 y

2

dy (4)

is called the normal distribution function.

The graph of the normal density function ψ(x) is a symmetric, bell-shaped
curve, for the representation of which different measure units must be used on
the two axes.

An well known result is given in the following lemma

Lemma 1. The area of the domain bounded by the graph of the function ψ(x)
and the xx′- axis is equal to the unity, i. e.

+∞∫
−∞

ψ(x)dx = 1. (5)
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By Definition 1 and Lemma 1 it results that N(x) is continuous increasing
from 0 to 1. The graph of N(x) is an S - shaped curve with

N(−x) = 1−N(x) (6)

Now we come back to Pn(k) in (2) for observing that for large values of n
and k, calculation of the probabilities Pn(k), involves considerable difficulties.
So the necessity arises to derive an asymptotic formula that permit calculating
these probabilities with a ”sufficient degree of accuracy”. Thus, the main step
is to obtain an asymptotic formula for (2).

DeMoivre is the first which found, in 1730, such an asymptotic formula in
the case of the Bernoulli scheme for p = q = 1

2 . Later this result was generalized
by Laplace to the case of arbitrary 0 < p < 1.

Thus, the following limit theorem is obtained.

Theorem 2. (The DeMoivre - Laplace local limit theorem). If the prob-
ability of occurrence of some event A in n independent trials is constant and
is equal to p (0 < p < 1) then, the probability Pn(k) that in each of the trials
event A will occur exactly k times satisfies the relation

Pn(k) :
1√

2πnpq
e−

x2

2 → 1 (7)

as n → ∞, uniformly in all k for which x lies in some finite interval, and
verifies the equality

x =
k − np
√
npq

. (8)

[It is clear that x depends both on n and p and on k].
A reasonable question is, anyway, how good the probability b(k;n, p), ap-

proximated by DeMoivre case p = q = 1
2 , is. The next example answers to this

question.

Example 1. Let us consider p = q = 1
2 . We choose for n specific values for

which is possible to have xnk = 1. For example, for n=25 or 100 or 400 or 1156
we have xnk = 1 if k=15 ; 55 ; 210 ; 595 respectively.

By the local limit theorem of DeMoivre-Laplace we have

Pn(k) :
1√

2πnpq
e−

x2
nk
2 → 1

as n→∞. Now if we denote

Qn =
1√

2πnpq
e−

x2
nk
2 =

ψ(x)
√
npq

.

for p = q = 1
2 and xnk = 1 we observe that the ratio Pn(k)

Qn
should tend to unity

and the difference Pn(k) − Qn should tend to zero, as n → ∞. In the table 1
the calculation for n= 25 ; 100 ; 400 and 1156 is given.

It is emphasized again a surprisingly good approximation of Pn(k).
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n Pn(k) ψ(xnk)√
npq

Pn(k) −Qn Pn(k) : Qn

25 0,09742 0,09676 0,00063 1,0065

100 0,04847 0,04839 0,00008 1,0030

400 0,024207 0,024194 0,000013 1,0004

1156 0,014236 0,014234 0,000002 1,0001

Having in view the function ψ in (3), we can conclude that for Pn(k) the
following approximation have been obtained

Pn(k) ≈ 1
√
npq

ψ(xk). (9)

[Many examples and comments are due to B. V. Gnedenko [6]. For more details
see also [3], [13] [9], [1]].

3 A variant of DeMoivre-Laplace local limit theorem

Let νn be the number of successes in n Bernoulli trials. Each success is supposed
to have the probability p. Then Pn(k) is the probability of the event νn = k.

Usually we are interested in the probability of the following event: the
number of all successes lies between two initially given limits, α and β. For α
and β being integer numbers, with α < β then, this event is defined by the
relation α ≤ νn ≤ β. The corresponding probability of this is

P [α ≤ νn ≤ β] = Pn(α) + Pn(α+ 1) + · · · · · · +Pn(β). (10)

Since the above mentioned sum can have many terms, a direct evaluation is
usually impossible. DeMoivre firstly, and then Laplace, realized that whenever
n is large one can use succesfully the normal distribution function in order
to obtain simple approximations of the probability (10). This fact is very
important, and not only for numerical computation.

An elementary problem involving a scheme of independent trials consists
in determining the probability Pn(k) that in n trials an event A will occur k
times, and that in the remaining n − k trials the complementary event A will
occur.

Let us denote δk = k − np, and let us suppose that n → ∞, k → ∞ such
that

δk
n
→ 0 and

δ3k
n2
→ 0.

Obviously, the last condition implies the first one and it is similar to

x3k√
n
→ 0.

In this way the following result is obtained

Abraham DeMoivre (1667-1754), The doctrine of chance, 1718.
Pierre Simon de Laplace (1749-1827), Théorie analytique des probabilités, 1812.
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Theorem 3. Let us suppose that n→∞, k →∞ such that

x3k√
n
→ 0.

Then, (9) holds. In other words, there exist two constants A and B such that∣∣∣∣ Pn(k)

(npq)−
1
2 ψ(xk)

− 1

∣∣∣∣ < A

n
+
B
∣∣x3k+1

∣∣
√
n

.

The theorem 3 leads directly to simple approximations for the sum (10). If

x3α√
npq
→ 0 and

x3β√
npq
→ 0 (11)

then, (9) holds uniformly for all terms in (10) and, consequently,

P [α ≤ Sn ≤ β] ≈ 1
√
npq

[ψ(xα) + ψ(xα+1) + · · ·+ ψ(xβ)]. (12)

On the right-hand side we have a Riemann sum which is an integral approxi-
mation.

This because
N
(
xk+ 1

2

)
−N

(
xk− 1

2

)
represents the area of a trapezoid with the basis

xk −
1

2

1
√
npq

< x < xk +
1

2

1
√
npq

and which is upper bounded above by the tangent to the curve y = ψ(x) at

x = xk. The rectangle’s area with the same basis is
ψ(xk)
√
npq

.

An interesting step is to check how good this approximation is. Such prob-
lems have been considered by W. Feller. We shall emphasize below, in short,
some aspects.

By the mean value theorem there is tk such that

N (xk+1)−N (xk−1) =
ψ(tk)
√
npq

xk −
1

2
√
npq

< tk < xk +
1

2
√
npq

. (13)

Then,
ψ(xk)
√
npq

= e
1
2 (t

2
k−x

2
k)
[
N
(
xk+ 1

2

)
−N

(
xk− 1

2

)]
.

Let now ε > 0 be arbitrarily choosen and suppose that the conditions (11)
hold. Then, for any k, α ≤ k ≤ β, and n sufficiently large, it results

1

2
|t2k − x2k| =

1

2
|tk + xk| · |tk − xk| <

<
1
√
npq

[
|xk|+

1

4
√
npq

]
< ε
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which implies

e−ε
[
N
(
xk+ 1

2

)
−N

(
xk− 1

2

)]
<
ψ(xk)
√
npq

<

< eε
[
N
(
xk+ 1

2

)
−N

(
xk− 1

2

)]
. (14)

Now, taking the sum over k, will be found that the ratio between the right-
hand side in (12) and

N
(
xβ+ 1

2

)
−N

(
xα− 1

2

)
tends to 1.

Thus, it is obtained a new variant of the DeMoivre-Laplace local limit
theorem.

Theorem 4. Let us take α and β such that the conditions (11) hold. Then

P [α ≤ Sn ≤ β] ≈ N
(
xβ+ 1

2

)
−N

(
xα− 1

2

)
(15)

where

xk =
k − np
√
npq

.

In other words, the difference between the two sides in (15) tends to zero

together with
x3β√
npq

and
x3α√
npq

.

As a consequence, (15) is also true for α and β restricted to values corre-
ponding to xα and xβ in a given interval.

A simple case of this limit theorem can be obtained when the reduced number
of successes defined by

S∗n =
Sn − np√

npq
(16)

is taken instead of Sn.
This means that we have to measure the deviation of Sn from np in

√
npq

units. Here np is referred to as the mean of Sn and
√
npq is called its standard

deviation.
Now α ≤ Sn ≤ β is equivalent to xα ≤ S∗n ≤ xβ , while by (15) it is said

that for arbitrary given xα < xβ one gets

P [xα ≤ S∗n ≤ xβ ] ≈ N

(
xβ +

(npq)−
1
2

2

)
−

− N

(
xα −

(npq)−
1
2

2

)
. (17)

Since
1
√
npq

→ 0 as n → ∞, the right-hand side tends to N(xβ) −N(xα).

We have thus the following corollary as a weak version of the theorem 4
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Corollary 1. For any fixed a < b

P [a ≤ Sn∗ ≤ b]→ N(b)−N(a). (18)

This is the classical form of Laplace’s limit theorem.

If
(npq)−

1
2

2
in (17) is excluded, automatically an error is introduced which

tends to zero as n → ∞. But it becomes considerable big when npq has a
moderate value.

Regarding to (18), the main observation is that for large n, the left-hand side
probability becomes independent on p. So we may compare the fluctuations in
distinct series of simple Bernoulli trials using the standart units.

We emphasize that the approximation theorems and limits are valid only
if the number n of trials is given, in advance, independently of the outcome of
the trials. From historical point of view, (18) is the first limit theorem in the
probability theory. But from the modern point of view it is only a very special
case of the central limit theorem.

4 DeMoivre-Laplace integral limit theorem

DeMoivre-Laplace local limit theorem can be used to derive the integral limit
theorem which is given below

Theorem 5. (DeMoivre-Laplace integral theorem.) If µ is the number
of occurrences of an event in n independent trials, in each of which the proba-
bility of the event is equal to p, (0 < p < 1) then, the following relation holds
uniformly in a and b (−∞ ≤ a ≤ b ≤ +∞) as n −→∞

P

[
a ≤ µ− np

√
npq

< b

]
→ 1√

2π

b∫
a

e−
z2

2 dz.

[For proof and more details and examples see [6]], [2], [14], [17], [18], [19].

Application

We remind that the intuitive notion of probability uses one assumption: if

in n identical trials the event A occurs ν times the ration
ν

n
is very closed to

the probability p of the event A when n is sufficiently large.
In this way, will be considered any identical trials as Bernoulli trials with

the probability p for success. We denote the number of successes in n trials by

Sn. Then, the average number of successes is
Sn
n

and it should be near p.

It is known the following main result

P

[∣∣∣∣Snn − p
∣∣∣∣ < ε

]
→ 1 (19)
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which can be stated as follows: the probability that the average number of
successes deviation from p is smaller than ε, in absolute value, tends to 1 for
sufficiently large n.

This is one statement of the law of large numbers. But in applications we
should add to it a more precise estimation of the probability in (19). This will
be obtained by the normal approximation of the binomial distribution. [Then
(19) appears as a consequence of this].

The law (19) is referred to as the classical law of large numbers.
Now as an application of the theorem 5, we propose to estimate the proba-

bility of the inequality ∣∣∣∣µn − p
∣∣∣∣ < ε

for ε > 0 arbitrarily choosen.
The probability of this inequality can be approximated as follows

P

[∣∣∣∣µn − p
∣∣∣∣ < ε

]
= P

[
−ε
√

n

pq
<
µ− np
√
npq

< ε

√
n

pq

]
.

But by the theorem 5 we have

lim
n→∞

P

[
−ε
√

n

pq
<
µ− np
√
npq

< ε

√
n

pq

]
=

1√
2π

+∞∫
−∞

e−
z2

2 dz = 1

from which it results

lim
n→∞

P

[∣∣∣∣µn − p
∣∣∣∣ < ε

]
= 1

which is just the law of large numbers.

5 Convergence to normal distribution law

The DeMoivre-Laplace integral limit theorem is a good basis for a large vari-
ety of problems of fundamental importance both to the theory of probability
itself and to its multiplicity of applications in the natural sciences, technol-
ogy, economic sciences, even in the process of transmission of information or in
computer science.

Now a very important problem which was solved especially by the remark-
able contributions of Lyapunov, Lindeberg, Gnedenko is discussed. [See for
example [5], [6], [12], [15], [16]].

Thus, a sequence of sums with ever larger numbers of summands is consid-
ered and it is assumed that the solutions of the problems which are of interest,
are given by limiting distribution functions for a sequence of distribution func-
tions of the sums.

In this context let us consider that a sequence of mutually independent
random variables is given

X1, X2, X3, · · · , Xn, · · · .
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Also it is supposed that they have finite expectations and variances. To
shorten the calculus the following notations are introduced

mk = EXk, and D2
n =

n∑
k=1

σ2Xk = σ2
n∑
k=1

Xk.

The main question is teh following: what conditions must be imposed
on the variables Xk so that the distribution functions of the sums

1

Dn

n∑
k=1

(Xk −mk) (20)

converge to the normal distribution law ?

An answer to this question is given by a theorem due tu A.M. Lyapunov.
We do not insist on the details, this being a known problem. Nevertheless,
more details can be found in some works as [13], [6], or more recently [23].

But we remind that it is sufficient to be satisfied the following known con-
dition due to Lindeberg

Lemma 2. (Lindeberg condition). For any τ > 0

lim
n→∞

1

D2
n

n∑
k=1

∫
|x−mk|>τDn

(x−mk)2 dFk(x) = 0 (21)

where Fk(x) denotes the distribution function of the random variable Xk.

Regarding to the meaning of this condition we may conclude that the Lin-
deberg condition is a peculiar kind of demand for the uniform smallness of the
terms

1

Dn
(Xk −mk)

in the sum (20).

The following result is now obtained

Lemma 3. If the independent random variable X1, X2, · · · , Xn, · · · are iden-
tically distributed and have a finite variance different from zero, then

P

[
1

Dn

n∑
k=1

(Xk − EXk) < x

]
→ 1√

2π

x∫
−∞

e−
z2

2 dz (22)

uniformly in x as n tends to infinity.

For this it is sufficient to verify that the Lindeberg condition is satisfied under
the given assumptions. To this case one has

Dn = σ
√
n
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where σ2 denotes the variance of a separate summand. Let EXk = m be and
one finds the following equation

n∑
k=1

1

D2
n

∫
|x−m|>τDn

(x−m)2 dFk(x) =

=
1

nσ2
n

∫
|x−m|>τDn

(x−m)2 dF1(x) =

=
1

σ2

∫
|x−m|>τDn

(x−m)2 dF1(x)

But the variance was supposed to be finite and positive so that it results that
the integral on the right-hand side of this equation tends to zero as n tends to
infinity.�

Now the main result is given below

Theorem 6. (Lyapunov’s theorem). If for a sequence of mutually indepen-
dent random variables X1, X2, X3, · · · , X3, · · · it is possible to choose a number
δ > 0 such that

1

D2+δ
n

n∑
k=1

E|Xk −mk|2+δ → 0 (23)

as n→∞, then

P

[
1

Dn

n∑
k=1

(Xk −mk) < x

]
→ 1√

2π

x∫
−∞

e−
z2

2 dz (24)

uniformly in x as n→∞.

It is easy to see that it will suffice to verify that the Lyapunov condition (23)
implies that the Lindeberg condition holds. But this fact follows from the
following inequalities

1

D2
n

n∑
k=1

∫
|x−mk|>τDn

(x−mk)2 dFk(x) ≤

≤ 1

D2
n(τDn)δ

n∑
k=1

∫
|x−mk|>τDn

|x−mk|2+δ dFk(x) ≤

≤ 1

τ δ

n∑
k=1

∫
|x−mk|2+δ dFk(x)

D2+δ
n

and the theorem follows.�
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